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Abstract— In this paper, we introduce and outline the concept
of Channel Code Division Multiple Access (CCDMA) using
a design example based on the recently proposed Multilevel
Structured (MLS) LDPC codes. We succeeded in making the
memory requirements of the multi-user transceiver to become
practically independent of the total number of users supported
by the system as well as ascertain that each user benefits from the
same Quality of Service (QoS). Finally, we will demonstrate that
despite their beneficial compact structure, the proposed MLS
LDPC codes do not suffer from any Bit Error Ratio (BER)
or Block Error Ratio (BLER) performance degradation, when
compared to an otherwise identical benchmarker scheme using
significantly more complex LDPC codes having pseudo-random
parity-check matrices.

I. INTRODUCTION

The concept of generalized Code Division Multiple
Access (CDMA) may be defined as a multiple access scheme,
which separates the users in the code domain, whilst allowing
them to share the same time and frequency resources. A
traditional way of generating the user-specific codes is by
employing distinct spreading codes, as in the well-known
Direct Sequence (DS)-CDMA [1] scheme. Another possibility
is to distinguish between users using user-specific channel
codes, which is reminiscent of the concept of Trellis Coded
Multiple Access (TCMA) [2] and Interleave Division Multiple
Access (IDMA) [3]. In the former, the separation of the
users is achieved by the unique combination of user-specific
generator polynomials (GP) combined with bit-to-symbol
mapping schemes and interleavers, whilst the latter employs
user-specific interleavers, which may be regarded as rate-one
channel codes. Hence we will jointly refer to these schemes
using the generic terminology of Channel Code Division
Multiple Access (CCDMA).

Typically, a relatively short code constraint length is favored
in TCMA systems in order to attain a reasonably low decoding
complexity. Naturally, this reduces both the number of GPs
and the number of users supported. It reduces the probability
of encountering random-like, low-correlation codewords. For
this reason, it is widely recognized that in a TCMA system,
a user-specific interleaver is required at the output of the
TCM scheme in order to achieve a good Bit Error Ratio
(BER) performance [2], since the interleaved codewords
become more random-like and potentially impose a reduced
interference owing to their lower correlation. Consequently,
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a TCMA system can be considered to be a special case of
IDMA [3] employing TCM codes as the outer channel code
and dispensing with the DS-spreading stage of IDMA.

On the other hand, IDMA can be viewed as chip-
interleaved DS-CDMA that employs binary transmitted
symbols for each user and is applicable for low-rate UpLink
(UL) communications. It was also shown in [3] that the
amalgamation of channel codes with IDMA systems and
further enhanced by sophisticated power allocation is capable
of approaching the channel’s capacity. Thus it becomes
evident that the family of pseudo-random LDPC codes,
such as those proposed in [4], [5], constitutes particularly
attractive component codes for CCDMA schemes, since
they exhibit a near-capacity performance as well as being
capable of differentiating the users, with the aid of their
inherent interleavers. Despite these advantages, LDPC code-
aided CCDMA may suffer from two potential drawbacks:

Memory inefficiency: Each user transmitting over the Q-
user multiple access channel (MAC) is encoded as well as
decoded by a channel code having a distinct parity-check
matrix (PCM). This implies that a different PCM must be
stored in a look-up table (LUT) for each user1. Therefore,
the memory requirements are (linearly) dependent on both the
LDPC code’s block length and on the PCM parameters, as
well as on the number of users supported by the system.

Unequal protection: If we assume having equal average
transmit powers for each user and hence each user
experiences the same inter-user interference, then the
individual BER/BLER performance is only dependent on
the channel code employed. However, when using LDPC
codes having pseudo-random PCMs, it becomes quite difficult
to construct a significantly high number of user-specific codes
having identical graph-theoretical properties such as the girth,
to maintain the same protection for each user.

In this paper, we consider a CCDMA system based on
the recently proposed Multilevel Structured (MLS) LDPC
codes [7]. Our novel contributions are:

• We circumvent the first problem of high memory
requirements by taking advantage of the compact PCM
description of Multilevel Structured (MLS) LDPC codes,
which were recently proposed in [7];

• We ensure that each user’s bits are equally protected
and thus all users benefit from the same quality of
service (QoS), which is achieved by utilizing isotopic,

1As an example, if each of the Q PCMs has a column weight of γ and
a block length of N , then the LUT has to store the position of QNγ
non-zero PCM entries, each representing an edge of the corresponding
Tanner graph [6].
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user-specific (distinct) Latin squares.

