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Abstract— The paper investigates the application of a recently intro-
duced learning technique, referred to as the relevance vector machine
(RVM) to construct a block-adaptive kernel-based nonlinear multiuser
detector (MUD) for direct-sequence code-division multiple-access (DS-
CDMA) signals transmitted through multipath channels. It is demon-
strated that the RVM MUD is capable of closely matching the perfor-
mance of the optimal Bayesian one-shot detector, with the aid of a sig-
nificantly more sparse kernel representation than that required by the
state-of-the-art support vector machine (SVM) technique.

I. INTRODUCTION

Although the linear minimum mean square error (MMSE) MUD
[1]–[5] is widely used for DS-CDMA downlink systems due to its
simplicity, its limitation has long been recognized – a linear detec-
tor results in a residual bit error ratio (BER), unless the underly-
ing noise-free signal classes are linearly separable. However, since
linearly non-separable cases are common in DS-CDMA channels,
often a better performance can be obtained by using a nonlinear
MUD. Hence neural networks [6] have been considered as nonlin-
ear MUDs [7]–[10]. However, the training period required by these
nonlinear MUDs may become excessive and/or unpredictable. Fur-
thermore, the structure of these neural network aided MUDs is often
ad hoc.

In our previous work [11],[12] the SVM technique [13]–[15] has
been applied for constructing kernel-based MUDs. Our study has
shown that an SVM aided MUD trained using a relatively small
block of noisy received signal samples may closely approximate
the performance of the optimal MUD, although the latter requires a
complete knowledge of the system, namely that of the system ma-
trix P and the noise variance. Another advantage of the SVM ap-
proach over the existing nonlinear MUDs is the direct definition of
the detector’s structure, which is specified by a sparse set of support
vectors (SVs) selected automatically from the data during the learn-
ing process. However, as the results reported in [11],[12] show,
when applied to the MUD problem, the SVM technique does not
produce a sufficiently sparse model in the sense that a typical SVM
aided MUD will have 2 to 8 times more kernels, than the number of
the noise-free signal states that is required by the optimum Bayesian
detector.

Recently, Tipping [16] introduced a RVM method, which is based
on a Bayesian framework [17],[18] and has an identical functional
form to that of the SVM. The results given in [16] have demon-
strated that the RVM has a comparable generalization performance
to that of the SVM, while requiring significantly less kernel func-
tions than the SVM. This paper investigates the application of the
RVM technique to the construction of a block-adaptive kernel-based
MUD. The computer simulation results confirm that the RVM as-
sisted MUD is capable of closely matching the optimal Bayesian

performance, and it exhibits a significantly sparser kernel represen-
tation than the SVM aided MUD. More specifically, an RVM as-
sisted MUD typically has fewer kernels functions, than the number
of noise-free signal states. That is, it can be typically described
with the aid of a sparser representation, than the optimal Bayesian
detector. The main drawback of the RVM method is, however that it
involves a highly nonlinear optimization process. Hence the RVM
assisted MUD’s performance has to be compared to that of the
SVM technique, which is required to solve a significantly simpler
quadratic problem.

II. SYSTEM MODEL

The discrete-time model of the synchronous downlink DS-CDMA
system supporting N users and transmitting M (> N ) chips per
bit is depicted in Fig. 1, where bi(k) ∈ {±1} denotes the k-th bit
of user i. Furthermore, the unit-length signature code sequence of
user i is s̄i = [s̄i,1 · · · s̄i,M ]T , and the z-domain transfer function
associated with the channel impulse response (CIR) is given by:

H(z) =

nh−1
∑

i=0

hiz
−i

. (1)

The bit vector of N users at instant k is b(k) = [b1(k) · · · bN (k)]T ,
and the received signal vector after the chip-matched filters is
r(k) = [r1(k) · · · rN (k)]T . It can be shown that the baseband
model for r(k) is:

r(k) = P









b(k)
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...
b(k − L + 1)









+ ñ(k), (2)

where the N × LN system matrix is given by

P = S̄
T
H
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; (3)

the user signature sequence matrix is S̄ = [s̄1 · · · s̄N ]; the diagonal
user signal amplitude matrix is U = diag{U1 · · ·UN}; the M ×
LM CIR matrix H has the form of:

H =









h0 h1 · · · hnh−1

h0 h1 · · · hnh−1

. . .
. . . · · ·

. . .
h0 h1 · · · hnh−1









;

(4)
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Fig. 1. Discrete-time model of the synchronous CDMA downlink.

and orthogonal code sequences are assumed, so that the noise
vector ñ(k) = [ñ1(k) · · · ñN (k)]T at the outputs of the chip-
matched filters ñ(k) = [ñ1(k) · · · ñN (k)]T has a covariance of
E[ñ(k)ñT (k)] = σ2

nI. We note that the orthogonality of the codes
is destroyed by the channel-induced intersymbol interference (ISI).
The ISI span L depends on the length nh of the CIR, expressed in
terms of the number of chips M per spreding code. For nh = 1
we have L = 1; for 1 < nh ≤ M , L = 2; for M < nh ≤ 2M ,
L = 3; and so on.

