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Abstract

This paper considers interference limited communication systems where the desired user
terfering users are symbol-synchronized. A novel adaptive beamforming technique is propo
quadrature phase shift keying (QPSK) receiver based directly on minimizing the bit error rat
demonstrated that the proposed minimum bit error rate (MBER) approach utilizes the syst
source (antenna array elements) more intelligently, than the standard minimum mean squa
(MMSE) approach. Consequently, an MBER beamforming assisted receiver is capable of pro
significant performance gains in terms of a reduced bit error rate over an MMSE beamformin
A block-data based adaptive implementation of the theoretical MBER beamforming solution
veloped based on the classical Parzen window estimate of probability density function. Furthe
a sample-by-sample adaptive implementation is also considered, and a stochastic gradient al
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1. Introduction

The ever-increasing demand for mobile communication capacity has motivated t
velopment of adaptive antenna array assisted spatial processing techniques [1–12]
to further improve the achievable spectral efficiency. A particular technique that has
real promise in achieving substantial capacity enhancements is the use of adaptive
forming with antenna arrays. Through appropriately combining the signals receiv
the different elements of an antenna array to form a single output, adaptive beamfo
is capable of separating signals transmitted on the same carrier frequency, provid
they are separated sufficiently in the spatial domain. Classically, this has been achie
minimizing the mean square error (MSE) between the desired output and the actua
output, and this principle is rooted in the traditional beamforming employed in sona
radar systems. Adaptive implementation of the theoretical minimum MSE (MMSE) b
forming solution can readily be realized using temporal reference techniques [2–4,1
Specifically, block-data based beamformer weight adaptation can be achieved us
so-called sample matrix inversion (SMI) algorithm [13,14], while sample-by-sample a
tation can be carried out using the least mean square (LMS) algorithm [15–17].

For a communication system, it is the achievable bit error rate (BER), not the
performance, that really matters. Ideally, the system design should be based dire
minimizing the BER, rather than the MSE. For applications in single-user channel e
ization and code division multiple access (CDMA) multiuser detection, it has been s
that the MMSE solution can in certain situations be distinctly inferior in comparison t
minimum BER (MBER) solution, and several adaptive implementations of the theor
MBER solution have been studied in Refs. [18–22]. The recent conference paper [23
authors proposed an MBER beamforming assisted receiver for binary phase shift
(BPSK) communication systems, where the desired user and interfering users are s
synchronized. This paper derives an adaptive beamforming technique based on
minimizing the system’s BER for such interference limited systems employing quad
phase shift keying (QPSK) modulation. It is demonstrated that the MBER solution ut
the array weights more intelligently than the MMSE approach. The MBER beamfor
appears to be “smarter” than the MMSE solution, since it directly optimizes the sys
BER performance, rather than minimizing the MSE, where the latter strategy often
out to be deficient. In particular, when facing strong interfering sources, the MMSE b
forming receiver may exhibit a high BER floor as the underlying signal classes be
linearly inseparable, while the MBER beamforming receiver can often maintain the
separability and hence avoids such a BER floor.

An adaptive implementation of the theoretical MBER beamforming technique is st
in this paper. The classic Parzen window or kernel density estimation technique [2
is adopted for approximating the probability density function (pdf) of the beamform
output, and this naturally leads to a block-data adaptive MBER algorithm, which
tively minimizes the estimated BER of the beamforming assisted receiver by adjusti
beamformer weights using a simplified conjugate gradient optimization method [2
It is demonstrated in a simulation study that this block-data adaptive MBER algo
converges rapidly and the length of the data block required for achieving an accura
proximation of the MBER solution is reasonably small. Sample-by-sample adaptatio
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also been considered and an adaptive stochastic gradient MBER algorithm, referre
the least bit error rate (LBER), is derived. This LBER algorithm has a low computat
complexity which is comparable to that of the very simple LMS algorithm. Simula
results suggest that the LBER algorithm converges reasonably fast.

Before presenting our novel MBER QPSK beamforming technique, the assum
that the desired user and interfering signals are symbol-synchronized is elabora
For such a symbol-synchronized interference-limited QPSK system the non-Gauss
ture of the interfering signals is effectively exploited by the MBER beamforming rece
resulting in an improved BER performance. For the downlink scenario synchronous
mission of the users is guaranteed. By contrast, in an uplink scenario the differently d
asynchronous signals of the users are no longer automatically synchronized. Ho
the quasi-synchronous operation of the system may be achieved with the aid of
tive timing advance control, as in the global system of mobile communications, k
as GSM [28]. The GSM system has a timing-advance control accuracy of 0.25 bit
tion. Since synchronous systems perform better than their asynchronous counterpa
the third-generation partnership research consortium known as 3GPP is also cons
the employment of timing-advance control in next-generation systems. In general,
the number of users is large, the users are asynchronous and the idealistic assum
perfect power control is stipulated, the performance gain of the (symbol-rate) MBE
lution over the MMSE beamformer may be expected to diminish, since the interfe
becomes nearly Gaussian at the symbol-rate samples. One way of maintaining the
of the MBER solution for asynchronous systems is to perform a joint MBER detectio
synchronization by sampling faster than the symbol rate. During each symbol period
eral signal samples are taken and the receiver maintains several tentative MBER de
The detector having the smallest BER is chosen to perform symbol detection.

