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Application

• Single-carrier black transmission with iterative frequency domain decision feedback equalization
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• High-rate power efficient SC black transmission with iterative FD DFE would look like
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How to Approach This Problem
• With nonlinear HPA at transmitter, channel is nonlinear

– Black box learning estimates a nonlinear model byk = f(xk, xk−1, · · · , xk−L)

– Very complicated, and little use to our application

• Nonlinear channel is Hammerstein: HPA static nonlinearity wk = Ψ(xk) followed by linear

dispersive channel yk =
PL

i=0 hixk−i + ek

– Grey box approach utilizes this prior information to learn HPA’s nonlinearity bΨ and linear

channel
˘bhi

¯L

i=0
, also to learn inversion bΨ−1 but wk is unavailable for this learning

• Standard tensor product of two sets of polynomial bases

P
(s)
l (xs) = x

l
s, 0 ≤ l ≤ P0, , s = R or I

– To model Ψ

bw = bΨP(x) =

P0X

l=0

P0X

m=0

Pl,m(x)θP
l,m =

P0X

l=0

P0X

m=0

P
(R)
l (xR)P

(I)
l (xI)θ

P
l,m

– To model Ψ−1 with ‘pseudo input’ bw = bwR + j bwI

bx = bΨ−1
P ( bw) =

P0X

l=0

P0X

m=0

P
(R)
l ( bwR)P

(I)
l ( bwI)α

P
l,m

• Tensor product of two sets of univariate B-spline bases is far better
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B-spline Basis Functions

• Knot sequence {U0, U1, · · · , UNs+Po}

...
U U U U0 1 o−2 UPo−1

Umin

Po ...
UNs

UNs+1 UNs+2 ...
U

s o

Umaxx

P N + P

– Input Umin ≤ xs ≤ Umax, Po: polynomial degree, Ns: number of basis functions

– Po − 1 external knots and one boundary knot at each end, Ns + 1 − Po internal knots

• De Boor recursion

B
(s,0)
l (xs) =


1, if Ul−1 ≤ xs < Ul,

0, otherwise,

for l = 1, · · · , Ns + Po − p and p = 1, · · · , Po,

B
(s,p)
l (xs) =

xs − Ul−1

Up+l−1 − Ul−1

B
(s,p−1)
l (xs) +

Up+l − xs

Up+l − Ul

B
(s,p−1)
l+1 (xs)

• Polynomial degree Po = 3 or 4 sufficient, number of basis functions Ns = 6 to 10 sufficient

– Two boundary knots on Umin and Umax, internal knots uniformly distributed in
ˆ
Umin, Umax

˜
,

external knots offer potential extrapolation capability
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B-spline Model
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Visualisation of De Boor recursion for Po = 4 and Ns = 5,

where Umin = U3 and Umax = U6

1. Tensor product B-spline modeling of Ψ

bw = bΨB(x) =

NRX

l=1

NIX

m=1

B
(P0)

l,m (x)θ
B
l,m

• B
(P0)

l,m (x) = B
(R,P0)

l (xR)B(I,P0)
m (xI)

• NR = NI = Ns, NB = NRNI

• θB =
ˆ
θB

1,1 θB
1,2 · · · θ

B
l,m · · · θB

NR,NI

˜T
∈ C

NB

• Task is to estimate coefficients θB given training

data
˘

xk, yk

¯

2. Tensor product B-spline inverting of Ψ

bx = bΨ−1
B ( bw) =

NRX

l=1

NIX

m=1

B
(P0)

l,m ( bw)αB
l,m

• αB =
ˆ
αB

1,1 αB
1,2 · · ·α

B
l,m · · ·αB

NR,NI

˜T
∈ C

NB

• Task is to estimate coefficients αB, given pseudo

training data
˘

bwk, xk

¯

• bwk generated based on model identified in 1. as

bwk = bΨB(xk)
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Complexity
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Complexity of B-spline model with Po = 4 using De Boor recursion

1. Polynomial: Complexity of bΨP is obviously

on order of O
`
(1 + P0)

2
´

2. B-spline: Complexity of bΨB on order of

O
`
N2

s

´
? As Ns > 1 + P0, complexity of

bΨB much higher than complexity of bΨP?