To elaborate a little further, a J-level MLS code
inherently possesses both pseudo-random as well as structured
characteristics, and can be described by means of a base
matrix, J number of constituent matrices and a so-called
adjacency matrix, where the latter can be represented by a
Latin square. We will demonstrate that by using the same J
constituent matrices for each user, the memory requirements
become practically independent of the total number of users
present in the system, since the users may be uniquely
identified with the aid of a user-specific (J × J)-element Latin
square. Furthermore, by exploiting isotopic Latin squares, we
propose a technique of constructing channel codes that are
distinct, whilst guaranteeing a similar attainable BER/BLER
performance for each user. We will demonstrate that despite
imposing a beneficial compact structure, no Bit Error Ratio
(BER) or Block Error Ratio (BLER) performance degradation
was imposed compared to the corresponding CCDMA system
using pseudo-random LDPC codes for differentiating the
users, albeit the latter impose high memory requirements.

The structure of this paper is as follows. Section III
introduces the general model of the CCDMA system, whilst
Section III outlines the construction of MLS codes. Then
Section IV details the technique proposed for generating user-
specific channel codes by exploiting the construction of MLS
LDPC codes. Our simulation results are then presented in
Section V. Finally, our conclusions are offered in Section VI.

II. GENERAL MODEL OF THE CCDMA SYSTEM

Figure 1 depicts the general model of the CCDMA system,
where the qth user’s signal bq is encoded by his/her user-
specific channel code Cq, q = 1, . . . , Q, having a rate of R,
resulting in the codeword xq = Cq(bq). In a conventional
IDMA system, the channel code may be the same for all users
if a user-specific interleaver is employed, hence user q will
transmit the bit-stream of xq = πq[C(bq)] over the MAC. The
canonical discrete-time real-valued model of the MAC seen
in Figure 1 is then given by:

y =
Q∑

q=1

hqxq + n, (1)

where xq ∈ {±1}, y and n ∼ N (0, σ2
n) denotes the

transmitted signal, the received signal and the Additive White
Gaussian Noise (AWGN), respectively. The parameter hq

denotes the identical independently distributed (i.i.d.) UL
Channel Impulse Response (CIR) of user q, whilst σ2

n

represents the noise variance.

An iterative receiver, consisting of a Soft-In Soft-Out
(SISO) detector and a bank of Q individual SISO MLS
LDPC decoders, is used for the sake of seeking a
tradeoff between the higher performance and complexity
of optimal joint detection and decoding as well as the
performance loss of the lower-complexity separate detection
and single-user LDPC decoding. Using the low-complexity
Parallel Interference Cancellation (PIC) scheme introduced
in [3], we can rewrite (1) as y = hqxq + ξ, where

C
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...
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bq
Cq Ch

πq

xq
DET

b̂q
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Fig. 1. A general simplified model for a purely channel coded IDMA-like
channel code division multiple access (CCDMA) system.

ξ =
∑Q

j �=q hjxj + n represents the interference plus noise.
In the case of binary modulation, the real part (Re) of h∗

qy
constitutes sufficient statistics for estimating xq, resulting in
Re(h∗

qy) = |hq|2xq + Re(h∗
qξ), where (·)∗ denotes the

complex conjugate computation. We denote the soft estimate
of a variable a by (â). Then, Re(h∗

q ξ̂) and its variance

V[Re(h∗
q ξ̂)] are formulated by:

Re(h∗
q ξ̂) = hRe

q ŷRe + hIm
q ŷIm − |hq|2x̂q, (2)

V[Re(h∗
q ξ̂)] = (hRe

q )2V(ŷRe) + (hIm
q )2V(ŷIm) (3)

−|hq|4V(x̂q) + 2hRe
q hIm

q φ,

where φ =
∑Q

q=1 hRe
q hIm

q V(x̂q) and Im(·) represents the
imaginary part of a complex number. The soft estimate ŷ and
its variance can be expressed by:

ŷRe =
Q∑

q=1

hRe
q x̂q, (4)

V(ŷRe) =
Q∑

q=1

(hRe
q )2V(x̂q) + σ2

n. (5)

We remark that (4) and (5) would be equally valid for the
imaginary counterpart. The soft bit x̂q can be represented
as x̂q = tanh[Le

dec(xq)/2], while its variance is given by
V(x̂q) = 1− x̂2

q . Assuming that ξ is Gaussian distributed, the
extrinsic information Le

det(xq) is given by:

Le
det(xq) = 2|hq|2

Re(h∗
qy) − Re(h∗

q ξ̂)

V[Re(h∗
q ξ̂)]

. (6)

Then, this extrinsic information gleaned from the detector is
used as the a priori information input to the channel decoder,
which computes a more reliable extrinsic information Le

dec(xq)
for the next iteration. LDPC decoding was performed using
the sum-product algorithm (SPA) [8], where messages are
exchanged between the nodes residing at both sides of the
corresponding Tanner graph.