2. System model

It is assumed that the system supportsM symbol-synchronized users, that is, there
ist M synchronized signal sources, and each user transmits a QPSK modulated si
the same carrier frequency ofω = 2πf . The baseband complex-valued signal of usei,
sampled at the symbol rate, is formulated as

mi(k) = Aibi(k), 1� i � M, (1)

wherebi(k) ∈ {±1 ± j} are QPSK symbols, the complex-valuedAi is the channel coef
ficient for useri multiplying by the transmitted signal amplitude of useri, and therefore
2|Ai |2 denotes the received signal power of useri. Without any loss of generality, source
is assumed to be the desired user and the rest of the sources are the interfering us
linear antenna array considered consists ofL uniformly spaced elements, and the sign
received by theL-element antenna array are given by

xl(k) =
M∑

mi(k)exp
(
jωtl(θi)

) + nl(k) = x̄l(k) + nl(k), 1� l � L, (2)

i=1
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wheretl(θi) is the relative time delay at array elementl for sourcei, θi is the direction
of arrival for sourcei, andnl(k) is the complex-valued white Gaussian noise havin
zero mean and a variance ofE[|nl(k)|2] = 2σ 2

n . The desired user’s signal to noise ratio
defined as SNR= |A1|2/σ 2

n , the interference to noise ratio of interfering useri is given by
INRi = |Ai |2/σ 2

n , the desired signal to interference ratio with respect to interfering ui
is defined as SIRi = |A1|2/|Ai |2, for i = 2, . . . ,M , and the desired signal to interferen
plus noise ratio is given by SINR= |A1|2/(∑M

i=2 |Ai |2 + σ 2
n ). In a vector form, the arra

input x(k) = [x1(k)x2(k) . . . xL(k)]T can be expressed as

x(k) = x̄(k) + n(k) = Pb(k) + n(k), (3)

wheren(k) = [n1(k) n2(k) . . . nL(k)]T has a covariance matrix ofE[n(k)nH (k)] = 2σ 2
n IL

with IL representing theL × L identity matrix, the system matrixP is given by

P = [A1s1 A2s2 . . .AMsM ], (4)

the steering vector for sourcei is formulated as

si = [
exp

(
jωt1(θi)

)
exp

(
jωt2(θi)

)
. . .exp

(
jωtL(θi)

)]T (5)

and the transmitted QPSK symbol vector isb(k) = [b1(k) b2(k) . . . bM(k)]T .
A standard linear beamformer is employed at the receiver, and the beamformer’s

is given by

y(k) = wH x(k) = wH x̄(k) + wH n(k) = ȳ(k) + e(k), (6)

wherew = [w1 w2 . . .wL]T is the complex-valued beamformer weight vector, ande(k) is
Gaussian distributed having a zero mean and a variance ofE[|e(k)|2] = 2σ 2

n wH w. Define
the combined impulse response of the beamformer and the system as

wH P = [c1 c2 . . . cM ]. (7)

The beamformer’s output can alternatively be expressed as

y(k) = c1b1(k) +
M∑
i=2

cibi(k) + e(k), (8)

where the first term is the desired signal and the second term the residual interfe
Define the decision variable asd(k) = y(k)/c1. Then the decision regarding the transmit
symbolb1(k) is made according to

b̂1(k) = sgn
(
dR(k)

) + j sgn
(
dI (k)

)
, (9)

wheredR(k) = �[d(k)] and dI (k) = �[d(k)] are the real and imaginary parts ofd(k),
respectively, and sgn(·) the sign function. Notingc1 = wH p1 andp1 = A1s1, we can see
that the steering vectors1 and the channelA1 of the desired user are required at the rece
in order to make the unbiased decision (9). This fact is often overlooked. Provided tc1
is real and positive, the optimal unbiased decision (9) is equivalent to

b̂1(k) = sgn
(
yR(k)

) + j sgn
(
yI (k)

)
. (10)
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The following rotating operation

wnew= cold
1

|cold
1 |wold (11)

can be used to make sure thatc1 is real and positive. This rotation is a linear transformat
and does not alter the BER of the underlying system.

Classically, the beamformer’s weight vector is determined by minimizing the MSE
of E[|b1(k) − y(k)|2], which leads to the following MMSE solution:

wMMSE = (
PPH + σ 2

n IL

)−1p1. (12)

Although the system matrixP is generally unknown, the MMSE solution can be read
realized using the block-data SMI algorithm or the least squares (LS) algorithm [13,
training is available. The MMSE solution can also be implemented via training by u
the stochastic gradient algorithm known as the LMS algorithm [15–17].

