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Abstract—A new sparse kernel density estimator is introduced.
Our main contribution is to develop a recursive algorithm for
the selection of significant kernels one at time using the mini-
mum integrated square error (MISE) criterion for both kernel
selection. The proposed approach is simple to implement and the
associated computational cost is very low. Numerical examples
are employed to demonstrate that the proposed approach is
effective in constructing sparse kernel density estimators with
competitive accuracy to existing kernel density estimators.
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I. INTRODUCTION

The probability density function (PDF) estimation problem
is fundamental to many pattern recognition, data analysis and
other engineering applications [1]–[5]. The celebrated Parzen
window (PW) estimate [6] can be regarded as a special case of
the finite mixture model [1], in which the number of mixtures
is equal to that of the training data samples and all the mixing
weights are equal. The point density estimate using the PW
estimator for a future data sample can be computationally
expensive if the number of training data samples is very large.
The finite mixture model is based on fixing the number of
mixtures, and applying the expectation-maximisation (EM)
algorithm [7] to provide the maximum likelihood (ML) es-
timate of the mixture model’s parameters. This associated ML
optimisation, in general, is a highly nonlinear optimisation
process requiring extensive computation. The EM algorithm
for Gaussian mixture model enjoys an explicit iterative form
[8]. However, it is known that this EM algorithm based ML
estimation to be ill posed and has a slow convergence speed.
To tackle the associated numerical difficulties, it is often
required to apply resampling techniques [9], [10].

There is a considerable interest into research on the sparse
PDF estimation. The support vector machine (SVM) density
estimation technique has been proposed [11], [12]. The optimi-
sation in the SVM method is to solve a constrained quadratic
optimisation problem. This yields the sparsity inducing prop-
erty, i.e. at the optimality, many kernels’ weights are driven to
zeros. Alternatively a novel regression-based PDF estimation
method has been introduced [13], in which the empirical CDF
is constructed, in the same manner as in the SVM density
estimation approach, to be used as the desired response. The
orthogonal forward regression (OFR) approach is an efficient

supervised regression model construction method [14]. The
OFR method has been combined with a leave-one-out test
score and local regularisation [15], [16]. The regression-based
idea of [13] and the approach in [15], [16] have been extended
to yield a new OFR based sparse density estimation algorithm
[17] with comparable performance to that of the PW estimate.
In [13], [17], the regressors are the CDFs of the kernels
and the target response is the empirical CDF. A simple and
viable alternative approach has been proposed to use kernels
directly as regressors by adopting the PW estimate as the target
response [18].

The desirable property of sparsity inducing also happens
in the interesting approach of reduced set density estimator
(RSDE) [19], based on the minimisation of the integrated
square error (ISE) between the estimator and the true den-
sity [2], [19], [20]. Two efficient optimisation algorithms were
introduced for the RSDE that has a complexity of O(N2)
per iteration, where N is the number of data samples and
O(M) denotes the order of M , compared to a standard
quadratic optimisation solver at O(N3). The complexity of
the sparse density estimators [17], [18] is also O(N2) scaled
by the number of regressors selected, which is generally
very small. Our extensive experience has shown that all the
sparse density estimators [11], [12], [17]–[19] discussed here
are capable of automatically producing sparse PDF estimates
with comparable performance to that of the PW estimate,
but the density estimators of [17]–[19] produce much sparser
estimates than the SVM based density estimator.

Against this background, this paper introduces a new al-
gorithm for sparse kernel density estimation based on the
MISE and the forward constrained regression (FCR) [21]. In
our proposed new sparse kernel density estimator, referred to
as the FCR-MISE algorithm, a kernel term is selected one
at a time which has the minimum ISE value among all the
candidate kernels formed from the data points. Within the
FCR framework, the mixing weights are computed using a
recursion linking the weight for the newly selected kernel and
the set of the mixing weights of the previous stages [21]. The
proposed density estimation algorithm is very efficient due
to the recursive computation and the closed-form solution of
only one parameter per step. Specifically, the complexity of
our proposed new algorithm is O(N) scaled by the squared
number of kernels selected. Numerical examples are employed



to demonstrate that our new sparse kernel density estimator
is capable of producing very sparse PDF estimates with
comparable accuracy to those of the PW estimator and some
other existing sparse kernel density estimators.