III. CONSTRUCTION OF MLS LDPC CODES AND THEIR

LATIN SQUARE REPRESENTATION

We consider MLS LDPC codes described by their regular
bipartite graphs, G(H), associated with a PCM H whose
rows constitute the null space of the linear code C

constructed over GF(2). Then, the graph G(H) consists of
the non-empty set of elements {V (G), C(G), E(G)}, where
V (G) = v1, v2, . . . , vN and C(G) = c1, c2, . . . , cM represent
the disjoint vertex-sets of the variable nodes and check nodes,



whilst E(G) is the set representing the edges. Furthermore,
we assume that the degree of the variable nodes vr ∈ V (G),
r ∈ [1, N ], is γ, and that of the check nodes cs ∈ C(G),
s ∈ [1,M ], is ρ. Since the PCM of an MLS code H has
a full rank, and a size of (M × N) elements, where the
MLS LDPC code’s block length is N = |V (G)|, the code rate
becomes R = 1 − M/N . Each non-zero entry in H will then
represent an edge of the corresponding Tanner graph.

The construction of a J-level MLS code requires a base
matrix, a set of J constituent matrices as well as an adjacency
matrix [7]. The base matrix, hereby denoted by Hb, is a sparse
matrix defined over GF(2) having (M b × N b) elements,
and contains exactly ρ and γ non-zero entries, randomly
positioned in each of its rows and columns, respectively.
The set of J constituent matrices is then represented by
Ω = {Q0 ,Q1 , . . . ,QJ−1}, where the non-zero constituent
matrix Qj , j = 0, . . . , J − 1, is a distinct sparse matrix over
GF(2) having the same dimensions as the base matrix. All
the non-zero entries of all the J sparse constituent matrices
in Qj ∈ Ω must occur in the same corresponding position
of the non-zero entries of the base matrix2. Furthermore, a
non-zero entry in a particular location of Qj ∈ Ω implies that
the entries in the corresponding locations of Qi ∈ Ω are zero,
where i ∈ [0, J − 1] and i �= j.

Finally, we also define an adjacency matrix, which is a
(J × J)-element array matrix represented by PJ , whose
row (and column) blocks represent a sharply transitive set of
J permutations within Ω. This implies that given any pair
of constituent matrices Qx ,Qy ∈ Ω, there exists a unique
bijective mapping function f : Ω �→ Ω in the set described by
the row (and column) block of PJ that maps Qx ∈ Ω to the
image Qy = f(Qx ) ∈ Ω. The adjacency matrix determines
the position of each Qj ∈ Ω with respect to the PCM H of the
MLS code. From its definition, it follows that the adjacency
matrix will not position any constituent matrix in the same
row or column block, in order to achieve the required check
and variable node distribution while at the same time ensuring
that the girth of the corresponding Tanner graph is at least six.

From another point of view, it can be argued that the J
rows and columns of PJ represent a Latin square of order
J , or equivalently, a 1-factorization of a bipartite graph.
Consequently, a J-level MLS code can also be regarded as
an edge-colored, complete bipartite graph of degree J . This
brings us to the notion of what is known as coloring [9] of
edges, where E(H) is said to be an edge-coloring of G(H) if
any two edges on the graph containing the same vertex have
different colors. Correspondingly, each symbol of the Latin
square will create a monochromatic 1-factor of the Tanner
graph. Figure 2 depicts the Latin square representation for a
six-level MLS code, where in this case, its adjacency matrix is
effectively a reduced Latin square. The J rows and columns
of the Latin square will then correspond to the respective

2Symmetrically repeated non-zero entries in two or more rows (or
columns) in any of the matrices Qj ∈ Ω, j = 0, . . . , J −1, can be avoided
by ensuring that the base matrix corresponds to a base protograph (refer
to [7]) having a girth of at least six. Note furthermore that the position
of the non-zero entries in each of the constituent matrices in Qj ∈ Ω are
also chosen at random.
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Fig. 2. A Latin square representation of the adjacency matrix of a six-level
MLS code. The J rows and columns of the Latin square correspond to
the respective multi-check node cmj and multi-variable node vnj , where
m = 1, . . . , Mb, n = 1, . . . , Nb and j = 0, . . . , J − 1.

multi-check node cmj ⊂ C(H) and to the multi-variable node
vnj ⊂ V (H), |cmj | = |vnj |, where we have m = 1, . . . , M b,
n = 1, . . . , N b and j = 0, . . . , J−1. Each symbol in the Latin
square will then correspond to a multi-edge with a different
edge-color on the corresponding graph.

