Complex-Valued B-Spline Neural Network and its Application to Iterative **Frequency-Domain Decision Feedback Equalization for Hammerstein Communication Systems**

Sheng Chen^{1,2}, Xia Hong³, Emad Khalaf², Fuad E. Alsaadi², Chris J. Harris¹

¹School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

²Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

³Department of Computer Science, School of Mathematical and Physical Sciences, University of Reading, Reading, RG6 6AY, UK

Electronics and

Application

• Single-carrier black transmission with iterative frequency domain decision feedback equalization

• High-rate power efficient SC black transmission with iterative FD DFE would look like

How to Approach This Problem

- With nonlinear HPA at transmitter, channel is nonlinear
 - Black box learning estimates a nonlinear model $\widehat{y}_k = f(x_k, x_{k-1}, \cdots, x_{k-L})$
 - Very complicated, and little use to our application
- Nonlinear channel is Hammerstein: HPA static nonlinearity $w_k = \Psi(x_k)$ followed by linear dispersive channel $y_k = \sum_{i=0}^{L} h_i x_{k-i} + e_k$
 - Grey box approach utilizes this prior information to learn HPA's nonlinearity $\widehat{\Psi}$ and linear channel $\{\widehat{h}_i\}_{i=0}^L$, also to learn inversion $\widehat{\Psi}^{-1}$ but w_k is unavailable for this learning
- Standard tensor product of two sets of **polynomial** bases

$$P_l^{({
m s})}(x_{
m s})=x_{
m s}^l, \ 0\leq l\leq P_0, \ ,{
m s}=R \ {
m or} \ I$$

– To model Ψ

$$\widehat{w} = \widehat{\Psi}_P(x) = \sum_{l=0}^{P_0} \sum_{m=0}^{P_0} P_{l,m}(x) \theta_{l,m}^P = \sum_{l=0}^{P_0} \sum_{m=0}^{P_0} P_l^{(R)}(x_R) P_l^{(I)}(x_I) \theta_{l,m}^P$$

- To model Ψ^{-1} with 'pseudo input' $\widehat{w} = \widehat{w}_R + \mathsf{j}\widehat{w}_I$

$$\widehat{x} = \widehat{\Psi}_{P}^{-1}(\widehat{w}) = \sum_{l=0}^{P_{0}} \sum_{m=0}^{P_{0}} P_{l}^{(R)}(\widehat{w}_{R}) P_{l}^{(I)}(\widehat{w}_{I}) \alpha_{l,m}^{P}$$

• Tensor product of two sets of univariate **B-spline** bases is far **better**

B-spline Basis Functions

- Input $U_{\min} \leq x_{
 m s} \leq U_{\max}$, P_o : polynomial degree, $N_{
 m s}$: number of basis functions
- $P_o 1$ external knots and one boundary knot at each end, $N_{
 m s} + 1 P_o$ internal knots
- De Boor recursion

$$B_l^{(\mathrm{s},0)}(x_\mathrm{s}) = \begin{cases} 1, & \text{if } U_{l-1} \leq x_\mathrm{s} < U_l, \\ 0, & \text{otherwise,} \end{cases}$$

for $l=1,\cdots,N_{\mathrm{s}}+P_{o}-p$ and $p=1,\cdots,P_{o}$,

$$B_{l}^{(s,p)}(x_{s}) = \frac{x_{s} - U_{l-1}}{U_{p+l-1} - U_{l-1}} B_{l}^{(s,p-1)}(x_{s}) + \frac{U_{p+l} - x_{s}}{U_{p+l} - U_{l}} B_{l+1}^{(s,p-1)}(x_{s})$$

- Polynomial degree $P_o = 3$ or 4 sufficient, number of basis functions $N_s = 6$ to 10 sufficient
 - Two boundary knots on U_{\min} and U_{\max} , internal knots uniformly distributed in $[U_{\min}, U_{\max}]$, external knots offer potential extrapolation capability

B-spline Model

 $\begin{bmatrix} U_0 , U_1 \end{bmatrix} B_1^{(s)}$ $\begin{bmatrix} U_1 & U_2 \end{bmatrix} B_2^{(s,0)}$ $B_2^{(s,l)}$ $\begin{bmatrix} U_2 & U_3 \end{bmatrix} B_3^{(s,0)}$ $B_{3}^{(s,2)} B_{2}^{(s,3)}$ $\begin{bmatrix} U_3 , U_4 \end{bmatrix} B_4^{(s,0)} B_3^{(s)}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ $|U_4, U_5| B_5^{(s, l)}$ $\begin{bmatrix} U_5 , U_6 \end{bmatrix} B_6^{(s,0)}$ $\begin{bmatrix} U_6 & U_7 \\ U_7 & U_7 \end{bmatrix} B_7^{(s,0)}$ $\begin{bmatrix} U_7 & U_8 \\ U_8 & U_9 \end{bmatrix} B_8^{(s,0)}$