• Given xs, only Po + 1 basis functions with

nonzero values at most

• Complexity bΨB is on order of O
`
(1+P0)

2
´

Complexity of polynomial model for Po = 4

Computation Multiplications Additions

Two sets of 1-D basis functions 2 × 4 0
Tensor product output 3 × 25 2 × 24

Total 83 48

Upper bound complexity of B-spline model for Po = 4

Computation Multiplications Additions

Two sets of 1-D basis functions 2 × 38 2 × 26
Tensor product output 3 × 25 2 × 24

Total 151 100

Lower bound complexity of B-spline model for Po = 4

Two sets of 1-D basis functions 2 × 36 2 × 25
Tensor product output 3 × 16 2 × 15

Total 120 80
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Optimal Property

1. Convexity of B-spline model bases: they are all positive and sum to one

2. B-spline have best approximation capability, as the basis function is complete

3. B-spline has maximum numerical stability/robustness compared with other polynomial forms

• True system is represented exactly by the polynomial model

ys =

PoX

i=0

aix
i
s

Same system can also be represented exactly by the B-spline model

ys =

NsX

i=1

biB
(s,Po)
i (xs)

• As identification data are noisy, the estimated model coefficients are perturbed from their true

values to

bai = ai + εi

for the polynomial model, and for the B-spline model to

bbi = bi + εi
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Optimal Property (2)

• Assume that all estimation noises εi are bounded, |εi| < εmax

• The upper bound of |ys − ŷs| for the B-spline model

|ys − ŷs| =

∣∣∣∣∣

Ns∑

i=1

biB
(s,Po)
i (xs) −

Ns∑

i=1

b̂iB
(s,Po)
i (xs)

∣∣∣∣∣ < εmax

∣∣∣∣∣

Ns∑

i=1

B
(s,Po)
i (xs)

∣∣∣∣∣ = εmax

– Only depends on εmax, thus has maximum robustness

• The upper bound of |ys − ŷs| for the polynomial model

|ys − ŷs| =

∣∣∣∣∣

Po∑

i=0

aix
i
s −

Po∑

i=0

âix
i
s

∣∣∣∣∣ < εmax

∣∣∣∣∣

Po∑

i=0

xi
s

∣∣∣∣∣

– Depends on εmax, input value xs and polynomial degree Po
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Numerical Stability Example

(a) (b)

(c) (d)

• Quadratic polynomial

y = 0.001x2 − 0.02x + 0.1

defined over x ∈ [0, 20] in solid line

• Quadratic B-spline

y = 0.14B
(2)
1 (x) − 0.10B

(2)
2 (x) + 0.14B

(2)
3 (x)

with knot sequence {−5,−4, 0, 20, 24, 25} in solid line

• 10 set of perturbed functions in dashed line

(a) Polynomial, εi uniformly randomly drawn in [−0.0001, 0.0001]

(b) B-spline, εi uniformly randomly drawn from [−0.0001, 0.0001]

(c) B-spline, εi uniformly randomly drawn from [−0.001, 0.001]

(d) B-spline, εi uniformly randomly drawn from [−0.01, 0.01]

• Despite εmax added to B-spline coefficients is 100 times larger

than added to polynomial coefficients, B-spline model is much less
seriously perturbed than polynomial model
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Alternating Least Squares for Ψ and h

• h0 = 1: hi = hi/h0, 0 ≤ i ≤ L, Ψ = h0 ∗ Ψ, and given training data
˘

xk, yk

¯N

k=1

• Initialization. For linear model in ω =
ˆ
θ

T h1θ
T h2θ

T · · ·hLθ
T

˜T
∈ C

(L+1)NB

– Assume N ≥ (L + 1)NB, we have closed-form unbiased regularized LS estimate bω
– First NB elements of bω provides initial unbiased estimate for θ, denoted as bθ(0)

• ALS. For 1 ≤ τ ≤ τmax, e.g., τmax = 2, perform

1. Given bθ(τ−1), for linear model in h, we have closed-form unbiased LS estimate bh(τ), and scale

it according to bh(τ)
i = bh(τ)

i

‹bh(τ)
0 , 0 ≤ i ≤ L

2. Given bh(τ), for linear model in θ, we have closed-form unbiased LS estimate bθ(τ)

Remark: ALS guarantees converging to unbiased estimate of h and θ

Least Squares for Ψ−1

• To estimate Ψ−1, we need input wk and desired output xk, but wk unavailable

• With estimated bΨ, generate pseudo training data
˘

bwk, xk

¯N

k=1
with bwk = bΨ(xk)

• For linear model in α, we have closed-form LS estimate bα

Remark: Pseudo training input bwk is highly noisy, which will serious affect polynomial inverse model

but not B-spline inverse model (B-spline has maximum robustness property)
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Performance Evaluation

