Complex-Valued B-Spline Neural Network and its Application to Iterative Frequency-Domain Decision Feedback Equalization for Hammerstein Communication Systems

Sheng Chen ${ }^{1,2}$, Xia Hong ${ }^{3}$, Emad Khalaf ${ }^{2}$, Fuad E. Alsaadi ${ }^{2}$, Chris J. Harris ${ }^{1}$
${ }^{1}$ School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
${ }^{2}$ Electrical and Computer Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
${ }^{3}$ Department of Computer Science, School of Mathematical and Physical Sciences, University of Reading, Reading, RG6 6AY, UK

Application

- Single-carrier black transmission with iterative frequency domain decision feedback equalization

linear high power amplifier
- High-rate power efficient SC black transmission with iterative FD DFE would look like

nonlinear high power amplifier
Electronics and
Computer Science

How to Approach This Problem

- With nonlinear HPA at transmitter, channel is nonlinear
- Black box learning estimates a nonlinear model $\widehat{y}_{k}=f\left(x_{k}, x_{k-1}, \cdots, x_{k-L}\right)$
- Very complicated, and little use to our application
- Nonlinear channel is Hammerstein: HPA static nonlinearity $w_{k}=\Psi\left(x_{k}\right)$ followed by linear dispersive channel $y_{k}=\sum_{i=0}^{L} h_{i} x_{k-i}+e_{k}$
- Grey box approach utilizes this prior information to learn HPA's nonlinearity $\widehat{\Psi}$ and linear channel $\left\{\widehat{h}_{i}\right\}_{i=0}^{L}$, also to learn inversion $\widehat{\Psi}^{-1}$ but w_{k} is unavailable for this learning
- Standard tensor product of two sets of polynomial bases

$$
P_{l}^{(\mathrm{s})}\left(x_{\mathrm{s}}\right)=x_{\mathrm{s}}^{l}, 0 \leq l \leq P_{0},, \mathrm{~s}=R \text { or } I
$$

- To model Ψ

$$
\widehat{w}=\widehat{\Psi}_{P}(x)=\sum_{l=0}^{P_{0}} \sum_{m=0}^{P_{0}} P_{l, m}(x) \theta_{l, m}^{P}=\sum_{l=0}^{P_{0}} \sum_{m=0}^{P_{0}} P_{l}^{(R)}\left(x_{R}\right) P_{l}^{(I)}\left(x_{I}\right) \theta_{l, m}^{P}
$$

- To model Ψ^{-1} with 'pseudo input' $\widehat{w}=\widehat{w}_{R}+\mathrm{j} \widehat{w}_{I}$

$$
\widehat{x}=\widehat{\Psi}_{P}^{-1}(\widehat{w})=\sum_{l=0}^{P_{0}} \sum_{m=0}^{P_{0}} P_{l}^{(R)}\left(\widehat{w}_{R}\right) P_{l}^{(I)}\left(\widehat{w}_{I}\right) \alpha_{l, m}^{P}
$$

- Tensor product of two sets of univariate B-spline bases is far better

B-spline Basis Functions

- Knot sequence $\left\{U_{0}, U_{1}, \cdots, U_{N_{\mathrm{S}}+P_{o}}\right\}$

- Input $U_{\min } \leq x_{\mathrm{s}} \leq U_{\max }, P_{o}$: polynomial degree, N_{s} : number of basis functions
- $P_{o}-1$ external knots and one boundary knot at each end, $N_{\mathrm{s}}+1-P_{o}$ internal knots
- De Boor recursion

$$
B_{l}^{(\mathrm{s}, 0)}\left(x_{\mathrm{s}}\right)= \begin{cases}1, & \text { if } U_{l-1} \leq x_{\mathrm{s}}<U_{l} \\ 0, & \text { otherwise }\end{cases}
$$

for $l=1, \cdots, N_{\mathrm{s}}+P_{o}-p$ and $p=1, \cdots, P_{o}$,

$$
B_{l}^{(\mathrm{s}, p)}\left(x_{\mathrm{s}}\right)=\frac{x_{\mathrm{s}}-U_{l-1}}{U_{p+l-1}-U_{l-1}} B_{l}^{(\mathrm{s}, p-1)}\left(x_{\mathrm{s}}\right)+\frac{U_{p+l}-x_{\mathrm{s}}}{U_{p+l}-U_{l}} B_{l+1}^{(\mathrm{s}, p-1)}\left(x_{\mathrm{s}}\right)
$$

- Polynomial degree $P_{o}=3$ or 4 sufficient, number of basis functions $N_{\mathrm{s}}=6$ to 10 sufficient
- Two boundary knots on $U_{\min }$ and $U_{\max }$, internal knots uniformly distributed in $\left[U_{\min }, U_{\max }\right.$], external knots offer potential extrapolation capability