3. Minimum bit error rate beamforming

Denote theNb = 4M number of possible transmitted symbol sequences ofb(k) asb(q),
1 � q � Nb. Denote furthermore the first element ofb(q), corresponding to the desire
user, asb(q)

1 . The noise-free part of the array input signal, namelyx̄(k), only takes values
from the finite signal set defined as

X �= {
x̄(q) = Pb(q), 1� q � Nb

}
. (13)

This set can be partitioned into four subsets, depending on the specific value ofb1(k), as
follows:

X±,±
�= {

x̄(q) ∈X : b1(k) = ±1± j
}
. (14)

Similarly, the noise-free part of the beamformer’s output, namelyȳ(k), takes values from
the scalar set

Y �= {
ȳ(q) = wH x̄(q), 1� q � Nb

}
(15)

andY can be divided into the four subsets conditioned on the value ofb1(k):

Y±,±
�= {

ȳ(q) ∈ Y : b1(k) = ±1± j
}
. (16)

For the linear beamformer (6) to perform adequately, an implicit assumption is thatX±,±
are linearly separable, that is, there exists a weight vectorw such that the four scalar se
Y±,± are completely separable by linear decision boundaries. Otherwise nonlinear
forming is required, a situation that is similar to nonlinear single-user equalization
nonlinear CDMA multiuser detection [30–35]. In this study, we restrict to the linear be
former (6), because it has a low computational complexity and can readily be implem
in downlink receivers. It is worth pointing out that, under severe interference situa
which cause the MMSE beamforming to lose linear separability, the MBER beamfor
to be derived here can often maintain linear separability. This is because the objec
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the MMSE solution is to minimize the MSE which does not necessarily require the
ration ofY±,±, while the MBER solution will try to separateY±,± as far apart as possibl
In this sense, the MBER beamforming is more intelligent than the MMSE one. This
also be demonstrated later in the simulation study.

Noting y(k) = ȳ(k) + e(k), it is easily seen that the conditional pdf ofy(k) given
b1(k) = +1+ j is

p(y| + 1+ j) = 1

Nsb

∑
ȳ(q)∈Y+,+

1

2πσ 2
n wH w

exp

(
−|y − ȳ(q)|2

2σ 2
n wH w

)
, (17)

whereNsb = Nb/4 is the number of the points inY+,+. With the notationsy = yR + jyI

andȳ(q) = ȳ
(q)
R + j ȳ

(q)
I , the two marginal conditional pdfs are given by

p(yR| + 1+ j) = 1

Nsb

∑
ȳ(q)∈Y+,+

1√
2πσ 2

n wH w
exp

(
− (yR − ȳ

(q)
R )2

2σ 2
n wH w

)
(18)

and

p(yI | + 1+ j) = 1

Nsb

∑
ȳ(q)∈Y+,+

1√
2πσ 2

n wH w
exp

(
− (yI − ȳ

(q)
I )2

2σ 2
n wH w

)
, (19)

respectively. Define

PER
(w)

�= Prob
(�[

b̂1(k)
] �= �[

b1(k)
]) = Prob

(
b̂R,1(k) �= bR,1(k)

)
(20)

and

PEI
(w)

�= Prob
(�[

b̂1(k)
] �= �[

b1(k)
]) = Prob

(
b̂I,1(k) �= bI,1(k)

)
. (21)

Obviously, the BER of the beamformer associated with the weight vectorw is given by

PE(w) = 1

2

(
PER

(w) + PEI
(w)

)
. (22)

Noting the decision rule (10) (assuming thatc1 is positive) and the two marginal cond
tional pdfs (18) and (19), it can easily be shown that

PER
(w) = 1

Nsb

∑
ȳ(q)∈Y+,+

Q
(
g

(q)
R (w)

)
(23)

and

PEI
(w) = 1

Nsb

∑
ȳ(q)∈Y+,+

Q
(
g

(q)
I (w)

)
, (24)

where

Q(u) = 1√
2π

∞∫
u

exp

(
−v2

2

)
dv, (25)

g
(q)
R (w) = sgn(�[b(q)

1 ])ȳ(q)
R√

H
= sgn(b(q)

R,1)�[wH x̄(q)]√
H

(26)

σn w w σn w w
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I (w) = sgn(�[b(q)

1 ])ȳ(q)
I

σn

√
wH w

= sgn(b(q)

I,1)�[wH x̄(q)]
σn

√
wH w

. (27)

Note that the BER is invariant to a positive scaling ofw. Similarly, the BER can be calcu
lated alternatively based on any of the other three subsetsY+,−, Y−,+, andY−,−.

