Main Result

Example

Conclusions

(ロ) (同) (三) (三) (三) (三) (○) (○)

Stability of Networked Control Systems with Random Buffer Capacity

Dongxiao Wu¹, Jun Wu¹, Sheng Chen²

¹College of Information Science and Engineering Zhejiang University

²School of Electronics and Computer Science University of Southampton

The 14th International Conference on Automation and Computing, 2008

Main Resu

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Motivation

Networked Control Systems(NCSs) Existing Works & Our Approach

Main Result

Problem Formulation Stability Analysis

Motivation •O •O Main Resul

Example

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Motivation Networked Control Systems(NCSs)

Existing Works & Our Approach

Main Result

Problem Formulation Stability Analysis

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some Basics

In NCS, the plant and the controller exchange data via a shared communication network.

Advantages:

- Low installation cost.
- Reduced system wiring.
- Easy maintenance.

Problems:

- Bandwidth constraint.
- Packet delay.
- Packet dropout.

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some Basics

In NCS, the plant and the controller exchange data via a shared communication network.

Advantages:

- Low installation cost.
- Reduced system wiring.
- Easy maintenance.

Problems:

- Bandwidth constraint.
- Packet delay.
- Packet dropout.

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some Basics

In NCS, the plant and the controller exchange data via a shared communication network.

Advantages:

- Low installation cost.
- Reduced system wiring.
- Easy maintenance.

Problems:

- Bandwidth constraint.
- Packet delay.
- Packet dropout.

Motivation ○○ ●○ Main Resul

Example

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Motivation Networked Control Systems(NCSs) Existing Works & Our Approach

Main Result

Problem Formulation Stability Analysis

Main Resul

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Highlights

- Existing works:
 - 1. Only use the most recent sensor value.
 - 2. Sufficient large buffer capacity.
- Our approach:
 - 1. Use current and past sensor values.
 - 2. Buffer capacity constraint.

Main Result

Example

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Notivation Networked Control Systems(NCSs) Existing Works & Our Approach

Main Result Problem Formulation Stability Analysis

Main Result

Example

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Networked control system

 $\hat{\mathbf{y}}(t)$: the sequence of sensor values.

Main Result

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Time diagram

Figure: Time diagram of NCS with buffer status at t_k and t_{k+1} , assuming $q_{max} = 3$.

 $\begin{array}{l} t_k: \mbox{ Update instant.} \\ h_k: \mbox{ Stochastic update intervals.} \\ \hat{\mathbf{y}}(t_k) := \left\{ \mathbf{y}(t_k), \mathbf{y}(t_k-1), \cdots, \mathbf{y}(t_k-q_k+1) \right\} \end{array}$

Main Result

Example

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Controller Mechanism

Switched estimate scheme:

- Open loop $(t \neq t_k)$: $\mathbf{x}_e(t+1) = \hat{\mathbf{A}}\mathbf{x}_e(t) + \hat{\mathbf{B}}\mathbf{u}(t).$
- Closed loop $(t = t_k)$: $\mathbf{x}_e(t_k + 1) = \begin{cases} \hat{\mathbf{y}}(t_k) \\ \mathbf{x}_e(t_k - q_k + 1) \\ \{\mathbf{u}(t_k), \mathbf{u}(t_k - 1), \cdots, \mathbf{u}(t_k - q_k + 1)\} \end{cases}$

Main Result

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Motivation Networked Control Systems(NCSs) Existing Works & Our Approach

Main Result Problem Formulation Stability Analysis

Main Result

Example

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposed NCS

The dynamic of NCS:

$$\mathbf{z}(t) = \Lambda_0^{t-t_k-1} \Big(\prod_{j=1}^k \mathbf{M}(h_j, q_j)\Big) \mathbf{z}_0, \ t \in (t_k, t_{k+1}]$$

 $\mathbf{M}(h_i, q_i)$: State transition matrix for each update interval.

Main Result

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Stability Analysis

Probability distribution for h_k :

- No particular:
 - Arbitrary transmission
 - Lyapunov asymptotically stability
- Markovian:
 - Markovian transmission
 - Mean square stability

Main Result

Example

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical Example

3rd-order unstable plant with Markovian transmission

- given A, B, C, Â, B, Ĉ, K, L.
- maximal update interval N = 8.
- transition probability matrix $\Gamma \in \mathbb{R}^{8 \times 8}.$
- maximal buffer capacity $q_{max} = 5$.

・ コット (雪) (小田) (コット 日)

Simulation Result

Figure: (a) state trajectories of the plant \hat{P} , (b) state trajectories of the estimator, and (c) sequences of the update instants $\{t_k\}$ and the buffer lengths $\{q_k\}$.

ヘロト 人間 とくほとくほとう

3

Conclusions

Confirmation of Mean Square Stability

Figure: $\lim_{t\to\infty} E[||\mathbf{z}(t,\mathbf{z}_0)||^2] = 0$, where $E[||\mathbf{z}(t,\mathbf{z}_0)||^2]$ was calculated by averaging over 200 simulation runs.

Main Result

Example

Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

- Stability properties for arbitrary/Markovian transmission.
- Stochastic update intervals.
- Random buffer capacity.

Main Result

Example

Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Thank You!