B-spline Model

Visualisation of De Boor recursion for $P_{O}=4$ and $N_{\mathrm{S}}=5$, where $U_{\min }=U_{3}$ and $U_{\max }=U_{6}$

1. Tensor product B-spline modeling of Ψ

$$
\widehat{w}=\widehat{\Psi}_{B}(x)=\sum_{l=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{l, m}^{\left(P_{0}\right)}(x) \theta_{l, m}^{B}
$$

- $B_{l, m}^{\left(P_{0}\right)}(x)=B_{l}^{\left(R, P_{0}\right)}\left(x_{R}\right) B_{m}^{\left(I, P_{0}\right)}\left(x_{I}\right)$
- $N_{R}=N_{I}=N_{\mathrm{s}}, N_{B}=N_{R} N_{I}$
- $\boldsymbol{\theta}_{B}=\left[\theta_{1,1}^{B} \theta_{1,2}^{B} \cdots \theta_{l, m}^{B} \cdots \theta_{N_{R}, N_{I}}^{B}\right]^{\mathrm{T}} \in \mathbb{C}^{N_{B}}$
- Task is to estimate coefficients $\boldsymbol{\theta}_{B}$ given training data $\left\{x_{k}, y_{k}\right\}$

2. Tensor product \mathbf{B}-spline inverting of Ψ

$$
\widehat{x}=\widehat{\Psi}_{B}^{-1}(\widehat{w})=\sum_{l=1}^{N_{R}} \sum_{m=1}^{N_{I}} B_{l, m}^{\left(P_{0}\right)}(\widehat{w}) \alpha_{l, m}^{B}
$$

- $\boldsymbol{\alpha}_{B}=\left[\alpha_{1,1}^{B} \alpha_{1,2}^{B} \cdots \alpha_{l, m}^{B} \cdots \alpha_{N_{R}, N_{I}}^{B}\right]^{\mathrm{T}} \in \mathbb{C}^{N_{B}}$
- Task is to estimate coefficients $\boldsymbol{\alpha}_{B}$, given pseudo training data $\left\{\widehat{w}_{k}, x_{k}\right\}$
- \widehat{w}_{k} generated based on model identified in 1 . as $\widehat{w}_{k}=\widehat{\Psi}_{B}\left(x_{k}\right)$

Complexity

(b) $m=P_{O}$ or $m=N_{\mathrm{S}}+1$

Complexity of B-spline model with $P_{o}=4$ using De Boor recursion

1. Polynomial: Complexity of $\widehat{\Psi}_{P}$ is obviously on order of $\mathrm{O}\left(\left(1+P_{0}\right)^{2}\right)$
2. B-spline: Complexity of $\widehat{\Psi}_{B}$ on order of $\mathrm{O}\left(N_{\mathrm{s}}^{2}\right)$? As $N_{\mathrm{s}}>1+P_{0}$, complexity of $\widehat{\Psi}_{B}$ much higher than complexity of $\widehat{\Psi}_{P}$?

- Given x_{s}, only $P_{o}+1$ basis functions with nonzero values at most
- Complexity $\widehat{\Psi}_{B}$ is on order of $\mathrm{O}\left(\left(1+P_{0}\right)^{2}\right)$

Complexity of polynomial model for $P_{O}=4$					
Computation	Multiplications	Additions			
Two sets of 1-D basis functions	2×4	0			
Tensor product output	3×25	2×24			
Total					
83					
48					
Upper bound complexity of B-spline model for $P_{O}=4$					
Computation	Multiplications	Additions			
Two sets of 1-D basis functions	2×38	2×26			
Tensor product output	3×25	2×24			
Total	151	100			
Lower bound complexity of B-spline model for $P_{O}=4$					
Two sets of 1-D basis functions	2×36	2×25			
Tensor product output	3×16	2×15			
Total				120	80

Electronics and
Computer Science

Optimal Property

1. Convexity of B-spline model bases: they are all positive and sum to one
2. B-spline have best approximation capability, as the basis function is complete
3. B-spline has maximum numerical stability/robustness compared with other polynomial forms

- True system is represented exactly by the polynomial model

$$
y_{\mathrm{s}}=\sum_{i=0}^{P_{o}} a_{i} x_{\mathrm{s}}^{i}
$$

Same system can also be represented exactly by the B-spline model

$$
y_{\mathrm{s}}=\sum_{i=1}^{N_{\mathrm{s}}} b_{i} B_{i}^{\left(\mathrm{s}, P_{o}\right)}\left(x_{\mathrm{s}}\right)
$$