The MBER beamforming solution is then defined as

wMBER = arg min
w

PE(w). (28)

Unlike the MMSE solution (12), there exists no closed-form MBER solution, and a
merical optimization must be used in order to obtain an MBER solution. The gradie
PE(w) with respect tow is

∇PE(w) = 1

2

(∇PER
(w) + ∇PEI

(w)
)
, (29)

and it can be shown that

∇PER
(w) = 1

2Nsb

√
2πσn

√
wH w

×
∑

ȳ(q)∈Y+,+

exp

(
− (ȳ

(q)
R )2

2σ 2
n wH w

)
sgn

(
b

(q)

R,1

)( ȳ
(q)
R w

wH w
− x̄(q)

)
(30)

and

∇PEI
(w) = 1

2Nsb

√
2πσn

√
wH w

×
∑

ȳ(q)∈Y+,+

exp

(
− (ȳ

(q)
I )2

2σ 2
n wH w

)
sgn

(
b

(q)

I,1

)( ȳ
(q)
I w

wH w
+ j x̄(q)

)
. (31)

Given the gradient (29)–(31), the optimization problem (28) can be solved for itera
using a gradient-based optimization algorithm. Since the BER is invariant to a po
scaling ofw, it is computationally advantageous to normalizew to a unit-length after ever
iteration, so that the gradient (30) and (31) can be simplified to

∇PER
(w) = 1

2Nsb

√
2πσn

∑
ȳ(q)∈Y+,+

exp

(
− (ȳ

(q)
R )2

2σ 2
n

)
sgn

(
b

(q)

R,1

)(
ȳ

(q)
R w − x̄(q)

)
(32)

and

∇PEI
(w) = 1

2Nsb

√
2πσn

∑
ȳ(q)∈Y+,+

exp

(
− (ȳ

(q)
I )2

2σ 2
n

)
sgn

(
b

(q)

I,1

)(
ȳ

(q)
I w + j x̄(q)

)
. (33)

The rotating operation (11) should also be applied after each iteration to ensure
and positivec1. The following simplified conjugate gradient algorithm [22,27] provides
efficient means of finding a MBER solution.
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Initialization. Choose a step size ofµ > 0 and a termination scalar ofβ > 0; givenw(1)

andd(1) = −∇PE(w(1)); set the iteration index toι = 1.
Loop. If ‖∇PE(w(ι))‖ = √

(∇PE(w(ι)))H ∇PE(w(ι)) < β, gotoStop. Else,

w(ι + 1) = w(ι) + µd(ι),

c1 = wH (ι + 1)p1,

w(ι + 1) = c1

|c1|w(ι + 1),

w(ι + 1) = w(ι + 1)

‖w(ι + 1)‖ ,

φι = ‖∇PE(w(ι + 1))‖2

‖∇PE(w(ι))‖2
,

d(ι + 1) = φιd(ι) − ∇PE

(
w(ι + 1)

)

ι = ι + 1, gotoLoop.
Stop. w(ι) is the solution.

At a minimum we have‖∇PE(w)‖ = 0. Hence the termination scalarβ determines
the accuracy of the solution obtained. The step sizeµ controls the rate of convergenc
Typically, a much larger value ofµ can be used compared to the steepest-descen
dient algorithm. As the BER surfacePE(w) is highly nonlinear, occasionally the sear
directiond may no longer be a good approximation to the conjugate gradient directi
may even point to the “uphill” direction, when the iteration index becomes large. It is
advisable to periodically resetd to the negative gradient in the above conjugate grad
algorithm. With this resetting mechanism, this simplified conjugate gradient algorithm
been shown to converge fast to the theoretical MBER solution, typically in tens of
tions, in many simulation studies. Although in theory there is no guarantee that the
conjugate gradient algorithm can always find a global minimum point of the BER su
PE(w), in practice we have found that the algorithm works well and we have neve
served any occurrence of the algorithm being trapped at some local minimum so
This is likely to be a consequence of the specific shape of the BER surface. Note t
BER is invariant to a positive scaling ofw, i.e. the size ofw does not matter (except ze
size). Thus, the BER surface has an infinitely long valley, and any point at the b
of this valley is a true global MBER solution. For an illustration, see the simple exa
given in Ref. [22]. Once a weight vectorw is near the edge of this infinitely long valle
convergence to the bottom is extremely fast, since the slope or gradient is large. No
once we restrict to the unit-lengthw, the MBER solution becomes unique. As alternati
to the simplified conjugate gradient algorithm, global optimization algorithms, such a
genetic algorithm [36,37] and adaptive simulated annealing [38,39], can be used to o
global minimum solution ofPE(w), at an expense of considerably increased computat
requirements.
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4. Adaptive minimum bit error rate beamforming

Noting y(k) = ȳ(k) + e(k) with ȳ(k) taking values fromY , the pdf ofy(k) can be
shown to be explicitly given by

p(y) = 1

Nb2πσ 2
n wH w

Nb∑
q=1

exp

(
−|y − ȳ(q)|2

2σ 2
n wH w

)
(34)

and the BER can alternatively be calculated with the two “marginal” BERs given by

PER
(w) = 1

Nb

Nb∑
q=1

Q
(
g

(q)
R (w)

)
(35)

and

PEI
(w) = 1

Nb

Nb∑
q=1

Q
(
g

(q)
I (w)

)
, (36)

where the computation is overȳ(q) ∈ Y . In reality, the pdf ofy(k) is unknown. Hence, we
will adopt the temporal reference technique for supporting the adaptive implementa
the MBER beamforming.

