The University of Southampton
Warning! Your browser is out-of-date and not compatible with this website. Please download a new secure and faster browser to view this website correctly.

MSc Data Science (1 year full-time)

This one year MSc Data Science degree prepares you to become a proficient data scientist, building core areas of expertise, from the ability to operate high-performance computing clusters and cloud-based infrastructures, to devising and applying sophisticated Big Data analytics techniques.

Introducing your degree

This MSc programme will train students to become proficient data scientists.

You will gain advanced knowledge in areas such as data mining, machine learning, and data visualization, including state of the art techniques, programming toolkit, and industrial and societal application scenarios.


This programme prepares you to become a proficient data scientist, developing your specialist knowledge in subjects that are crucial for mastering the vast and ever-so-complex information landscape that is characteristic to modern, digitally empowered organisations.

This is typically linked to a number of core areas of expertise, from the ability to operate high-performance computing clusters and cloud-based infrastructures, to the know-how that is required to devise and apply sophisticated Big Data analytics techniques, and the creativity involved in designing powerful visualizations.

In the first semester you start with a review of key topics in data science. The course will introduce the core theoretical and technology components required to design and use a data science application, using open-source tools and openly accessible data sets. You will also cover the most important machine learning techniques, which are at the core of any attempt to analyse and reason about data.

You will be exposed to more advanced topics in data mining in the second semester, including feature engineering, methods to manipulate text and multimedia data, topic modelling, social network analysis, and spectral analysis. A new module on data visualization will introduce the most common types of visualization techniques and state-of-the-art technology used to build graphic elements into data science applications to present analytics results.

Finally, during the summer the MSc project enables you will demonstrate your mastery of specialist techniques, relevant methods of enquiry, and your ability to design and deliver advanced application, systems and solutions to a tight deadline, including the production of a substantial dissertation.

View the programme specification document for this course

Programme Structure

Twelve months, full-time.

The programme has been designed to maximise student choice by allowing you to tailor the structure to suit your own strengths and interests. You can choose areas that reflect your personal interests and work on an individual project. You will also take a number of compulsory modules to ensure you are exposed to key topics in all areas. The modules cover state-of-the-art techniques, technologies, and supporting tools, and will expose you to their applications in meeting emerging business needs and ambitious societal problems. Application areas will include: data journalism, Open Government Data, finances, and social media. 

To Apply

You can apply for the programme through the University of Southampton's online postgraduate application system. Visit our how to apply pages for more information

Please note we are part of the Faculty of Physical Sciences and Engineering (FPSE).

Key Facts

Southampton University has pioneered many of the most important advances in computer science and web technology of the past 10 years

We are in the top 10% in the UK for the volume and quality of our Computer Science research (REF 2014)

100% of our Computer Science research impact is world-leading or internationally excellent (REF 2014)

We have been ranked in the UK top ten for Computer Sciences for over ten years by the Guardian University Guide

Southampton is ranked in the top 51-100 universities for Computer Science in the 2016 QS World Rankings

We are one of only 13 universities recognised as an Academic Centre of Excellence in Cyber Security Research by the UK Government and our academics are playing a leading role in establishing a European Data Science Academy

We are number one in the UK for graduate prospects in Computer Science in the Complete University Guide 2017

Entry Requirements

Typical entry requirements

Honours Degree:

Our normal entry requirement is an upper second-class honours degree or higher (or equivalent) in a related discipline, such as mathematics, physics, engineering or computer science.

English Language Requirements:

If English is not your first language, you will be required to pass an approved English test. We normally ask for IELTS 6.5 overall with at least 6.0 in each competency. For information on other accepted English language tests, please visit

International Qualifications:

We welcome applications from international students. For information on applying, visit the International Office website

Selection process:

All individuals are selected and treated on their relative merits and abilities in line with the University's Equal Opportunities Policy. Disabled applicants will be treated according to the same procedures as any other applicant with the added involvement of the Disability Office to assess their needs. The programme may require adaptation for students with disabilities (eg hearing impairment, visual impairment, mobility difficulties, dyslexia), particularly the practical laboratory sessions, and we will attempt to accommodate students wherever possible.


Year 1

The program consists of five compulsory modules spread across two semesters, each worth 7.5 ECTS credits, and an individual project worth 30 ECTS credits. The compulsory modules cover data analysis and use, as well as project preparation.