II. FAST SPARSE KERNEL DENSITY ESTIMATOR
CONSTRUCTION ALGORITHM

Given the finite data set DN = {xj}Nj=1 consisting of N
data samples, where the data vector xj ∈ Rm follows an
unknown PDF p(x), the problem under study is to find a sparse
approximation of p(x) based on DN . A general kernel based
density estimate of p(x) is given by

p̂(N)
(
x;βN , ρ

)
=

N∑
j=1

βjKρ

(
x,xj

)
, (1)

subject to

βj ≥ 0, 1 ≤ j ≤ N, and βT
N1N = 1, (2)

where βjs are the kernel weights, βN =
[
β1 β2 · · ·βN ]T, and

1N is the N -dimensional vector whose elements are all equal
to one, while Kρ

(
x,xj

)
is a chosen kernel function with the

kernel centre vector xj and a suitable kernel width ρ. In this
study, we use the Gaussian kernel of

Kρ

(
x,xj

)
=

1(
2πρ2

)m/2
exp

(
−∥x− xj∥2

2ρ2

)
(3)

but many other kernels can also be used. The sparse kernel
density estimation involves the determination of the model
structure of (1) where most elements in βN become zeros. This
can be achieved either by solving the constrained quadratic
optimisation problem which initially works on the full model
set of all the N kernels [11], [12], [19], or alternatively by
selecting significant model terms one at a time forwardly
which initially works on an empty model set [13], [17], [18].

The proposed sparse kernel density estimation algorithm
also initially works on an empty model set, as in the cases
of [13], [17], [18]. Specifically, in our proposed algorithm,
the kernel functions Kρ

(
x,xj

)
with nonzero weights βj are

included into the model set selected in a forward regression
manner. The final sparse kernel density estimator are based on
the kernels formed from the subset Ds =

{
x

′

1,x
′

2, · · · ,x
′

s

}
of s data samples selected from DN in this way. For example,
if x6 is selected to form the first kernel, it is denoted as
x

′

1 in the selected data subset. Let the superscript (l) denote
the lth forward selection step. At the lth forward selection
step, further denote the intermediate kernel density estimator
p̂(l)

(
x;β

(l)
l , ρ) as ŷ(l)(x), that is,

ŷ(l)(x) =
l∑

j=1

β
(l)
j Kρ

(
x,x

′

j

)
, (4)

where β
(l)
j , 1 ≤ j ≤ l, are the kernels weights at the lth

forward selection step, and β
(l)
l =

[
β
(l)
1 β

(l)
2 · · ·β(l)

l

]T
.

The proposed algorithm uses the FCR procedure [21] de-
scribed below:

(i) At the first step, the PDF estimator is simply the first
selected kernel

ŷ(1)(x) = Kρ

(
x,x

′

1

)
. (5)

This means that β(1)
1 = 1.

(ii) At the lth step, where l ≥ 2, the PDF estimator is
constructed by adding the lth selected kernel Kρ

(
x,x

′

l)
to ŷ(l−1)(x) via

ŷ(l)(x) = λlŷ
(l−1)(x) + (1− λl)Kρ

(
x,x

′

l

)
, (6)

where 0 ≤ λl ≤ 1, ∀l, and λ1 = 0.

It is a straightforward matter to verify that the model
constructed using the FCR procedure satisfies the convex
constraint conditions of (2), namely, β

(l)
j ≥ 0, 1 ≤ j ≤ l,

and
l∑

j=1

β
(l)
j = 1, ∀l ≥ 1, see [21]. If λl and β

(l−1)
l−1 are given,

β
(l)
l can be recursively computed via

β
(l)
l =

[
λlβ

(l−1)
l−1

1− λl

]
, (7)

where l > 1 and β
(1)
1 = β

(1)
1 = 1.

It can be seen that the key issues are how to select the kernel
Kρ

(
x,x

′

l

)
as well as how to compute λl and hence the kernel

weights β
(l)
l , which are addressed in the next section.

