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Orthogonal Least Squares Regression with
Tunable Kernels

S. Chen, X.X. Wang and D.J. Brown

Abstract

A novel technique is proposed to construct sparse regression models based on the orthogonal least squares method with
tunable kernels. The proposed technique tunes the centre vector and diagonal covariance matrix of individual regressor by
incrementally minimising the training mean square error using a guided random search algorithm, and it offers a state-of-the-
art method for constructing very sparse models that generalise well.

I. INTRODUCTION

A basic principle in practical nonlinear data modelling is the parsimonious principle of ensuring the smallest

possible model that explains the training data. The existing sparse kernel modelling methods [1]–[6] place kernel

centres at the training input data and adopt a single common variance for all the kernel regressors. We present

a flexible construction method for parsimonious regression modelling. The proposed algorithm tunes the centre

vector and diagonal covariance matrix of individual regressor by incrementally minimising the training mean

square error (MSE) in an orthogonal forward selection procedure using a guided random search algorithm, called

the repeated weighted boosting search (RWBS) [7]. This novel orthogonal least squares (OLS) algorithm with

tunable kernels is capable of producing very sparse models that generalise well.

II. ORTHOGONAL LEAST SQUARES WITH TUNABLE KERNELS

Consider approximating the N pairs of training data {xl, yl}
N
l=1 with the regression model

y(x) = ŷ(x) + e(x) =
M
∑

i=1

wigi(x) + e(x) (1)

where x is the m-dimensional input variable, y(x) the desired output, ŷ(x) the model output, and e(x) the mod-

elling error at x; wi, 1 ≤ i ≤ M , denote the model weights, M is the number of regressors, and gi(•), 1 ≤ i ≤ M ,

denote the regressors. The general Gaussian kernel function

gi(x) = e−
1
2
(x−µ

i
)TΣ

−1
i (x−µ

i
) (2)
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is adopted, where µi is the ith kernel centre and Σi the diagonal covariance matrix of the ith regressor. By defining

y = [y1 y2 · · · yN ]T , e = [e(x1) e(x2) · · · e(xN )]T , w = [w1 w2 · · ·wM ]T , and

G = [g1 g2 · · ·gM ] with gk = [gk(x1) gk(x2) · · · gk(xN )]T (3)

the regression model (1) over the training data set can be written in the matrix form

y = Gw + e (4)

Let an orthogonal decomposition of the regression matrix G be G = PA, where A is an upper triangular matrix

with the unit diagonal elements, and P = [p1 p2 · · ·pM ] with the orthogonal columns that satisfy pT
i pj = 0, if

i 6= j. The regression model (4) can alternatively be expressed as

y = Pθ + e (5)

where the new weight vector θ = [θ1 θ2 · · · θM ]T satisfy the triangular system Aw = θ.

For the orthogonal regression model (5), the training MSE can be expressed as J = eTe/N = yTy/N −
∑M

i=1 pT
i piθ

2
i /N . Thus the training MSE for the k-term subset model can be expressed recursively as

Jk = Jk−1 −
1

N
pT

k pkθ
2
k (6)

where J0 = yTy/N . At the kth stage of regression, the kth regressor is determined by maximising the error

reduction criterion

ERk(µk,Σk) =
1

N
pT

k pkθ
2
k (7)

with respect to the kernel centre µk and its diagonal covariance matrix Σk. The orthogonal forward selection

procedure is terminated at the kth stage if Jk < ξ is satisfied, where the small positive scalar ξ is a chosen

tolerance. This produces a parsimonious model containing k significant regressors.

The task of determining the kth regressor is performed using the RWBS algorithm, which is a simple yet ef-

fective global search optimisation algorithm [7]. Define PS – population size, NG – number of generations in the

repeated search, ξB – accuracy for terminating the weighted boosting search, and/or NB – maximum number of

iterations in the weighted boosting search. Let the vector u contain µk and Σk. The algorithm is summarised.

Outer loop: generations For n = 1 : NG

Generation initialisation: Initialise the population by setting u
(n)
1 = u

(n−1)
best and randomly generating rest of the

population members u
(n)
i , 2 ≤ i ≤ PS , where u

(n−1)
best denotes the solution found in the previous generation. If

n = 1, u(n)
1 is also randomly chosen.