IV. GENERATING USER-SPECIFIC CHANNEL CODES

USING MLS LDPC CODES

In this light, two seemingly contradictory problems must
be outlined. Firstly, since the Q users are being separated
in the MLS LDPC code domain, a user-specific channel
code is required. This makes the memory requirements at
the transceiver dependent on the number of users present
in the system, which is undesirable in memory-constrained
hand-held transceivers. Secondly, each of the Q user must be
guaranteed the same BER/BLER performance at any signal-
to-noise ratio (SNR). Therefore, the channel code must be
distinct, whilst at the same time guarantee a similar attainable
BER/BLER performance for each user. These two problems
are tackled separately in the forthcoming subsections.

A. User Separation by Distinct Latin Squares

We reduce the memory requirements by using the same base
matrix and J constituent matrices for all the Q users in the
system. This implies that the receiver will only have J distinct
memory blocks, each corresponding to a constituent matrix
having a dimension, which is a factor of 1/J lower than that
of a single PCM. However, a distinct adjacency matrix is then
allocated for each user, and hence the required user separation
is achieved by assigning a different Latin square to each of
the Q users. The number of distinct Latin squares of order J
is given by XJ = J !× (J −1)!×L(J, J) [10], where L(J, J)
is the number of normalized (J × J)-element Latin squares.

For the sake of simplifying our analysis, let us consider the
simple example of a six-level MLS code. The total number of
Latin squares of order six is equal to X6 = 6!×5!×9408 [10].
This means that using a six-level MLS code, we can describe a
total of X6 unique PCMs, corresponding to X6 unique Tanner
graphs, and thus representing a total of X6 unique binary
codes, whilst still sharing the same base matrix and requiring
a total of only six constituent matrices for differentiating the Q
users. Therefore, a CCDMA system employing six-level MLS



codes can potentially distinguish between a total of X6 users
by only storing six (M b × N b)-element constituent matrices
and Q adjacency matrices, where we have M b = M/J and
N b = N/J . The dimension of an adjacency matrix is only
(J × J), where J is much smaller than both M and
N , therefore its storage requirements can be considered to
be negligible when compared to the (M × N)-element
PCM. Therefore, our proposed system renders the memory
requirements practically independent of the total number of
users supported by the system. On the other hand, any other
LDPC code-aided CCDMA system has to store Q PCMs,
each having a dimension of (M × N), thus requiring in total
the enumeration of QNγ number of edges.

B. Isotopic Latin Squares and Isomorphic Edge-Colored
Graphs

This subsection outlines the technique that was employed
in order to ensure that all the Q users benefit from the same
QoS. This brings us to the notion of isotopic Latin squares
and isomorphic edge-colored graphs. Two Latin squares S
and S′ are said to be isotopic, if there exists a triple (α, β, χ)
(referred to as an isotopy3, where α, β and χ correspond to
a row, column and symbol permutation, respectively, which
carries the Latin square S to S′. Effectively, this implies
that if we consider any particular row and column position
of the Latin square specified by the check nodes as well as
variable nodes (cmj , vnj) and containing the entry e, where
m = 1, . . . , M b, n = 1, . . . , N b and j = 0, . . . , J − 1, the
entry at position (α(cmj), β(vnj)) of the Latin square S′ will
be equal to χ(e). Two Latin squares S1 and S2 will then give
rise to isomorphic edge-colored complete bipartite graphs if
and only if Latin square S1 is isotopic to either another Latin
square S2 or to its transpose [12].

Since the decoding of LDPC codes is very much dependent
on their graph-theoretic properties, we can ensure the same
QoS for each user, if all the user-specific channel codes Cq,
q = 1, . . . , Q, have the corresponding edge-colored Tanner
graphs that exhibit identical graph-theoretic properties, and
thus are isomorphic. This can be achieved by allocating
adjacency matrices to the Q users that are represented by both
distinct as well as isotopic Latin squares.