III. JOINT KERNEL SELECTION AND WEIGHT ESTIMATION
BASED ON THE MISE

In the following, we introduce a new algorithm integrating
the kernel term selection and the kernel weight estimation
based on the MISE measure [2], [19], [20], within the general
FCR framework described in the previous section. More
specifically, the joint kernel selection and weight estimation
at the lth forward selection stage is detailed in this section.
We initially formulate the kernel weight estimation problem
using the MISE criterion for a given kernel per forward
selection step, and following this, we present the full algorithm
including the kernel selection also based on the MISE.

A. Kernel weight estimation

Assuming that at the lth forward selection stage Kρ

(
x,x

′

l

)
has been selected, we consider the problem of determining λl

based on the global accuracy measure for density estimate,
the integrated square error (ISE) which is given as (see for



example [19])

I
(
β
(l)
l

)
=

∫ (
p(x)−

l∑
j=1

β
(l)
j Kρ

(
x,x

′

j

))2

dx

=

∫
p2(x)dx+

∫ ( l∑
j=1

β
(l)
j Kρ

(
x,x

′

j

))2

dx

− 2E
[ l∑
j=1

β
(l)
j Kρ

(
x,x

′

j

)]
=

∫
p2(x)dx

+

l∑
i=1

l∑
j=1

β
(l)
i β

(l)
j

∫
Kρ

(
x,x

′

i

)
Kρ

(
x,x

′

j

)
dx

− 2

l∑
j=1

β
(l)
j E

[
Kρ

(
x,x

′

j

)]
=

∫
p2(x)dx+Q(l)

(
λl

)
, (8)

in which E[•] denotes the expectation with respect to the
true density p(x). Since the unknown term

∫
p2(x)dx is

independent of β
(l)
l , it can be dropped from the objective

function. We write the argument directly as λl for the last term
Q(l)

(
λl

)
, which becomes our objective function. We point

out that since our algorithm is based on the FCR framework,
this is the only parameter that needs to be estimated at the
lth selection stage. β

(l)
l depends on λl and β

(l−1)
l−1 , i.e. the

sequence {λ1, λ2, · · · , λl−1}, that have already been obtained
from the previous forward selection steps (see (7)).

Using the following unbiased estimator of E
[
Kρ

(
x,x

′

j

)]
E
[
Kρ

(
x,x

′

j

)]
≈ 1

N

N∑
i=1

Kρ

(
xi,x

′

j

)
(9)

as well as noting the Gaussian kernel yield

Q(l)
(
λl

)
=

l∑
i=1

l∑
j=1

β
(l)
i β

(l)
j K√

2ρ

(
x

′

i,x
′

j

)
− 2

N

l∑
j=1

β
(l)
j

N∑
i=1

Kρ

(
xi,x

′

j

)
. (10)

For the first forward selection step, since we only have
one kernel with λ1 = 0, the only problem is to do with
kernel selection but not with parameter estimation. For the
convenience of derivation, we specifically write Q(1)

(
λ1) as

Q(1)
(
λ1

)
= C

(1)
1 − 2p

(1)
1 , (11)

with

p
(1)
1 =

1

N

N∑
i=1

Kρ

(
xi,x

′

1

)
, (12)

C
(1)
1 = K√

2ρ

(
x

′

1,x
′

1

)
= γ, (13)

where γ = 1/
(
4πρ2

)m/2
. Using matrix expression, we can

easily obtain the general recursive form of Q(l)(λl) for l ≥ 2

given by

Q(l)
(
λl

)
=

(
β
(l)
l

)T

C
(l)
l β

(l)
l − 2

(
β
(l)
l

)T

p
(l)
l , (14)

with

p
(l)
l =

[(
p
(l−1)
l−1

)T 1

N

N∑
i=1

Kρ

(
xi,x

′

l)
]T

, (15)

C
(l)
l =

[
C

(l−1)
l−1 b

(l)
l−1(

b
(l)
l−1

)T
γ

]
, (16)

where b
(l)
l−1 =

[
K√

2ρ

(
x

′

1,x
′

l

)
· · ·K√

2ρ

(
x

′

l−1,x
′

l

)]T
.

