The University of Southampton

Design and Human Evaluation of Haptic Devices for Hand Rehabilitation from Sensory Deficits due to Neurological Impairment

Date:
2010-2010
Themes:
Novel Sensors, Pervasive Healthcare and Telemedicine, Healthcare in ECS
Funding:
Adventure in Research Grant

Sensory feedback is essential for motor learning and critical to recovery from neurological impairment, such as stroke. In neurological conditions, sensory deficits are often present, limiting the potential for recovery. Current understanding of neuroplasticity would support the argument that sensory, cutaneous input (stimulation that is applied to the skin) may enhance sensory-motor learning. Current rehabilitation robots use interfaces, such as virtual reality, to increase patient motivation during therapy. However, these systems do not give tactile feedback as you would normally experience when you grasp or interact with a real object. There is a need to design a system for effective recovery of reaching and grasping following stroke that is compatible with a range of rehabilitation robots, is low-cost and can translate between hospital or home use.

In humans, haptic sensory information is both tactile (related to contact and pressure) and kinaesthetic (related to position and motion). A range of different technologies, devices, methods and techniques have been proposed for providing a realistic tactile feedback to the fingertip, and a range of these will be investigated in this project. Other applications of the technology are in virtual reality for computer aided design and gaming.

This collaborative project (between the School of Electronics and Computer Science and the School of Health Sciences) is developing novel devices for providing a tactile sensation to a person’s fingertip using a variety of different technologies and mechanisms. The developed devices are evaluated through human studies to ascertain which provide the most realistic and usable sensations for use in stroke rehabilitation. Each device will be evaluated by iterative testing with unimpaired participants and stroke patients to identify which mechanism(s) provide a realistic sensation and satisfies aesthetic, comfort, reliability and calibration considerations. The project is also investigating the development and evaluation of a wearable system for providing tactile feedback to all fingers on a hand, that can potentially be integrated with an existing rehabilitation robot.

Primary investigators

Secondary investigator

  • Dr Sara Demain

Associated research groups

  • Electronic Systems and Devices Group
  • Electronics and Electrical Engineering
Share this project FacebookGoogle+TwitterWeibo

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×