4.1. A block-data based gradient adaptive MBER algorithm

The key to adaptive implementation of the MBER solution is an effective estima
the pdf (34). Parzen window or kernel density estimate [24–26] is a well known me
for estimating a probability distribution. Parzen window method estimates a pdf us
window or block ofy(k) by placing a symmetric unimodal kernel function on eachy(k).
Kernel density estimation is capable of producing reliable pdf estimates with shor
records and in particular is extremely natural when dealing with Gaussian mixtures
as the one given in (34). In our particular application, it is obvious and natural to ch
a Gaussian kernel function with a kernel widthρn

√
wH w that is similarly in form to the

noise standard deviationσn

√
wH w. Given a block ofK training samples{x(k), b1(k)}, a

kernel density estimate of the pdf (34) is readily given by

p̂(y) = 1

K2πρ2
nwH w

K∑
k=1

exp

(
−|y − y(k)|2

2ρ2
nwH w

)
, (37)

where the radius or scaling parameterρn is related to the standard deviationσn of the
system noise. Accuracy analysis of Parzen window density estimate is well docum
in the literature. The pdf estimate (37) is known to possess a mean integrated squa
convergence rate at order ofK−1 [24]. Some examples of accurate pdf estimates u
(37) with short data records can be seen in Refs. [21,22]. In Ref. [25], a lower bou
ρn = (4/3K)1/5σn is suggested. In practice,ρn can often be chosen from a large range
values.
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From this estimated pdf (37), the estimated BER is given by

P̂E(w) = 1

2

(
P̂ER

(w) + P̂EI
(w)

) = 1

2K

K∑
k=1

(
Q

(
ĝ

(k)
R (w)

) + Q
(
ĝ

(k)
I (w)

))
(38)

with

ĝ
(k)
R (w) = sgn(bR,1(k))yR(k)

ρn

√
wH w

(39)

and

ĝ
(k)
I (w) = sgn(bI,1(k))yI (k)

ρn

√
wH w

. (40)

The gradient ofP̂E(w) can readily be calculated with

∇P̂ER
(w) = 1

2K
√

2πρn

√
wH w

×
K∑

k=1

exp

(
− y2

R(k)

2ρ2
nwH w

)
sgn

(
bR,1(k)

)(yR(k)w
wH w

− x(k)

)
(41)

and

∇P̂EI
(w) = 1

2K
√

2πρn

√
wH w

×
K∑

k=1

exp

(
− y2

I (k)

2ρ2
nwH w

)
sgn

(
bI,1(k)

)(yI (k)w
wH w

+ jx(k)

)
. (42)

Upon substituting∇PE(w) by ∇P̂E(w) in the conjugate gradient updating mechanism
block-data based adaptive algorithm is obtained. The step sizeµ and the radius paramet
ρn are two algorithmic parameters. Againµ andρn control the rate of convergence, a
the radius parameterρn also helps to determine the accuracy of the pdf and hence
estimate.

4.2. A stochastic gradient based adaptive MBER algorithm

In the Parzen window estimate (37), the kernel width or scaling parameterρn

√
wH w

depends on the beamformer weight vectorw. In a general density estimate, there is
reason why the scaling parameter should be chosen in such a way except that we
the dependency of the scaling parameter tow in the true density (34). However, the BE
is invariant towH w. To fully take advantage of this fact, we propose to used a con
width ρn in density estimate. One advantage of using a constant widthρn, rather than a
variable oneρn

√
wH w, in the density estimate is that the gradient of the resulting estim

BER has a much simpler form, which leads to considerable reduction in computa
complexity. This is particular relevant in the derivation of stochastic gradient upd



S. Chen et al. / Digital Signal Processing 15 (2005) 545–567 555

e true

ample

neous

LBER

rs
perfor-

at there
LBER
mechanisms. Adopting this approach, an alternative Parzen window estimate of th
pdf (34) is given by

p̃(y) = 1

K2πρ2
n

K∑
k=1

exp

(
−|y − y(k)|2

2ρ2
n

)
(43)

and an approximation of the BER is

P̃E(w) = 1

2

(
P̃ER

(w) + P̃EI
(w)

) = 1

2K

K∑
k=1

(
Q

(
g̃

(k)
R (w)

) + Q
(
g̃

(k)
I (w)