Visualisation of De Boor recursion for $P_{O}=4$ and $N_{\mathrm{S}}=5$,

University

of Southampton

where
$$U_{\min} = U_3$$
 and $U_{\max} = U_6$

1. Tensor product **B-spline modeling** of Ψ

$$\widehat{w} = \widehat{\Psi}_B(x) = \sum_{l=1}^{N_R} \sum_{m=1}^{N_I} B_{l,m}^{(P_0)}(x) \theta_{l,m}^B$$

•
$$B_{l,m}^{(P_0)}(x) = B_l^{(R,P_0)}(x_R) B_m^{(I,P_0)}(x_I)$$

•
$$N_R = N_I = N_{\mathrm{s}}, \ N_B = N_R N_I$$

•
$$\boldsymbol{\theta}_B = \begin{bmatrix} \theta_{1,1}^B & \theta_{1,2}^B \cdots & \theta_{l,m}^B \cdots & \theta_{N_R,N_I}^B \end{bmatrix}^{\mathrm{T}} \in \mathbb{C}^{N_B}$$

- Task is to estimate coefficients θ_B given training data $\{x_k, y_k\}$
- 2. Tensor product **B**-spline inverting of Ψ

$$\widehat{x} = \widehat{\Psi}_{B}^{-1}(\widehat{w}) = \sum_{l=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{l,m}^{(P_{0})}(\widehat{w}) \alpha_{l,m}^{B}$$

- $\boldsymbol{\alpha}_B = \left[\alpha_{1,1}^B \; \alpha_{1,2}^B \cdots \alpha_{l,m}^B \cdots \alpha_{N_R,N_I}^B \right]^{\mathrm{T}} \in \mathbb{C}^{N_B}$
- Task is to estimate coefficients α_B , given pseudo training data $\{\widehat{w}_k, x_k\}$
- \widehat{w}_k generated based on model identified in 1. as $\widehat{w}_k = \widehat{\Psi}_B(x_k)$

ence

Complexity of B-spline model with $P_0 = 4$ using De Boor recursion

- 1. Polynomial: Complexity of $\widehat{\Psi}_P$ is obviously on order of $O((1+P_0)^2)$
- 2. **B-spline**: Complexity of $\widehat{\Psi}_B$ on order of $O(N_s^2)$? As $N_s > 1 + P_0$, complexity of $\widehat{\Psi}_B$ much higher than complexity of $\widehat{\Psi}_P$?
 - Given $x_{\rm s},$ only P_o+1 basis functions with nonzero values at most
 - Complexity $\widehat{\Psi}_B$ is on order of $O((1+P_0)^2)$

Complexity of polynomial model for $P_0 = 4$					
Computation	Multiplications	Additions			
Two sets of 1-D basis functions	2×4	0			
Tensor product output	3×25	2×24			
Total	83	48			
Upper bound complexity of B-spline model for $P_0 = 4$					
Computation	Multiplications	Additions			
Two sets of 1-D basis functions	2×38	2×26			
Tensor product output	3×25	2×24			

renser product output	0 / 20				
Total	151	100			
Lower bound complexity of B-spline model for $P_0 = 4$					
Two sets of 1-D basis functions	2×36	2×25			
Tensor product output	3×16	2×15			
Total	120	80			

Optimal Property

- 1. **Convexity** of B-spline model bases: they are all positive and sum to one
- 2. B-spline have **best approximation capability**, as the basis function is complete
- 3. B-spline has maximum numerical stability/robustness compared with other polynomial forms
- True system is represented exactly by the polynomial model

$$y_{\mathrm{s}} = \sum_{i=0}^{P_o} a_i x_{\mathrm{s}}^i$$

Same system can also be represented exactly by the B-spline model

$$y_{
m s} = \sum_{i=1}^{N_{
m s}} b_i B_i^{({
m s},P_o)}(x_{
m s})$$

• As identification data are noisy, the estimated model coefficients are perturbed from their true values to

$$\widehat{a}_i = a_i + \varepsilon_i$$

for the polynomial model, and for the B-spline model to

$$\widehat{b}_i = b_i + \varepsilon_i$$

University

of Southampton

Optimal Property (2)