You can also choose from a wide range of optional topics, including advanced topics of data processing and manipulation, data analysis, and data use, and applications, allowing you to structure the program according to your strengths and preferences. These optional modules should add up to a minimum of 22.5 ECTS credits.

Career Opportunities

Data scientists help organisations handle large amounts of data being produced thanks to digital technologies. Harvard Business Review described the role as 'The Sexiest Job of the 21st Century' due to the rare combination of skills that a trained data scientist possesses.

Data science has seen an unparalleled expansion as the data-driven economy grows. Increasingly organisations require skilled professionals who can handle large datasets and managers who can utilise the resulting analysis to make impactful decisions.

There is a range of potential jobs available; demand for big data staff is predicted to rise 92% over 5 years from Jan 2013. The programme provides an excellent opportunity for entry into data sciences or similar fields. Plus, big data positions offer a median salary of £55,000 – 24% higher than for IT staff in general (UK). There are also academic possibilities for doctoral study, as there are for entrepreneurial careers.

ECS runs a dedicated careers hub with is affiliated with more than 100 renowned companies such as IBM, ARM, Microsoft, Samsung, and Google. Visit our Careers Hub for more information.

Graduates from our MSc program can seek employment worldwide in:

  • established companies looking to spot trends in sales, marketing or operational data;
  • start-ups based around new opportunities in the booming data-driven economy;
  • government departments looking to utilise linked open data to gain insights to affect policy at the highest levels;
  • research/consultancy companies analysing data and feeding back to the wider community, with training and specialist services to clients.

Fees & funding

Tuition fees

Fees for postgraduate taught courses vary across the University. All fees are listed for UK, EU and international full-time and part-time students alphabetically by course name.

View the full list of course fees


Scholarships, bursaries, sponsorships or grants may be available to support you through your course. Funding opportunities available to you are linked to your subject area and/or your country of origin. These can be from the University of Southampton or other sources.

Explore funding opportunities

Costs associated with this course

Students are responsible for meeting the cost of essential textbooks, and of producing such essays, assignments, laboratory reports and dissertations as are required to fulfil the academic requirements for each programme of study.

There will also be further costs for the following, not purchasable from the University:

Approved CalculatorsCandidates may use calculators in the examination room only as specified by the University and as permitted by the rubric of individual examination papers. The University approved models are Casio FX-570 and Casio FX-85GT Plus. These may be purchased from any source and no longer need to carry the University logo.
StationeryYou will be expected to provide your own day-to-day stationery items, e.g. pens, pencils, notebooks, etc). Any specialist stationery items will be specified under the Additional Costs tab of the relevant module profile.
TextbooksWhere a module specifies core texts these should generally be available on the reserve list in the library. However due to demand, students may prefer to buy their own copies. These can be purchased from any source.

Some modules suggest reading texts as optional background reading. The library may hold copies of such texts, or alternatively you may wish to purchase your own copies. Although not essential reading, you may benefit from the additional reading materials for the module.
Printing and Photocopying CostsIn the majority of cases, coursework such as essays; projects; dissertations is likely to be submitted on line. However, there are some items where it is not possible to submit on line and students will be asked to provide a printed copy. A list of the University printing costs can be found here:

In some cases you'll be able to choose modules (which may have different costs associated with that module) which will change the overall cost of a programme to you. Please also ensure you read the section on additional costs in the University’s Fees, Charges and Expenses Regulations in the University Calendar available at

Pre-course Reading List

We expect students to have a background in Computer Science or a related numerical discipline. To build knowledge around big data and data science ahead of the programme, we would recommend the following texts:

  • Schutt, R. and O'Neil, C., 2013. Doing data science: Straight talk from the frontline. "O'Reilly Media, Inc.”.
  • Davenport, T., 2014. Big data at work: dispelling the myths, uncovering the opportunities. Harvard Business Review Press.
  • Jurney, R., 2013. Agile Data Science: Building Data Analytics Applications with Hadoop. "O'Reilly Media, Inc.”.
  • Aiden, E. and Michel, J.B., 2013. Uncharted: Big data as a lens on human culture. Penguin.


Highfield Campus

Highfield is our main campus and the heart of the University. Set in beautiful green surroundings, it’s easily accessible from the city centre. University Road, Southampton, SO17 1BJ.

Find out more

Related courses

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.