By substituting (7), (15) and (16) into (14), we have

Q(l)
(
λl

)
=

[
λlβ

(l−1)
l−1

1− λl

]T [
C

(l−1)
l−1 b

(l)
l−1(

b
(l)
l−1

)T
γ

] [
λlβ

(l−1)
l−1

1− λl

]

− 2
[
λl

(
β
(l−1)
l−1

)T
1− λl

]  p
(l−1)
l−1

1
N

N∑
i=1

Kρ

(
xi,x

′

l

)


= λ2
l µ

(l) +
(
1− λl

)2
γ + 2λl

(
1− λl

)(
b
(l)
l−1

)T
β
(l−1)
l−1

− 2λlν
(l) −

2
(
1− λl

)
N

N∑
i=1

Kρ

(
xi,x

′

l

)
, (17)

where  µ(l) =
(
β
(l−1)
l−1

)T
C

(l−1)
l−1 β

(l−1)
l−1 ,

ν(l) =
(
β
(l−1)
l−1

)T
p
(l−1)
l−1 .

(18)

It happens that Q(l)
(
λl

)
is a quadratic function with respect to

λl. Hence there exits a unique minimum of Q(l)
(
λl

)
, which

can be found by setting ∂
∂λl

Q(l)
(
λl

)
= 0, followed by the

constraint satisfaction operation. This yields the closed-form
solution for λl given as

λl = min {max {ul, 0} , 1} , (19)

with

ul =

γ −
(
b
(l)
l−1

)T
β
(l−1)
l−1 + ν(l) − 1

N

N∑
i=1

Kρ

(
xi,x

′

l

)
µ(l) + γ − 2

(
b
(l)
l−1

)T
β
(l−1)
l−1

. (20)

It is easy to verify that the constraint satisfaction operator

min
{
max{u, 0}, 1

}
=

 1, u > 1,
0, u < 0,
u, 0 < u < 1.

(21)

Therefore, 0 ≤ λl ≤ 1 is guaranteed. By plugging λl back
to (17), we obtain the MISE value Q(l)

(
λl

)
for this given

kernel. The computational cost of parameter estimation for a
given kernel per forward selection step is in the order of O(l),
which is extremely low owing to the recursive computation
and the closed-form solution for the only parameter λl.



B. Joint kernel selection and weight estimation algorithm

The basic idea for kernel selection is to select the subset Ds

of s data samples one at a time from the full data set DN and
to form the kernels Kρ

(
x,x

′

j

)
so that the ISE is minimised

sequentially. Specifically, at the lth forward selection stage
a data sample is selected from the remaining (N − l + 1)
candidate data samples. We review the contribution of each
candidate data sample according to its associated MISE value
to decide if this sample is to be added to the model. The
data point producing the smallest MISE value amongst all the
candidate data samples is assigned as x

′

l and is used to form
Kρ

(
x,x

′

l

)
.

First define X
(l−1)
N ∈ Rm×N as

X
(l−1)
N =

[
x

′

1 · · ·x
′

l−1 x
(l−1)
l · · ·x(l−1)

N

]
, (22)

and q
(l−1)
N ∈ R1×N as

q
(l−1)
N =

[ 1

N

N∑
i=1

Kρ

(
xi,x

′

1

)
· · · 1

N

N∑
i=1

Kρ

(
xi,x

′

l−1

)
1

N

N∑
i=1

Kρ

(
xi,x

(l−1)
l

)
· · · 1

N

N∑
i=1

Kρ

(
xi,x

(l−1)
N

)]
, (23)

with

X
(0)
N =

[
x
(0)
1 x

(0)
2 · · ·x(0)

N

]
=

[
x1 x2 · · ·xN

]
, (24)

q
(0)
N =

[ 1

N

N∑
i=1

Kρ

(
xi,x1

) 1

N

N∑
i=1

Kρ

(
xi,x2

)
· · ·

1

N

N∑
i=1

Kρ

(
xi,xN

)]
. (25)

If the jlth column, where l ≤ jl ≤ N , and the lth column of
X

(l−1)
N are interchanged, X(l−1)

N becomes X
(l)
N . Similarly, if

the jlth column and the lth column of q(l−1)
N are interchanged,

q
(l−1)
N becomes q

(l)
N . Further define the jth element of q(l−1)