Weighted boosting search initialisation: Assign the initial distribution weightings δi(0) = 1
PS

, 1 ≤ i ≤ PS , for

the population. Then
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1. For 1 ≤ i ≤ PS , generate g
(i)
k from u

(n)
i , the candidates for the kth model column, and orthogonalise them:

α
(i)
j,k =

pT
j g

(i)
k

pT
j pj

, 1 ≤ j < k (8)

p
(i)
k = g

(i)
k −

k−1
∑

j=1

α
(i)
j,kpj (9)

2. For 1 ≤ i ≤ PS , calculate the cost function value of each u
(n)
i :

θ
(i)
k =

(

p
(i)
k

)T
y

(

p
(i)
k

)T
p

(i)
k

(10)

J
(i)
k = Jk−1 −

1

N

(

p
(i)
k

)T
p

(i)
k

(

θ
(i)
k

)2
(11)

Inner loop: weighted boosting search For t = 1 : NB

Step 1: Boosting

1. Find

ibest = arg min
1≤i≤PS

J
(i)
k and iworst = arg max

1≤i≤PS

J
(i)
k

Denote u
(n)
best = u

(n)
ibest

and u
(n)
worst = u

(n)
iworst

.

2. Normalise the cost function values

J̄
(i)
k =

J
(i)
k

∑PS

l=1 J
(l)
k

, 1 ≤ i ≤ PS

3. Compute a weighting factor βt according to

ηt =
PS
∑

i=1

δi(t − 1)J̄
(i)
k , βt =

ηt

1 − ηt

4. Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =







δi(t − 1)β
J̄

(i)
k

t , for βt ≤ 1

δi(t − 1)β
1−J̄

(i)
k

t , for βt > 1

and normalise them

δi(t) =
δi(t)

∑PS

l=1 δl(t)
, 1 ≤ i ≤ PS

Step 2: Parameter updating

1. Construct the (PS + 1)th point using

uPS+1 =
PS
∑

i=1

δi(t)u
(n)
i

2. Construct the (PS + 2)th point using uPS+2 = u
(n)
best +

(

u
(n)
best − uPS+1

)
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3. Calculate g
(PS+1)
k and g

(PS+2)
k from uPS+1 and uPS+2, orthogonalise these two candidate model columns (as

in (8) and (9)), and compute their corresponding cost function values J
(i)
k , i = PS + 1, PS + 2 (as in (10) and

(11)). Find

i∗ = arg min
i=PS+1,PS+2

J
(i)
k

4. The pair (ui∗ , J
(i∗)
k ) then replaces (u

(n)
worst, J

(iworst)
k ) in the population

If ‖uPS+1 − uPS+2‖ < ξB , exit inner loop.

End of inner loop

The solution found in the nth generation is u = u
(n)
best.

End of outer loop

This yields the solution u = u
(NG)
best , i.e. µk and Σk of the kth regressor, the kth model column gk, the orthogo-

nalisation coefficients αj,k, 1 ≤ j < k, as well as the corresponding orthogonal model column pk, the weight θk

and the MSE of the k-term model Jk.

III. A MODELLING EXAMPLE

We considered constructing a model representing the relationship between the fuel rack position (input u(t))

and the engine speed (output y(t)) for a Leyland TL11 turbocharged, direct injection diesel engine operated at low

engine speed [8]. The input-output data set contained 410 samples. The first 210 data points were used in training

and the last 200 points in model validation. The previous study [3] has shown that this data set can be modeled

adequately as yi = fs(xi) + εi, where yi = y(i), xi = [y(i− 1) u(i− 1) u(i− 2)]T , fs(•) describes the unknown

underlying system to be identified and εi = ε(i) denotes the system noise. The proposed OLS algorithm with

tunable kernels constructed a 6-term generalised Gaussian model as listed in Table I. The MSE of this constructed

6-term model over the test data set was 0.000563. We also applied the support vector machine (SVM) algorithm

[6] to construct a sparse kernel model for this data set. To achieve a similar generalisation performance, the SVM

algorithm required a Gaussian kernel model of 70 support vectors. We also point out that the recorded training

time for the OLS algorithm with tunable kernels was 60 times faster than that of the SVM algorithm.
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TABLE I
OLS WITH TUNABLE KERNELS FOR MODELLING THE ENGINE DATA SET.

regression centre vector diagonal covariance weight MSE
step k µk Σk wk Jk × 100

0 – – – 1558.9
1 5.2219 5.5839 5.6416 7.3532 21.0894 22.4661 6.0396 0.3866
2 4.2542 5.2741 4.1028 1.8680 10.0863 49.8826 -1.2845 0.1311
3 3.8826 5.1707 6.3200 0.1600 0.1600 64.0000 -0.1539 0.0996
4 2.3154 3.2544 5.4897 0.9447 0.3329 11.7564 -0.1433 0.0913
5 4.0673 4.4276 3.5963 0.1608 18.3731 0.2207 0.1945 0.0740
6 2.3663 3.2377 5.1376 0.1754 0.9317 0.1600 0.9658 0.0547