- As identification data are noisy, the estimated model coefficients are perturbed from their true values to

$$
\widehat{a}_{i}=a_{i}+\varepsilon_{i}
$$

for the polynomial model, and for the B-spline model to

$$
\widehat{b}_{i}=b_{i}+\varepsilon_{i}
$$

Optimal Property (2)

- Assume that all estimation noises ε_{i} are bounded, $\left|\varepsilon_{i}\right|<\varepsilon_{\max }$
- The upper bound of $\left|y_{\mathrm{s}}-\widehat{y}_{\mathrm{s}}\right|$ for the \mathbf{B}-spline model

$$
\left|y_{\mathrm{s}}-\widehat{y}_{\mathrm{s}}\right|=\left|\sum_{i=1}^{N_{\mathrm{s}}} b_{i} B_{i}^{\left(\mathrm{s}, P_{o}\right)}\left(x_{\mathrm{s}}\right)-\sum_{i=1}^{N_{\mathrm{s}}} \widehat{b}_{i} B_{i}^{\left(\mathrm{s}, P_{o}\right)}\left(x_{\mathrm{s}}\right)\right|<\varepsilon_{\max }\left|\sum_{i=1}^{N_{\mathrm{s}}} B_{i}^{\left(\mathrm{s}, P_{o}\right)}\left(x_{\mathrm{s}}\right)\right|=\varepsilon_{\max }
$$

- Only depends on $\varepsilon_{\text {max }}$, thus has maximum robustness
- The upper bound of $\left|y_{\mathrm{s}}-\widehat{y}_{\mathrm{s}}\right|$ for the polynomial model

$$
\left|y_{\mathrm{s}}-\widehat{y}_{\mathrm{s}}\right|=\left|\sum_{i=0}^{P_{o}} a_{i} x_{\mathrm{s}}^{i}-\sum_{i=0}^{P_{o}} \widehat{a}_{i} x_{\mathrm{s}}^{i}\right|<\varepsilon_{\max }\left|\sum_{i=0}^{P_{o}} x_{\mathrm{s}}^{i}\right|
$$

- Depends on $\varepsilon_{\max }$, input value x_{s} and polynomial degree P_{o}

Numerical Stability Example

- Quadratic polynomial

$$
y=0.001 x^{2}-0.02 x+0.1
$$

defined over $x \in[0,20]$ in solid line

- Quadratic B-spline

$$
y=0.14 B_{1}^{(2)}(x)-0.10 B_{2}^{(2)}(x)+0.14 B_{3}^{(2)}(x)
$$

with knot sequence $\{-5,-4,0,20,24,25\}$ in solid line

- 10 set of perturbed functions in dashed line
(a) Polynomial, ε_{i} uniformly randomly drawn in $[-0.0001,0.0001]$
(b) B-spline, ε_{i} uniformly randomly drawn from $[-0.0001,0.0001]$
(c) B-spline, ε_{i} uniformly randomly drawn from $[-0.001,0.001]$
(d) B-spline, ε_{i} uniformly randomly drawn from $[-0.01,0.01]$
- Despite $\varepsilon_{\text {max }}$ added to B -spline coefficients is 100 times larger than added to polynomial coefficients, B-spline model is much less seriously perturbed than polynomial model

Alternating Least Squares for Ψ and h

- $h_{0}=1: h_{i}=h_{i} / h_{0}, 0 \leq i \leq L, \Psi=h_{0} * \Psi$, and given training data $\left\{x_{k}, y_{k}\right\}_{k=1}^{N}$
- Initialization. For linear model in $\boldsymbol{\omega}=\left[\boldsymbol{\theta}^{\mathrm{T}} h_{1} \boldsymbol{\theta}^{\mathrm{T}} h_{2} \boldsymbol{\theta}^{\mathrm{T}} \cdots h_{L} \boldsymbol{\theta}^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{C}^{(L+1) N_{B}}$ - Assume $N \geq(L+1) N_{B}$, we have closed-form unbiased regularized LS estimate $\widehat{\boldsymbol{\omega}}$
- First N_{B} elements of $\widehat{\boldsymbol{\omega}}$ provides initial unbiased estimate for $\boldsymbol{\theta}$, denoted as $\widehat{\boldsymbol{\theta}}^{(0)}$
- ALS. For $1 \leq \tau \leq \tau_{\max }$, e.g., $\tau_{\max }=2$, perform

1. Given $\widehat{\boldsymbol{\theta}}^{(\tau-1)}$, for linear model in \boldsymbol{h}, we have closed-form unbiased LS estimate $\widehat{\boldsymbol{h}}^{(\tau)}$, and scale it according to $\widehat{h}_{i}^{(\tau)}=\widehat{h}_{i}^{(\tau)} / \widehat{h}_{0}^{(\tau)}, 0 \leq i \leq L$
2. Given $\widehat{\boldsymbol{h}}^{(\tau)}$, for linear model in $\boldsymbol{\theta}$, we have closed-form unbiased LS estimate $\widehat{\boldsymbol{\theta}}^{(\tau)}$