- Assume that all estimation noises ε_i are bounded, $|\varepsilon_i| < \varepsilon_{\max}$
- The upper bound of $|y_{\mathrm{s}} \widehat{y}_{\mathrm{s}}|$ for the **B-spline** model

$$|y_{s} - \hat{y}_{s}| = \left|\sum_{i=1}^{N_{s}} b_{i} B_{i}^{(s,P_{o})}(x_{s}) - \sum_{i=1}^{N_{s}} \widehat{b}_{i} B_{i}^{(s,P_{o})}(x_{s})\right| < \varepsilon_{\max} \left|\sum_{i=1}^{N_{s}} B_{i}^{(s,P_{o})}(x_{s})\right| = \varepsilon_{\max}$$

- Only depends on $\varepsilon_{\rm max}$, thus has maximum robustness
- The upper bound of $|y_{\mathrm{s}} \widehat{y}_{\mathrm{s}}|$ for the polynomial model

$$|y_{\rm s} - \hat{y}_{\rm s}| = \left|\sum_{i=0}^{P_o} a_i x_{\rm s}^i - \sum_{i=0}^{P_o} \hat{a}_i x_{\rm s}^i\right| < \varepsilon_{\rm max} \left|\sum_{i=0}^{P_o} x_{\rm s}^i\right|$$

– Depends on $\varepsilon_{\rm max}$, input value $x_{\rm s}$ and polynomial degree P_o

- **Numerical Stability Example**
 - Quadratic polynomial

$$y = 0.001x^2 - 0.02x + 0.1$$

defined over $x \in [0, 20]$ in solid line

• Quadratic B-spline

$$y = 0.14B_1^{(2)}(x) - 0.10B_2^{(2)}(x) + 0.14B_3^{(2)}(x)$$

with knot sequence $\{-5,-4, {\color{black} 0}, {\color{black} 20}, {\color{black} 24}, {\color{black} 25}\}$ in solid line

- 10 set of perturbed functions in dashed line
- (a) Polynomial, ε_i uniformly randomly drawn in [-0.0001, 0.0001]
- (b) B-spline, ε_i uniformly randomly drawn from [-0.0001, 0.0001]
- (c) B-spline, ε_i uniformly randomly drawn from [-0.001, 0.001]
- (d) B-spline, ε_i uniformly randomly drawn from [-0.01, 0.01]
 - Despite ε_{\max} added to B-spline coefficients is 100 times larger than added to polynomial coefficients, B-spline model is much less seriously perturbed than polynomial model

University

Electronics and

Computer Science

Alternating Least Squares for Ψ and h

•
$$h_0 = 1$$
: $h_i = h_i/h_0$, $0 \le i \le L$, $\Psi = h_0 * \Psi$, and given training data $\{x_k, y_k\}_{k=1}^N$

- Initialization. For linear model in $\boldsymbol{\omega} = \begin{bmatrix} \boldsymbol{\theta}^{\mathrm{T}} \ h_1 \boldsymbol{\theta}^{\mathrm{T}} \ h_2 \boldsymbol{\theta}^{\mathrm{T}} \cdots h_L \boldsymbol{\theta}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} \in \mathbb{C}^{(L+1)N_B}$
 - Assume $N \geq (L+1)N_B$, we have closed-form unbiased regularized LS estimate $\widehat{\omega}$
 - First N_B elements of $\widehat{\boldsymbol{\omega}}$ provides initial unbiased estimate for $\boldsymbol{\theta}$, denoted as $\widehat{\boldsymbol{\theta}}^{(0)}$
- ALS. For $1 \leq \tau \leq \tau_{\max}$, e.g., $\tau_{\max} = 2$, perform
 - 1. Given $\widehat{\theta}^{(\tau-1)}$, for linear model in h, we have closed-form unbiased LS estimate $\widehat{h}^{(\tau)}$, and scale it according to $\widehat{h}_i^{(\tau)} = \widehat{h}_i^{(\tau)} / \widehat{h}_0^{(\tau)}$, $0 \le i \le L$
 - 2. Given $\widehat{h}^{(\tau)}$, for linear model in θ , we have closed-form unbiased LS estimate $\widehat{\theta}^{(\tau)}$

Remark: ALS guarantees converging to unbiased estimate of $m{h}$ and $m{ heta}$

Least Squares for Ψ^{-1}

- To estimate Ψ^{-1} , we need input w_k and desired output x_k , but w_k unavailable
- With estimated $\widehat{\Psi}$, generate **pseudo** training data $\{\widehat{w}_k, x_k\}_{k=1}^N$ with $\widehat{w}_k = \widehat{\Psi}(x_k)$
- For linear model in $oldsymbol{lpha}$, we have closed-form LS estimate $\widehat{oldsymbol{lpha}}$