V. SIMULATION RESULTS

The results presented in this section were obtained
using Binary Phase Shift Keying (BPSK) modulation,
when transmitting over the AWGN as well as uncorrelated
Rayleigh (UR) multiple access channels and using LDPC
code-aided CCDMA systems in conjunction with both six-
level MLS codes [7] as well as pseudo-random MacKay [13]
codes. We have considered half-rate LDPC codes having
γ = 3 and a block length of N = 1008 bits. The number
of users supported by the system was Q = 3, and therefore
the bandwidth efficiency defined as RQ was 1.5 bps/Hz. The
number of iterations between the PIC detector and the LDPC

3Then, an isotopy class comprises the set of all the Latin squares isotopic
to a given Latin square. A list of the isotopy classes for Latin squares of
small orders is given by McKay in [11].

decoder was set to I = 5 for Q = 2 users and I = 10
for Q = 3 users. The LDPC decoding was performed using
the SPA having a maximum of 100 iterations.

Figure 3 illustrates the BER and BLER performance
comparison of a CCDMA scheme using half-rate MacKay
and six-level MLS LDPC codes having a block length of
N = 1008, when transmitting over the AWGN and UR
channels. In Figures 3(a) and 3(b), we compare the achievable
BER as well as the BLER performance using the N = 1008
MacKay and MLS codes as component codes, and a user-
specific pseudo-random interleaver after the channel encoder.
It can be observed that the BER/BLER performance of both
systems is comparable. We point out that in this case there
is no need for a distinct code description Cq for each user,
q ∈ [1, Q], since the LDPC encoded bit stream of each
user is interleaved by a user-specific interleaver before being
transmitted over the multiple access channel. Our motivation
of showing the results in Figures 3(a) and 3(b) is to explicitly
demonstrate that both systems have a similar performance.

We then proceed to remove the user-specific interleaver,
when user separation is then entirely achieved by the distinct
(and isotopic) Latin squares. The BER and BLER performance
exhibited in this scenario is shown in Figures 3(c) and 3(d),
where we compared the performance of the MLS LDPC
coded CCDMA system both with and without the interleaver.
Once again, the proposed system does not suffer from any
BER/BLER performance loss.

However, the proposed system has considerable gains in
terms of the interleaver storage and delay requirements, since
there is no need to store user-specific interleavers or a user-
specific PCM. For the case of the benchmarker system using
the pseudo-random MacKay codes, the memory LUT must
store the location of 9072 edges in order to fully describe the
three distinct PCMs. On the other hand, the IDMA system
using MLS LDPC codes as component codes is more memory-
efficient, since in this case the LUT has to enumerate only 612
edges in order to store the six distinct (84 × 168)-element
constituent matrices and the three (6 × 6)-component Latin
squares (adjacency matrices). Furthermore, we note that the
difference in the memory requirements of the two systems
will become more pronounced upon increasing the number of
users Q or the block length N . The proposed system will be
applicable in situations, where low-delay requirements are an
absolute necessity, for example in interactive, lip-synchronized
speech and video communications.

VI. SUMMARY AND CONCLUSIONS

The concept of CCDMA was proposed, arguing that an
LDPC code-aided CCDMA system is generally inapplicable
in memory-constrained scenarios, since a distinct PCM code
description is required for each user, which has to be stored
in memory, in order to be able to differentiate each user.
In this paper, we have proposed a specific instantiation of a
CCDMA system using MLS LDPC codes, where we exploited
the compactness of the MLS LDPC code description in
order to significantly reduce the memory requirements. By
using the same J constituent matrices for each user, we
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Fig. 3. A BER and BLER performance comparison of a purely channel coded IDMA using half-rate MacKay [13] and six-level MLS LDPC codes
having a block length of N when transmitting over the AWGN and UR channels. (a) and (b): A comparison of the BER and BLER performance of the
IDMA system using MacKay and MLS codes, where both systems also have a user-specific interleaver, for 1, 2 and 3 users. (c) and (d): A comparison
of the BER and BLER performance for 2 and 3 users of the IDMA system using MLS codes with as well as without the user-specific interleaver.

succeeded in rendering the memory requirements practically
independent of the total number of users present in the
system, since each user is only distinguished by means
of a different (J × J)-component Latin square instead
of a different PCM. Furthermore, we outlined a technique
based on isotopic Latin squares that makes it possible to
construct channel codes that are distinct, whilst guaranteeing
a similar attainable BER/BLER performance for each user.
We demonstrated that these advantages accrue without any
compromise in the attainable BER/BLER performance, when
compared to the corresponding pseudo-random LDPC based
CCDMA benchmarker, which imposes significantly higher
memory requirements. Our scheme is attractive in interactive,
low-delay speech and video applications and is equally
applicable for other classes of random-like codes such as
Repeat-Accumulate (RA) codes.
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