Remark: ALS guarantees converging to unbiased estimate of \boldsymbol{h} and $\boldsymbol{\theta}$

Least Squares for Ψ^{-1}

- To estimate Ψ^{-1}, we need input w_{k} and desired output x_{k}, but w_{k} unavailable
- With estimated $\widehat{\Psi}$, generate pseudo training data $\left\{\widehat{w}_{k}, x_{k}\right\}_{k=1}^{N}$ with $\widehat{w}_{k}=\widehat{\Psi}\left(x_{k}\right)$
- For linear model in $\boldsymbol{\alpha}$, we have closed-form LS estimate $\widehat{\boldsymbol{\alpha}}$

Remark: Pseudo training input \widehat{w}_{k} is highly noisy, which will serious affect polynomial inverse model but not B-spline inverse model (B-spline has maximum robustness property)

Performance Evaluation

- Simulation system set up: block size $N=2048,64-$ QAM
- HPA $w=\Psi(x)$ amplitude and phase response

$$
A(r)=\frac{g_{a} r}{\left(1+\left(\frac{g_{a} r}{A_{\mathrm{sat}}}\right)^{2 \beta_{a}}\right)^{\frac{1}{2 \beta a}}}, \Upsilon(r)=\frac{\alpha_{\phi} r^{q_{1}}}{1+\left(\frac{r}{\beta_{\phi}}\right)^{q_{2}}} \text { [degree], } r=|x|
$$

Maximum and average powers of $w: P_{\max }$ and $P_{\text {aop }}$, then operating status specified by output back off

$$
\mathrm{OBO}=10 \log _{10} \frac{P_{\mathrm{max}}}{P_{\mathrm{aop}}}[\mathrm{~dB}]
$$

- 10 tap channel $L=9$
- Signal to noise ratio: $\mathrm{SNR}=E_{x} / N_{o}$, with E_{x} average symbol energy, and N_{o} noise power
- Polynomial model: polynomial degree $P_{o}=4$
- B-spline model: $P_{o}=4, N_{R}=N_{I}=8$

Knot sequence for x_{R} and x_{I}
$-10.0,-9.0,-1.0,-\mathbf{0 . 9},-0.06,-0.04,0.0,0.04,0.06, \mathbf{0 . 9}, 1.0,9.0,10.0$
Knot sequence for w_{R} and w_{I}
$-20.0,-18.0,-3.0,-1.4,-0.8,-0.4,0.0,0.4,0.8, \mathbf{1 . 4}, 3.0,18.0,20.0$

Dispersive Channel Identification

- Experiments were repeated 100 independent runs
- Channel taps were identified with very high accuracy for both B-spline and polynomial based approaches
- For highly nonlinear $(\mathrm{OBO}=3 \mathrm{~dB})$ and highly noisy $(\mathrm{SNR}=5 \mathrm{~dB})$:

true value	BS average	BS std	Poly average	Poly std
1	1	$N A$	1	NA
-0.3732	-0.6123	$-0.3732-0.6122$	$9.152 \mathrm{e}-04$	$1.021 \mathrm{e}-03$
0.3584	0.3676	0.3586	0.3676	$-0.3735-0.6120$
0.3052	0.2053	0.3052	0.2052	$9.278 \mathrm{e}-04$
$8.555 \mathrm{e}-04$	$8.596 \mathrm{e}-04$	0.3596	0.3680	9.3052
0.2300	0.1287	0.2300	0.1286	$7.806 \mathrm{e}-04$

- Even higher accuracy for $\mathrm{OBO}>3 \mathrm{~dB}$ and/or $\mathrm{SNR}>5 \mathrm{~dB}$

High Power Amplifier Identification

High Power Amplifier Inversion

Bit Error Rate

(a) $\mathrm{OBO}=3 \mathrm{~dB}$

(b) $\mathrm{OBO}=5 \mathrm{~dB}$

- B-spline based approach significantly outperforms polynomial based counterpart

Conclusions

- Complex-valued B-spline neural network for a real-world application
- Iterative frequency-domain decision feedback equalization for Hammerstein communication systems
- Optimal property and robustness of B-spline neural network
- Particularly important for inverting transmitter nonlinear high power amplifier at receiver with pseudo noisy training input
- Alternative least squares with closed-form LS estimates of linear channel and nonlinear BS model
- CV B-spline based approach significantly outperforms CV polynomial based counterpart