N

as q(l−1)(j) = 1
N

N∑
i=1

Kρ

(
xi,x

(l−1)
j ) for l ≤ j ≤ N . We are

now ready to present our proposed algorithm.
Initialization: At the 1st stage of the selection procedure,

set β(1)
1 = β

(1)
1 = 1 and λ1 = 0. For 1 ≤ j ≤ N , compute

Q(1,j)
(
λ1

)
= γ − 2p

(1,j)
1 , (26)

where p
(1,j)
1 = q(0)(j). Next find

Q(1,j1)
(
λ1

)
= min

{
Q(1,j)

(
λ1

)
, 1 ≤ j ≤ N

}
. (27)

Then the j1th column and the first column of X
(0)
N are

interchanged to yield X
(1)
N , and the j1th column and the first

column of q(0)
N are interchanged to yield q

(1)
N . This effectively

selects the first kernel. Update Q(1)
(
λ1

)
= Q(1,j1)

(
λ1

)
with

C
(1)
1 = γ and p

(1)
1 = p

(1,j1)
1 .

The lth stage of the selection procedure, where l ≥ 2:

Step 1). Calculate µ(l) and ν(l) according to (18). Then, for
l ≤ j ≤ N , compute

b
(l,j)
l−1 =

[
K√

2ρ

(
x

′

1,x
(l−1)
j

)
· · ·K√

2ρ

(
x

′

l−1,x
(l−1)
j

)]T
,

d(l,j) =
(
b
(l,j)
l−1

)T
β
(l−1)
l−1 ,

λ
(j)
l =min

{
max

{γ − d(l,j) + ν(l) − q(l−1)(j)

µ(l) + γ − 2d(l,j)
, 0
}
, 1
}
,

Q(l,j)
(
λ
(j)
l

)
=
(
λ
(j)
l

)2
µ(l) +

(
1− λ

(j)
l

)2
γ

+ 2λ
(j)
l

(
1− λ

(j)
l

)
d(l,j) − 2λ

(j)
l ν(l)

− 2
(
1− λ

(j)
l

)
q(l−1)(j).

Step 2): Find

Q(l,jl)
(
λ
(jl)
l

)
= min

{
Q(l,j)

(
λ
(j)
l

)
, l ≤ j ≤ N

}
. (28)

Then the jlth column and the lth column of X
(l−1)
N are

interchanged to yield X
(l)
N . Also the jlth column and the

lth column of q
(l−1)
N are interchanged to yield q

(l)
N . This

effectively selects the lth kernel. Update λl = λ
(jl)
l and

Q(l)
(
λl

)
= Q(l,jl)

(
λ
(jl)
l

)
as well as

β
(l)
l =

[
λ
(jl)
l β

(l−1)
l−1

1− λ
(jl)
l

]
,

p
(l)
l =

[(
p
(l−1)
l−1

)T
q(l)(l)

]T
,

and

C
(l)
l =

[
C

(l−1)
l−1 b

(l,jl)
l−1(

b
(l,jl)
l−1

)T
γ

]
.

Termination: The selection procedure is terminated at the
(s+ 1)th stage when the following condition is detected∣∣Q(s+1)

(
λs+1

)
−Q(s)

(
λs

)∣∣ ≤ δQ

where δQ is a predetermined very small positive number, and
this produces a subset model with the s significant kernels.
The computational cost of our proposed algorithm is extremely
low. In fact, the lth stage of the selection procedure has the
complexity of 2l(N − l+ 1). Therefore, the overall computa-
tional complexity of our proposed algorithm is approximately
s2N , that is, O(N) scaled by s2, where s is the number of
kernels selected, which in general will not necessarily increase
with the data set size. Note that for large data sets s ≪ N . This
computation complexity compares very favorably with the
existing efficient sparse kernel density estimators at O(N2).