• Simulation system set up: block size N = 2048, 64-QAM

– HPA w = Ψ(x) amplitude and phase response

A(r) =
gar

“
1 +

“
gar
Asat

”2βa” 1
2βa

, Υ(r) =
αφrq1

1 +
“

r
βφ

”q2
[degree], r = |x|

Maximum and average powers of w: Pmax and Paop, then operating status specified by output

back off

OBO = 10 log10

Pmax

Paop

[dB]

– 10 tap channel L = 9

– Signal to noise ratio: SNR = Ex/No, with Ex average symbol energy, and No noise power

• Polynomial model: polynomial degree Po = 4

• B-spline model: Po = 4, NR = NI = 8

Knot sequence for xR and xI

-10.0, -9.0, -1.0, -0.9, -0.06, -0.04, 0.0, 0.04, 0.06, 0.9, 1.0, 9.0, 10.0

Knot sequence for wR and wI

-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0
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Dispersive Channel Identification

• Experiments were repeated 100 independent runs

• Channel taps were identified with very high accuracy for both B-spline and polynomial based

approaches

• For highly nonlinear (OBO = 3 dB) and highly noisy (SNR = 5 dB):

true value BS average BS std Poly average Poly std

1 1 NA 1 NA

-0.3732 -0.6123 -0.3732 -0.6122 9.152e-04 1.021e-03 -0.3735 -0.6120 9.176e-04 1.027e-03

0.3584 0.3676 0.3586 0.3676 9.702e-04 8.555e-04 0.3596 0.3680 9.723e-04 8.540e-04

0.3052 0.2053 0.3052 0.2052 9.278e-04 8.596e-04 0.3052 0.2058 9.262e-04 8.591e-04

0.2300 0.1287 0.2300 0.1286 7.806e-04 8.650e-04 0.2310 0.1277 7.786e-04 8.603e-04

0.7071 0.7071 0.7070 0.7069 1.161e-03 1.178e-03 0.7072 0.7066 1.165e-03 1.187e-03

0.6123 -0.3732 0.6122 -0.3733 1.051e-03 1.115e-03 0.6118 -0.3721 1.052e-03 1.116e-03

-0.3584 0.3676 -0.3583 0.3675 9.100e-04 1.056e-03 -0.3582 0.3689 9.077e-04 1.055e-03

-0.2053 -0.3052 -0.2054 -0.3051 9.343e-04 9.233e-04 -0.2064 -0.3052 9.327e-04 9.284e-04

0.1287 -0.2300 0.1287 -0.2299 8.017e-04 8.728e-04 0.1284 -0.2291 8.057e-04 8.615e-04

• Even higher accuracy for OBO > 3 dB and/or SNR > 5 dB
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High Power Amplifier Identification

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

O
ut

pu
t a

m
pl

itu
de

Input amplitude

true HPA
B-spline estimate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

O
ut

pu
t a

m
pl

itu
de

Input amplitude

true HPA
polynomial estimate

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

O
ut

pu
t p

ha
se

 S
hi

ft 
(r

ad
)

Input amplitude

true HPA
B-spline estimate

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

O
ut

pu
t p

ha
se

 S
hi

ft 
(r

ad
)

Input amplitude

true HPA
polynomial estimate

13



WCCI 2016 S Chen

High Power Amplifier Inversion
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Bit Error Rate

(a) OBO = 3 dB (b) OBO = 5 dB

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20

B
it 

E
rr

or
 R

at
e

Es/No (dB)

polynomial: 1st iteration
2nd iteration
4th iteration

B-spline: 1st iteration
2nd iteration
4th iteration

10-6

10-5

10-4

10-3

10-2

10-1

100

-5  0  5  10
B

it 
E

rr
or

 R
at

e
Es/No (dB)

polynomial: 1st iteration
2nd iteration
4th iteration

B-spline: 1st iteration
2nd iteration
4th iteration

• B-spline based approach significantly outperforms polynomial based counterpart
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Conclusions

• Complex-valued B-spline neural network for a real-world application

– Iterative frequency-domain decision feedback equalization for Hammerstein
communication systems

• Optimal property and robustness of B-spline neural network

– Particularly important for inverting transmitter nonlinear high power amplifier
at receiver with pseudo noisy training input

– Alternative least squares with closed-form LS estimates of linear channel and
nonlinear BS model

• CV B-spline based approach significantly outperforms CV polynomial based
counterpart
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