))
(44)

with

g̃
(k)
R (w) = sgn(bR,1(k))yR(k)

ρn

(45)

and

g̃
(k)
I (w) = sgn(bI,1(k))yI (k)

ρn

. (46)

This approximation is valid, provided that the widthρn is chosen appropriately.
In order to derive a sample-by-sample adaptive algorithm, consider a single-s

estimate ofp(y), namely:

p̃(y, k) = 1

2πρ2
n

exp

(
−|y − y(k)|2

2ρ2
n

)
. (47)

Conceptually, from this one-sample pdf “estimate”, we have a one-sample or instanta
BER “estimate”P̃E(w, k). Using the instantaneous stochastic gradient of

∇P̃E(w, k) =
(−sgn(bR,1(k))exp(− y2

R(k)

2ρ2
n

) + j sgn(bI,1(k))exp(− y2
I (k)

2ρ2
n

))

4
√

2πρn

x(k) (48)

gives rise to a stochastic gradient adaptive algorithm, which we referred to as the
algorithm:

w(k + 1)=w(k) + µ
(sgn(bR,1(k))exp(− y2

R(k)

2ρ2
n

) − j sgn(bI,1(k))exp(− y2
I (k)

2ρ2
n

))

4
√

2πρn

x(k),

(49)

c1 = wH (k + 1)p1, (50)

w(k + 1) = c1

|c1|w(k + 1), (51)

where the adaptive gainµ and the kernel widthρn are the two algorithmic paramete
that have to be set appropriately. Specifically, they are chosen to ensure adequate
mance in terms of convergence rate and steady-state BER misadjustment. Note th
is no need to normalize the weight vector to a unit-length after each update. This
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algorithm has a similar computational complexity to the low-complexity LMS algorit
which has a weight updating equation given by

w(k + 1) = w(k) + µ
(
b1(k) − y(k)

)∗x(k). (52)

Note that the rotation operation (50) and (51) are also required for the LMS beamfo
in order to apply the decision rule (10).

5. Simulation study

5.1. Time-invariant system

The example consisted of four signal sources and a three-element linear ante
ray. The array element spacing wasλ/2 with λ being the wavelength. Figure 1 shows t
locations of the desired source and three interfering sources graphically. The sim
channel conditions wereAi = αi + j0 for 1� i � 4, with αi > 0 so chosen to provide th
required received signal powers. Figure 2 compares the BER performance of the
beamforming assisted receiver with that of the MMSE beamforming assisted receiv
der four different conditions: (a) the desired user and all the three interfering sourc
equal power, (b) the desired user and the interfering users 2 and 3 had equal power
interfering source 4 had 6 dB more power than the desired user, (c) all the three inte
sources had 2 dB more power than the desired user, and (d) the interfering sources
had 2 dB more power, while the interferer 3 had 6 dB more power, than the desired
The MMSE solution was calculated using (12) while the MBER solution was determ
numerically using the simplified conjugate gradient algorithm presented in Section
this example, the superior performance of the MBER beamforming technique ov
MMSE scheme is evident. It can be seen from Figs. 2a–2c that, as the interference
get stronger, the MMSE beamformer’s performance deteriorates quickly and exhib
irreducible BER floor. In contrast, the MBER solution shows some degree of robustn
the near-far effect. The first attempt to explain this phenomenon was made by exa
the beam pattern used in traditional beamforming.

Fig. 1. Locations of the desired source and the three interfering sources with respect to the three-eleme
array havingλ/2 element spacing, whereλ is the wavelength, for the time-invariant system.
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Fig. 2. Comparison of the bit error rates of the MMSE and MBER beamformers for the time-invariant s
(a) SIRi = 0 dB for i = 2,3,4; (b) SIR2 = SIR3 = 0 dB and SIR4 = −6 dB; (c) SIRi = −2 dB for i = 2,3,4;
and (d) SIR2 = SIR4 = −2 dB and SIR3 = −6 dB.

The discrete Fourier transform of the beamformer weights, also referred to as the
pattern, is given by

F(θ) =
L∑

l=1

wl exp
(−jωl(θ)

)
, (53)

which describes the response of the beamformer to the source arriving at angleθ . In tradi-
tional beamforming, the magnitude ofF(θ) is used for characterizing the performance
a beamformer. Using the amplitude response alone, however, can be misleading
both the magnitude and phase ofF(θ) should be used together for characterizing
beamformer. Figure 3 shows the beam patterns for the MMSE and MBER beam
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Fig. 3. Comparison of the MMSE and MBER beam patterns given SNR= 15 dB and SIRi = 0 dB for i = 2,3,4
for the time-invariant system. The weight vector of the MBER solution is scaled to have the same length
MMSE solution.

ers, respectively, given SNR= 15 dB, SIRi = 0 dB for i = 2,3,4, which illustrates a
condition represented in Fig. 2a. Figure 4 depicts the corresponding beam pattern
SNR= 20 dB, and SIRi = −2 dB for i = 2,3,4, which represents a case of the conditio
shown in Fig. 2c. The two beam patterns shown in Fig. 3 do not have big difference
thus it is difficult to explain from the beam pattern why the MBER solution has a m
better BER performance than the MMSE scheme, as can be seen from Fig. 2a. Mo
the beam patterns of Figs. 3 and 4 are similar, which could not explain why the M
scheme should have a high BER floor, as shown in Fig. 2c.