IV. SIMULATION STUDY

The first two examples are pure PDF estimation examples.
In each of these two examples, a data set of N samples was
randomly drawn from a distribution p(x) and used to construct
the PDF estimator p̂(s)

(
x;βs, ρ

)
using the proposed FCR-

MSIE approach. A separate test data set of Ntest = 10000



samples was used for evaluating the density estimate according
to the L1 test error

L1 =
1

Ntest

Ntest∑
k=1

∣∣p(xk

)
− p̂(s)

(
xk;βs, ρ

)∣∣. (29)

The experiment was repeated for 100 different random runs.
The benchmark PDF estimators used for comparison include
the non-sparse PW estimator as well as the three efficient
existing sparse PDF estimators, the SKD estimator of [17], the
SKD estimator of [18], and the RSDE of [19]. The Gaussian
kernel was used for all the algorithms.

Example 1: The density to be estimated for this 2-
dimensional (2-D) example was given by the mixture of two
densities of a Gaussian and a Laplacian, as defined by

p(x) =
1

4π
exp

(
− (x1 − 2)2

2

)
exp

(
− (x2 − 2)2

2

)
+

0.35

8
exp(−0.7|x1 + 2|) exp(−0.5|x2 + 2|). (30)

The estimation data set contained N = 500 points.
Example 2: The density to be estimated for this 6-D example

was defined by

p(x) =
1

3

3∑
i=1

1

(2π)3
√∣∣Γi

∣∣ exp
(
− 1

2
(x− µi)

TΓ−1
i (x− µi)

)
,

(31)

with

µ1 =[1.0 1.0 1.0 1.0 1.0 1.0]T,

Γ1 =diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0},

µ2 =[−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T,

Γ2 =diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0},

µ2 =[0.0 0.0 0.0 0.0 0.0 0.0]T,

Γ2 =diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0},

where |Γ| denotes the determinant of Γ. The estimation data
set contained N = 600 points.

The results of the five density estimators for Examples 1 and
2 are listed in Table I (a) and (b), respectively. For the PW
PDF estimator, the kernel width was determined by the MSIE
criterion (see for example [2]). For the RSDE and the proposed
FCR-MSIE estimator, the kernel widths were empirically set
through trial and error. The results for the other two SKD
estimators are quoted from [17], [18], respectively. It is seen
that the proposed algorithm can construct sparse kernel density
estimates with the competitive accuracy to the PW estimator
and the other three existing SKD estimators. Our proposed
FCR-MSIE estimator has a significant advantage in that it
offers a much lower complexity in constructing PDF estimate
than the three existing SKD estimators of [17]–[19].

To illustrate the application of the proposed method, the
two two-class classification examples are also presented. The
training data set is divided into the two-class training data

TABLE I
PERFORMANCE COMPARISON OF FIVE KERNEL DENSITY ESTIMATORS FOR

EXAMPLES 1 AND 2.

(a) Example 1.

Method L1 test error Kernel number
(mean ± STD) (mean ± STD)

PW (4.18± 0.8)× 10−3 500± 0
SKD estimator [17] (3.83± 0.8)× 10−3 11.9± 2.6
SKD estimator [18] (3.84± 0.8)× 10−3 15.3± 3.9
RSDE [19] (4.24± 0.8)× 10−3 129.4± 35.7
Proposed FCR-MISE (3.33± 0.8)× 10−3 25.1± 2.7

(b) Example 2.

Method L1 test error Kernel number
(mean ± STD) (mean ± STD)

PW (3.18± 0.13)× 10−5 600± 0
SKD estimator [17] (4.48± 1.2)× 10−5 14.9± 2.1
SKD estimator [18] (3.11± 0.5)× 10−5 9.4± 1.9
RSDE [19] (3.67± 0.7)× 10−5 29.4± 10.1
Proposed FCR-MISE (2.82± 0.1)× 10−5 19.4± 0.9

TABLE II
AVERAGE MISCLASSIFICATION RATE IN % OVER THE 100 REALIZATIONS

OF THE BREAST CANCER TEST DATA SET AND MODEL SIZE.

