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Application
e Single-carrier black transmission with iterative frequency domain decision feedback equalization
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e High-rate power efficient SC black transmission with iterative FD DFE would look like
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How to Approach This Problem
e With nonlinear HPA at transmitter, channel is nonlinear
— Black box learning estimates a nonlinear model i = f(xg, Tp_1, " , Tp_1)
— Very complicated, and little use to our application
e Nonlinear channel is Hammerstein: HPA static nonlinearity w; = W(xy) followed by linear

dispersive channel y, = E@'L:o h;x._; + ex
— Grey box approach utilizes this prior information to learn HPA's nonlinearity W and linear
~ L : . : : , :
channel {hi}izo' also to learn inversion ! but w; is unavailable for this learning

e Standard tensor product of two sets of polynomial bases
PYaz)=2,0<1< P, ,s=Rorl
— To model W

P, P, P, P,
SR L P = o(R) GYRYY:
W=Vp(x)=> > Pu()b,,=> > B (zr)P (z10,

[=0 m=0 =0 m=0

— To model U1 with ‘pseudo input’ @ = @Wgr + jW;

Py Py
~ 1, R) (=~ Do\ at
T=Wp (@) =3 > P@n) P (@n)a,
[=0 m=0

e Tensor product of two sets of univariate B-spline bases is far better
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B-spline Basis Functions

e Knot sequence {Uy, U1, -+ ,Unyip,}
Uy Ug Ur-2 Up-1 +2 U P
0 7% (pe2trr TR O Dher Ghez o INGR
) ) I ) ) I ) /
Unmin X Umax

— Input Upin < x5 < Unax, P,: polynomial degree, Ng: number of basis functions

— P, — 1 external knots and one boundary knot at each end, Ny + 1 — P, internal knots

e De Boor recursion

(5,0) 1, U <z < Uy,
By (xs) = { 0, otherwise,

forl=1,--- N+ P, —pandp=1,---,P,,

U - S sS.D—
p‘l‘l L B( N 1)(CUS)

B(S7p) ajs o
: ( ) Up—H — U s

Bl(s’p_l)(a?s) +

Upri-1 — Ui

e Polynomial degree P, = 3 or 4 sufficient, number of basis functions Ny = 6 to 10 sufficient

— Two boundary knots on Upin and Upnax, internal knots uniformly distributed in [Umin, Umax},
external knots offer potential extrapolation capability
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Visualisation of De Boor recursion for Po = 4 and Ng = 5,

where Umln = U3 and Umax = U6 o

B-spline Model

1. Tensor product B-spline modeling of W

B(S’O)
1\ (s,1) Nr Njp
N\ g2 - T =Tp)=>. > B (x)6],
, S, I=1 m=1

o BV () = B, (er) By (1)

B, ¢ Np = N;y= Ns, Ng = NrNj

4 (s, 3 (s, 2 B B B B T Np

(s 54\ (s 3{ o 0= (031 002 Oy Oy, €C
B5, (s/y)/B 4{ (s, Bs e Task is to estimate coefficients Op given training
B(SJ})/B 5’ B(S’ B4 (s,4) data {:ck, yk}

2. Tensor product B-spline inverting of W
NR

Ny
(s B(;{ (s BY T=Wg(0) =) > Bz(,w?)(w)o‘l,m
| BsY _[B _B B B T _ ~Ng
B(s,/or)/ 8 ® &p = [041,1 Ao Oy aNR,NI] cC
9 e Task is to estimate coefficients ap, given pseudo

training data {ﬁ}k, :ck}
wj, generated based on model identified in 1. as
Wy = Vp(x)
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Complexity

B(S’4) B (s,4)

m-4

m-3 B m’—2 B m'—l B(?ﬁ‘l) o~
{12 1. Polynomial: Complexity of W p is obviously
on order of O((1 + Fy)?)

2. B-spline: Complexity of (I\!B on order of
O(Nf)? As Ny > 1 + P,, complexity of

AN AN

W 5 much higher than complexity of Wp?

e Given xg, only P, + 1 basis functions with
nonzero values at most

e Complexity U  is on order of O ((1+Py)?)

(a) Po+1 <m < Ng

(s,4) (s.4) (s,4) (s.4) Complexity of polynomial model for Pp = 4
Bm-3 Bm-2 Bm-1 B m Computat Multiphicati Additi
(1.2} omputation ultiplications itions
Two sets of 1-D basis functions 2 x4 0
Tensor product output 3 X 25 2 x 24
Total 83 48

Upper bound complexity of B-spline model for Pp = 4

Computation Multiplications Additions
Two sets of 1-D basis functions 2 x 38 2 X 26
Tensor product output 3 X 25 2 x 24
Total 151 100
Lower bound complexity of B-spline model for Pp = 4
b _p _N 1 Two sets of 1-D basis functions 2 x 36 2 x 25
(b) m = Po or m = Ns + Tensor product output 3 x 16 2 x 15
Complexity of B-spline model with Po = 4 using De Boor recursion Total 120 30
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Optimal Property