Remark: Pseudo training input \hat{w}_k is highly noisy, which will serious affect polynomial inverse model but not B-spline inverse model (B-spline has maximum robustness property)

Performance Evaluation

- Simulation system set up: block size ${\cal N}=2048,\, {\rm 64-QAM}$
 - HPA $w = \Psi(x)$ amplitude and phase response

$$A(r) = \frac{g_a r}{\left(1 + \left(\frac{g_a r}{A_{\text{sat}}}\right)^{2\beta_a}\right)^{\frac{1}{2\beta_a}}}, \ \Upsilon(r) = \frac{\alpha_{\phi} r^{q_1}}{1 + \left(\frac{r}{\beta_{\phi}}\right)^{q_2}} \text{[degree]}, \ r = |x|$$

Maximum and average powers of w: P_{\max} and P_{aop} , then operating status specified by **output** back off

$$\mathsf{OBO} = 10 \log_{10} \frac{P_{\max}}{P_{\text{aop}}} \,[\mathsf{dB}]$$

- 10 tap channel L = 9
- Signal to noise ratio: SNR = E_x/N_o , with E_x average symbol energy, and N_o noise power
- **Polynomial** model: polynomial degree $P_o = 4$
- **B-spline** model: $P_o = 4$, $N_R = N_I = 8$

Knot sequence for x_R and x_I -10.0, -9.0, -1.0, -**0.9**, -0.06, -0.04, 0.0, 0.04, 0.06, **0.9**, 1.0, 9.0, 10.0 Knot sequence for w_R and w_I -20.0, -18.0, -3.0, -**1.4**, -0.8, -0.4, 0.0, 0.4, 0.8, **1.4**, 3.0, 18.0, 20.0

Dispersive Channel Identification

- Experiments were repeated 100 independent runs
- Channel taps were identified with very high accuracy for both B-spline and polynomial based approaches
- For highly nonlinear (OBO = 3 dB) and highly noisy (SNR = 5 dB):

true value	BS average	BS std	Poly average	Poly std
1	1	NA	1	NA
-0.3732 -0.6123	-0.3732 -0.6122	9.152e-04 1.021e-03	-0.3735 -0.6120	9.176e-04 1.027e-03
0.3584 0.3676	0.3586 0.3676	9.702e-04 8.555e-04	0.3596 0.3680	9.723e-04 8.540e-04
0.3052 0.2053	0.3052 0.2052	9.278e-04 8.596e-04	0.3052 0.2058	9.262e-04 8.591e-04
0.2300 0.1287	0.2300 0.1286	7.806e-04 8.650e-04	0.2310 0.1277	7.786e-04 8.603e-04
0.7071 0.7071	0.7070 0.7069	1.161e-03 1.178e-03	0.7072 0.7066	1.165e-03 1.187e-03
0.6123 -0.3732	0.6122 -0.3733	1.051e-03 1.115e-03	0.6118 -0.3721	1.052e-03 1.116e-03
-0.3584 0.3676	-0.3583 0.3675	9.100e-04 1.056e-03	-0.3582 0.3689	9.077e-04 1.055e-03
-0.2053 -0.3052	-0.2054 -0.3051	9.343e-04 9.233e-04	-0.2064 -0.3052	9.327e-04 9.284e-04
0.1287 -0.2300	0.1287 -0.2299	8.017e-04 8.728e-04	0.1284 -0.2291	8.057e-04 8.615e-04

• Even higher accuracy for OBO $> 3\,{\rm dB}$ and/or SNR $> 5\,{\rm dB}$

University

of Southampton

High Power Amplifier Identification

University

of Southampton

S Chen

High Power Amplifier Inversion

Bit Error Rate

(a) OBO = 3 dB

(b) OBO = 5 dB

• B-spline based approach significantly outperforms polynomial based counterpart

Conclusions

- **Complex-valued** B-spline neural network for a **real-world application**
 - Iterative frequency-domain decision feedback equalization for Hammerstein communication systems
- Optimal property and robustness of **B**-spline neural network
 - Particularly important for inverting transmitter nonlinear high power amplifier at receiver with pseudo noisy training input
 - Alternative least squares with closed-form LS estimates of linear channel and nonlinear BS model
- CV **B-spline** based approach significantly **outperforms** CV **polynomial** based counterpart

