Feature Extraction and Image Processing - Fourth Edition

Known Errors

Apologies, some are ours and some come from mistakes in the proof stage. I actually found them when I was writing my new book called Do'h! Fourier
http://www.southampton.ac.uk/~msn/Doh Fourier/ to be published by Wiley in 2022.
P36 (it doesn't really matter, but the bits were the wrong way round. It makes more sense this way though..)

Figure 2.1 Decomposing an Image Into its Bits

A sentence after Eq. 2.13 should read
Correlation gives a measure of the match between the two signals $p_{2}(t)$ and $p_{1}(t)$. When $p_{2}(t)=$ $p_{1}(t)$ we are correlating a signal with itself and the process is known as autocorrelation.

P44 (argh! Not Kronecker..)

$$
\operatorname{delta}(t)=\delta(t)=\left\{\begin{array}{cl}
\infty & t=0 \tag{2.14}\\
0 & \text { otherwise }
\end{array}\right.
$$

P52
The index in Figure 2.13 is x, not t
P56
$\mathbf{F} \mathbf{P}_{u, v}=\frac{1}{M N} \sum_{x=0}^{N-1} \sum_{y=\mathbf{0}}^{M-\mathbf{1}} \mathbf{P}_{x, y} e^{-j 2 \pi\left(\frac{u x}{N}+\frac{v y}{M}\right)}=\frac{1}{M N} \sum_{x=0}^{N-1}\left\{\sum_{y=0}^{M-1} \mathbf{P}_{x, y} e^{-j 2 \pi\left(\frac{v y}{M}\right)}\right\} e^{-j 2 \pi\left(\frac{u x}{N}\right)}$