1. Convexity of B-spline model bases: they are all positive and sum to one
2. B-spline have best approximation capability, as the basis function is complete

3. B-spline has maximum numerical stability /robustness compared with other polynomial forms

e True system is represented exactly by the polynomial model

Po
Ys = ;T
1=0

Same system can also be represented exactly by the B-spline model

Ng
e = > b B (xy)
1=1

e As identification data are noisy, the estimated model coefficients are perturbed from their true
values to
a; = a; +¢&;
for the polynomial model, and for the B-spline model to

AN

bi =b; + &;
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Optimal Property (2)

e Assume that all estimation noises ¢; are bounded, |&;| < emax

e The upper bound of |y; — ys| for the B-spline model

Ng Ng Ng
ys — Ys| = Z bz'Bi(S’PO)(ilfs) — Z bz'Bi(S’PO)(fs) < €max Z Bz'(S’PO)($S) = Emax
i=1 i=1 i=1
— Only depends on &y,,y, thus has maximum robustness
e The upper bound of |ys — | for the polynomial model
P, P, P,
Y — Tsl = | Y aiwl = Y Giak| < emax | | L
i=0 i=0 i=0

— Depends on ep,.x, input value x5 and polynomial degree P,
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Numerical Stability Example

0.12 ] 0.12
0.1 1 01} 1 e Quadratic polynomial
0.08 1 0.08 1
0.06 r 1 0.06 1 Yy = 0.001$2 — 0.02z + 0.1
0.04 1 0.04 .
defined over € [0, 20] in solid line

0.02 1 0.02 1

ol | ol | e Quadratic B-spline
-0.02 R -0.02 R - ) )

-5 0 5 10 15 20 25 -5 0 5 10 15 20 25 2 2 2
input x input x y =0.14B; (x) — 0.10B, () + 0.14Bg (x)
b
0.12 (a> 0.12 ( )
o1 L 1 ooal | with knot sequence {—5, —4, 0, 20, 24, 25} in solid line
0.08 | 1 o008l | e 10 set of perturbed functions in dashed line
0.06 r 1 0.06 r 1 (a) Polynomial, €; uniformly randomly drawn in [—0.0001, 0.0001]
0.04 L 1 o004l | (b) B-spline, g; uniformly randomly drawn from [—0.0001, 0.0001]
(c) B-spline, €; uniformly randomly drawn from [—0.001, 0.001]
0.02 1 0.02 1
(d) B-spline, g; uniformly randomly drawn from [—0.01, 0.01]
0 1 of ]
e Despite emmax added to B-spline coefficients is 100 times larger

-0.02 : : : : : -0.02 : : : : : than added to polynomial coefficients, B-spline model is much less
S 05 1015 2025 > 0 5 1015 20 2B seriously perturbed than polynomial model

input x input x
(c) (d)
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Alternating Least Squares for ¥V and h

e hg=1: h; = h;/hg, 0 < i < L, ¥ = hg * ¥, and given training data {.CUk, yk}:f:l

e Initialization. For linear model in w = [87 h,0" h,07 ... 1 ,0T]" € CE+INB
— Assume N > (L + 1)Np, we have closed-form unbiased regularized LS estimate w
— First Np elements of w provides initial unbiased estimate for @, denoted as 6"

o ALS. For1l < 7 < Thax, €.8., Tmax = 2, perform
1. Given 0(7_1), for linear model in h, we have closed-form unbiased LS estimate h(T), and scale

it according to ’};57) = EET)//l;éT), 0<:< L
2. Given /I;,(T), for linear model in @, we have closed-form unbiased LS estimate o)

Remark: ALS guarantees converging to unbiased estimate of h and 0

Least Squares for !

e To estimate U~ ! we need input wy and desired output x, but wy unavailable
. . ~ . I N PR ~
e With estimated W, generate pseudo training data {wk, xk}kzl with Wy = W (xy)

e For linear model in o, we have closed-form LS estimate &

Remark: Pseudo training input @y is highly noisy, which will serious affect polynomial inverse model

but not B-spline inverse model (B-spline has maximum robustness property)
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Performance Evaluation

e Simulation system set up: block size N = 2048, 64-QAM
— HPA w = ¥ (x) amplitude and phase response

a 71
A(r) = (1 - (;T)w); Y(r) = - é)@ degree], = |z|
sat

Maximum and average powers of w: Ppax and P,p, then operating status specified by output
back off

PmaX

aop

— 10 tap channel L = 9
— Signal to noise ratio: SNR = FE,/N,, with F, average symbol energy, and N, noise power

e Polynomial model: polynomial degree P, = 4
e B-spline model: P, =4, Np = Ny = 8

Knot sequence for xr and x;
-10.0, -9.0, -1.0, -0.9, -0.06, -0.04, 0.0, 0.04, 0.06, 0.9, 1.0, 9.0, 10.0