The pdf of the beamformer’s output fully characterizes the true performance o
beamformer. Figures 5 and 6 depict the full conditional pdfp(y|+1+j), the two margina
conditional pdfsp(yR| + 1+ j) andp(yI | + 1+ j) together with the subsetY+,+ for the
MMSE and MBER beamformers under the same conditions as given in Figs. 3 a
respectively. In these two figures, the beamformer’s weight vector has been norm
to a unit length. It can be seen from Fig. 5 that the minimum distance fromY+,+ to the
decision boundaries for the MMSE case (approximately 0.3) is smaller than that f
MBER case (approximately 0.6), reflecting the fact that the MBER beamformer
better BER performance than the MMSE one as shown in Fig. 2a. When the interfe
power increases to give rise to SIRi = −2 dB for i = 2,3,4, the MMSE beamformer ha
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Fig. 4. Comparison of the MMSE and MBER beam patterns given SNR= 20 dB and SIRi = −2 dB for i = 2,3,4
for the time-invariant system. The weight vector of the MBER solution is scaled to have the same length
MMSE solution.

lost linear separability, as can be clearly seen in Fig. 6a, where the two circles ma
points ofY+,+ that have just crossed over to the wrong sides of the decision bound
This explains the irreducible high BER exhibited in Fig. 2c for the MMSE beamfor
In contrast, a desired linear separability is maintained for the MBER beamformer
under such an adverse condition. At the extremely adverse condition given in Fig. 2
underlying system becomes linearly inseparable, and any linear beamformer will ex
high BER floor. In such a situation, nonlinear beamforming may be employed to ac
an adequate performance at a cost of increased complexity [40].

Let us now study the performance of the block-data based gradient adaptive MB
gorithm employing the conjugate gradient updating mechanism presented in Secti
The effect of the block sizeK on the performance of this block-data based adaptive MB
algorithm is investigated in Fig. 7, given the condition that the desired user and the
fering sources 2 and 3 had an equal power, while the interfering source 4 had a 6 dB
power than the desired user. Note that for this example, the signal setX contains 256
states, calculated using the formulaNb = 4M with M = 4. It is seen that with a short bloc
length ofK = 100, the BER performance of the block-data based adaptive MBER
tion can closely approximate the performance of the theoretical MBER solution. G
SNR= 17 dB, SIR2 = SIR3 = 0 dB and SIR4 = −6 dB and with two different initial
as

rk t
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(a) MMSE beamforming

(b) MBER beamforming

Fig. 5. Conditional probability density functionsp(y|+1+j) (surfaces), marginal conditional probability dens
functionsp(yR | + 1 + j) andp(yI | + 1 + j) (curves), and signal subsetsY+,+ (dots) for the time-invarian
system. SNR= 15 dB and SIRi = 0 dB for i = 2,3,4. The beamformer’s weight vector is normalized to u
length.
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(a) MMSE beamforming

(b) MBER beamforming

Fig. 6. Conditional probability density functionsp(y|+1+j) (surfaces), marginal conditional probability dens
functionsp(yR | + 1 + j) andp(yI | + 1 + j) (curves), and signal subsetsY+,+ (dots) for the time-invarian
system. SNR= 20 dB and SIRi = −2 dB for i = 2,3,4. The beamformer’s weight vector is normalized to u
length. Circles in (a) indicate the points ofY+,+ that lie in the wrong sides of the decision boundaries.
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Fig. 7. Effect of block size on the performance of the block-data based gradient adaptive MBER algor
Section 4.1 for the time-invariant system. SIR2 = SIR3 = 0 dB and SIR4 = −6 dB.

Fig. 8. Convergence rate of the block-data based gradient adaptive MBER algorithm of Section 4.1 for th
invariant system with a block size ofK = 400, SNR= 17 dB, SIR2 = SIR3 = 0 dB, and SIR4 = −6 dB, and
given (a): initialw = wMMSE, µ = 0.3 andρ2

n = 3σ2
n ≈ 0.06; and (b): initialw = [0.0 + j0.1 0.1 + j0.0 0.1+

j0.0]T , µ = 0.7, andρ2
n = 3σ2

n ≈ 0.06.