Method Misclassification rate Model Size
RBF 27.6± 4.7 5
Adaboost with RBF 30.4± 4.7 5
AdaBoost-Reg 26.5± 4.5 5
LP-Reg-AdaBoost 26.8± 6.1 5
QP-Reg-AdaBoost 25.9± 4.6 5
SVM with RBF kernel 26.0± 4.7 not available
Proposed FCR-MISE 26.1± 4.7 92± 0

sets, C0 and C1, respectively. The proposed method can
readily be applied to estimate the two conditional PDFs,
p̂
(
x;βC0 , ρC0

∣∣C0

)
and p̂

(
x;βC1 , ρC1

∣∣C1

)
, based on the data

sets C0 and C1, respectively. The Bayes decision rule given
by{
x ∈ C0, if p̂

(
x;βC0 , ρC0

∣∣C0

)
≥ p̂

(
x;βC1 , ρC1

∣∣C1

)
,

x ∈ C1, otherwise, (32)

can be applied to the test data set to obtain the corresponding
classification error rate. The Gaussian kernel was adopted in
all the following two examples.

Example 3: The breast cancer data, taken from [23], has
the input dimension of m = 9. The data set contained 100
realizations, each having 200 training patterns and 77 test
patterns. In [22], six state-of-the-arts classifiers were applied
to the data set, and we quote the results of [22] in Table II. For
the first five classifiers studied in [22], the nonlinear Gaussian
radial basis function (RBF) network with five optimised RBF
units was used. For the SVM classifier with Gaussian kernel,
no average model size was reported in [22], but our experience
with the SVM classifier suggests that it could likely contains
around 100 or more kernels.

The classification results obtained by the proposed FCR-
MISE algorithm are also listed in Table II for comparison.
For the FCR-MISE algorithm, the two widths in the two
conditional PDF estimates were set empirically as ρC0 = 1.8
and ρC1 = 1.9, respectively, for all the 100 realizations of



TABLE III
AVERAGE MISCLASSIFICATION RATE IN % OVER THE 100 REALIZATIONS

OF THE TITANIC TEST DATA SET AND MODEL SIZE.

Method Misclassification rate Model Size
RBF 23.3± 1.3 4
Adaboost with RBF 22.6± 1.2 4
AdaBoost-Reg 22.6± 1.2 4
LP-Reg-AdaBoost 24.0± 4.4 4
QP-Reg-AdaBoost 22.7± 1.1 4
SVM with RBF kernel 22.4± 1.0 not available
Proposed FCR-MISE 22.2± 0.4 83.8± 6.8

the data set, and the model size for our method is the sum
of the kernels in building the two conditional PDFs, selected
from a total of 400 training patterns. Clearly the classifica-
tion accuracy of our FCR-MISE algorithm is competitive,
compared with the six state-of-the-arts classifiers studied in
[22]. It is worth emphasising that the modelling paradigms
of [22] are discriminative models constructed based on both
the input and output (class label) information. By contrast,
the proposed FCR-MISE algorithm only relies on the input
information to construct each conditional PDF, and the total
number of the kernels for constructing the Bayes classifier
(32) is unavoidably larger than the discriminative classifiers
of [22].

Example 4: The Titanic data, also taken from [23], has
the input dimension of m = 3. The data set contained 100
realizations, each having 150 training patterns and 2051 test
patterns. Table III lists the classification results obtained by the
proposed FCR-MISE algorithm in comparison with the results
of the six classifiers quoted from [22]. The two widths used
in the proposed FCR-MISE algorithm were set empirically as
ρC0 = 1.8 and ρC1 = 1.7, respectively, for all 100 realizations.
The model size for the FCR-MISE algorithm denotes the sum
of the kernels used for the two conditional PDF estimates,
selected from the total of 300 training patterns. From Table III,
it can be seen that the classification accuracy of the FCR-MISE
method is competitive, compared with the six state-of-the-arts
classifiers studied in [22]. We point out that the size of the
Bayes classifier obtained by the FCR-MISE density estimator
is most likely to be smaller than the SVM classifier, even
though the latter is a discriminative model.

V. CONCLUSIONS

A new sparse kernel density estimator has been introduced.
Our main contribution is to derive a recursive algorithm which
selects significant kernels one at time based on the minimum
integrated square error (MISE) criterion. Since at each forward
step, only a single parameter is estimated using a closed form
solution developed in this contribution, the proposed approach
has a very low the computational complexity. Numerical ex-
amples have been employed to demonstrate that the proposed
approach can construct sparse kernel density estimators with
competitive accuracy to existing kernel density estimators.
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