Knot sequence for wpr and w;y
-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0
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Dispersive Channel Identification

e Experiments were repeated 100 independent runs

e Channel taps were identified with very high accuracy for both B-spline and polynomial based

approaches

e For highly nonlinear (OBO = 3 dB) and highly noisy (SNR = 5dB):

true value

BS average

BS std

Poly average

Poly std

1
-0.3732 -0.6123
0.3584 0.3676
0.3052 0.2053
0.2300 0.1287
0.7071 0.7071
0.6123 -0.3732
-0.3584 0.3676
-0.2053 -0.3052
0.1287 -0.2300

1
-0.3732 -0.6122
0.3586 0.3676
0.3052 0.2052
0.2300 0.1286
0.7070 0.7069
0.6122 -0.3733
-0.3583 0.3675
-0.2054 -0.3051
0.1287 -0.2299

NA
9.152e-04 1.021e-03
0.702e-04 8.555e-04
0.278e-04 8.596e-04
7.806e-04 8.650e-04
1.161e-03 1.178e-03
1.051e-03 1.115e-03
0.100e-04 1.056e-03
0.343e-04 9.233e-04
8.017e-04 8.728e-04

1
-0.3735 -0.6120
0.3596 0.3680
0.3052 0.2058
0.2310 0.1277
0.7072 0.7066
0.6118 -0.3721
-0.3582 0.3689
-0.2064 -0.3052
0.1284 -0.2291

NA
90.176e-04 1.027e-03
0.723e-04 8.540e-04
0.262e-04 8.591e-04
7.786e-04 8.603e-04
1.165e-03 1.187e-03
1.052e-03 1.116e-03
90.077e-04 1.055e-03
0.327e-04 9.284e-04
8.057e-04 8.615e-04

e Even higher accuracy for OBO > 3dB and/or SNR > 5dB
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High Power Amplifier Identification
1_2 T T T T 1_2 T T T T
true HPA —— — true HPA ——— —
1 | B-spline estimate - — 1 polynomial estimate -----------
[ [
S o8 / S o8 /
s / =
§ o6 / E o6
5 / 5
5 0.4 5 0.4
o o)
021 / 0.2 /
0 0
0O 002 0.04 006 008 0.1 0.12 0.14 0O 002 0.04 006 008 0.1 0.12 0.14
Input amplitude Input amplitude
0 [ === s 0 —= =
= -0.02 I = -0.02 BN
g N g ™
= -0.04 N S -0.04 \
= -0.06 N\ = -0.06 3
N \ N
5 -0.08 \ 5 -0.08
< -0.1 \ < -0.1 \
5 012t true HPA —— 5 012 t true HPA ——
[=3 B-spline estimate - [=3 polynomial estimate -------
S - S - N
E 0.14 \ a 0.14 \
-0.16 \ -0.16 \
-0.18 -0.18
0O 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0O 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Input amplitude

Input amplitude
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0.16

High Power Amplifier Inversion

true HPA + B-spline inversion

0.14

0.12

0.1
0.08

0.06

0.04

Amplitude response

0.02

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Input amplitude

0.04
0.02

true HPA + B-splihe inversion
true HPA

-0.02

-0.04
-0.06

-0.08
-0.1

-0.12

Phase response (rad)

-0.14

-0.16

-0.18

Input amplitude

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Amplitude response

Phase response (rad)

0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

0.04
0.02

-0.02
-0.04
-0.06
-0.08

-0.1
-0.12
-0.14
-0.16
-0.18

true HPA + polynomial inversion

-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Input amplitude

I true HPA + poI'ynom'iaI inversion

~ TeHPA

A
S,

Input amplitude

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
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Bit Error Rate
(a) OBO = 3dB (b) OBO = 5dB
0 0
10 . - : T 10 ' : —
polynomial: 1st iteration —%— polynomial: 1st iteration —*—
2nd iteration —6— 2nd iteration ——
1 4th iteration —&— 1 4th iteration —8—
1007 B-spline: 1st iteration -—--%--- 7 10 e B-spline: 1st iteration ----%-- 7
2nd iteration ---©--- 2nd iteration ---©---
4th iteration -t 4th iteration -
102t -
(&) [¢]
IS T
04 04
§ § 10-3 I ]
m L]
m m
104 | .
)
' 10° ¢ 3
10°° 10°°
0 5 10 15 20 -5 0 5 10
EJ/N, (dB) EJ/N, (dB)
e B-spline based approach significantly outperforms polynomial based counterpart
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Conclusions

e Complex-valued B-spline neural network for a real-world application

— lterative frequency-domain decision feedback equalization for Hammerstein
communication systems

e Optimal property and robustness of B-spline neural network

— Particularly important for inverting transmitter nonlinear high power amplifier
at receiver with pseudo noisy training input

— Alternative least squares with closed-form LS estimates of linear channel and
nonlinear BS model

e CV B-spline based approach significantly outperforms CV polynomial based
counterpart
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