weight conditions, Fig. 8 illustrates the convergence rates of the block-data based g
adaptive MBER algorithm. From Fig. 8, it can be seen that this block-data based ad
algorithm converges rapidly. The step sizeµ and radius parameterρn used were chose
empirically to ensure a fast convergence speed. The influence of the scaling paramρ2

n

on the performance of the block-data based adaptive MBER algorithm was investig
Fig. 9 under the same condition given in Fig. 8b. It can be seen that the performance
algorithm is not overly sensitive to a large range ofρ2

n values.
The performance of the stochastic gradient based adaptive MBER algorithm por

in Section 4.2 is investigated next. Figures 10a and 10b depict the learning curves
LBER algorithm given two different initial weight conditions, respectively. Two kinds
learning curves are shown, obtained respectively by the LBER algorithm with trainin
with decision-directed (DD) adaptation in whichb1(k) is substituted by its estimatêb1(k).
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Fig. 9. Influence of the scaling parameterρ2
n on the performance of the block-data based gradient ada

MBER algorithm of Section 4.1 for the time-invariant system with a block size ofK = 400, SNR= 17 dB,
SIR2 = SIR3 = 0 dB, and SIR4 = −6 dB, and givenw = [0.0+ j0.1 0.1+ j0.0 0.1+ j0.0]T .

It can be seen that this stochastic gradient adaptive MBER algorithm converges reas
fast. In Fig. 9a, the initial BER was lower than 10−2, which was sufficient low for the
DD adaptation. For the condition specified in Fig. 9b, however, 140 samples of tra
were used first to lower the BER before it switched to the DD adaptation. The ada
gainµ and kernel widthρn were determined empirically to ensure a good performanc
terms of convergence rate and steady-state BER misadjustment. As expected, initial
condition affects convergence speed since the BER is a complicated nonlinear func
the weight vector. As a comparison, the learning curves of the LMS algorithm were
shown in Fig. 10. As expected, the BER of the LMS beamforming assisted receiver c
be lower than that of the MMSE solution.

5.2. Slow-fading system

The locations of the four users were identical to those shown in Fig. 1 but th
tenna array consisted of fourλ/2-spacing elements. The magnitudes of the 4 channelAi ,
1 � i � 4, were independent Rayleigh processes and the associated root mean po
Ai were

√
0.5+ j

√
0.5, for 1� i � 4. Continuously fluctuating fading was used at a n

malized Doppler frequency of 10−6, providing a different fading magnitude and phase
each transmitted symbol. The transmission frame structure consisted of 40 training
bols followed by 400 data symbols. The performance of the LBER and LMS beamfor
assisted receivers are compared in Fig. 11, where the superior performance of the
algorithm over the LMS one is evident. Note that this was not an over loaded system
the number of the users was four and the number of the receiver antennas was also

6. Conclusions

An adaptive MBER beamforming technique has been developed for QPSK wireles
tems, where the users transmissions are synchronized. It has been shown that the
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(a) w(0) = wMMSE, µ = 0.03, andρ2
n = 3σ2

n ≈ 0.06

(b) w(0) = [0.0+ j0.1 0.1+ j0.0 0.1+ j0.0]T , µ = 0.03, andρ2
n = 3σ2

n ≈ 0.06

Fig. 10. Learning curves of the stochastic gradient adaptive MBER algorithm of Section 4.2 averaged o
runs for the time-invariant system, given SNR= 17 dB, SIR2 = SIR3 = 0 dB, and SIR4 = −6 dB, where DD:
decision-directed adaptation witĥb1(k) substitutingb1(k).

beamforming assisted receiver exploits the system’s resources more intelligently th
standard MMSE beamforming assisted one and, consequently, can achieve a bette
mance in terms of a lower BER. Therefore, by employing the MBER beamforming as
receiver, the achievable system capacity is enhanced. Simulation results also sugg
the MBER solution is more robust to the near-far effect, compared with the MMSE sch
Adaptive implementation of the MBER beamformer has also been addressed. A bloc
based conjugate gradient adaptive MBER algorithm has been shown to converge
while requiring a reasonably small block size for accurately approximating the theor
MBER solution. A stochastic gradient adaptive MBER algorithm, called the LBER,
also been derived, which has been shown to have a reasonably fast convergence
simulation. Furthermore, this LBER algorithm has a low computational complexity th
comparable to the simple LMS algorithm. In this study, we assume narrow-band ch
and deal with narrow-band beamforming (space processing only) assisted receiver.
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Fig. 11. Comparison of the bit error rates of the LMS and LBER beamforming assisted receivers for th
fading system.

work is required to investigate the general case of wideband channels and to study
band beamforming (space-time processing) assisted receiver. Finally, we would al
to point out that the MBER beamforming solution derived for synchronous systems c
extended to asynchronous systems by considering a detection window of three sy
where the two symbols of the asynchronous interferer overlap with the desired sym
the reference user. Naturally, this increases the detection complexity. Note that thi
nique of using a window of three symbols, namely the previous, current and next s
is a method widely adopted in asynchronous CDMA multiuser detection [41].
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