III. LINEAR AND OPTIMAL DETECTORS

The linear MUD of user i has the form:

b̂i(k) = sgn(yL(k)) with yL(k) = w
T
r(k), (5)

where w = [w1 · · ·wN ]T denotes the MUD’s weight vector. The
most popular solution for the MUD of (5) is the MMSE solution
given by

wMMSE =
(

σ
2
nI + PP

T
)−1

pi, (6)

where pi denotes the i-th column of P. The linear MUD of (5)
has a low computational complexity, and the standard LMS or RLS
algorithms can be used for implementing the MMSE solution adap-
tively.

However, a linear MUD only performs adequately in certain situa-
tions. Let the Nb = 2LN possible combinations of [bT (k) bT (k−
1) · · ·bT (k − L + 1)]T be

b
(j) =











b(j)(k)

b(j)(k − 1)
...

b(j)(k − L + 1)











, 1 ≤ j ≤ Nb, (7)

and b
(j)
i be the ith element of b(j)(k). Let us furthermore define

the set of the Nb noise-free received signal states as:

R = {rj = Pb
(j)

, 1 ≤ j ≤ Nb} . (8)

In case of ninary transmission R can be partitioned into two subsets:

R± = {rj ∈ R : b
(j)
i = ±1} . (9)

If R− and R+ are not linearly separable, a linear MUD will have
an irreducible error floor even in the noise-free case, as it can only
form a decision hyperplane in the N -dimensional received signal
space. It was demomstrated with the aid of an example in [6] that

this error floor can be potentially removed, if the decisions are cast
into a higher-dimensional space.

Applying the maximum a posteriori probability (MAP) or Bayesian
classification theory in a manner similar to the channel equalization
problem [19], it can be shown that the optimal detector has the form:

yB(k) =

Nb
∑

j=1

βjb
(j)
i exp

(

−‖r(k) − rj‖2

2σ2
n

)

(10)

with
b̂i(k) = sgn(yB(k)), (11)

where b
(j)
i ∈ {±1} serve as class labels, and all the channel states

are assumed to be equiprobable with βj = 1

Nb(2πσ2
n)

m

2

.

IV. THE RELEVANCE VECTOR MACHINE DETECTOR

The optimal detector of (10) requires the knowledge of all the noise-
free signal sates rj , which are unknown to receiver i. In general, the
receiver can have access to a block of K training samples {xk =
r(k), tk = bi(k)}K

k=1. Consider the kernel-based detector of user i

in the form of:

y(r(k)) =

K
∑

l=1

wlFl(r(k)) , (12)

where wl are the “weights” and Fl(r(k)) = F (r(k),xl). Observe
that instead of the N -dimensional weight vector of the linear de-
tector of 5, here a K-dimensional weight-vector is used. For this
application, the kernel function F (·, ·) is naturally chosen to be a
Gaussian function, with its variance being an estimate of the chan-
nel’s noise variance. The relevance vector (RV) approach of clas-
sification [16] can readily be applied for constructing the detector
(12). Denote the K-dimensional vector of previously defined train-
ing samples {xk = r(k), tk = bi(k)}K

k=1 by t = [t1 · · · tK ]T and
the weight vector by w = [w1 · · ·wK ]T . The posterior probability
of w is

p(w|t, α) =
p(t|w, α)p(w|α)

p(t|α)
, (13)

where p(w|α) is the a priori probability of the weight vector w

conditioned on α = [α1 · · ·αK ]T denoting the vector of hyper-
parameters, which is a term well established in statistical decision
theory [17], p(t|w, α) is the so-called likelihood [17] and p(t|α)
the evidence [17]. Following the Bayesian classification framework
[18], the likelihood can be expressed as

p(t|w, α) =

K
∏

l=1

(f(y(xl)))
tl (1 − f(y(xl)))

1−tl , (14)

where

f(x) =
1

1 + exp(−x)
(15)

is the logistic sigmoid function. The Gaussian a priori probability
is chosen in the form of:

p(w|α) =

K
∏

l=1

√
αl√
2π

exp

(

−αlw
2
l

2

)

. (16)
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Since the so-called marginal likelihood p(t|α) cannot be obtained
analytically by integrating out the weights from (14), an iterative
procedure is necessitated [18].

With a given fixed α, the MAP solution wMAP can be obtained
by maximizing log(p(w|t, α)) or, equivalently, by minimizing the
following cost function

J(w|t, α) =

K
∑

l=1

{αlw
2
l

2
− tl log(f(y(xl)))

− (1 − tl) log(1 − f(y(xl)))} . (17)

The gradient of J with respect to w is given by:

∇J = Aw + Φ
T (f − t) , (18)

where A = diag{α1, · · · , αK}, f = [f(y(x1)) · · · f(y(xK))]T

and the matrix Φ has elements φi,j = F (xi,xj). The Hessian of
J is

H = ∇2
J = Φ

T
BΦ + A , (19)

where B = diag{f(y(x1))(1 − f(y(x1))), · · · , f(y(xK))(1 −
f(y(xK)))}.

The a posteriori set of weights is approximated around wMAP with
the aid of a Gaussian approximation having a covariance of:

Λ = (H|wMAP
)−1 (20)

and the mean of:

µ = [µ1 · · ·µK ]T = Λ
(

Φ
T
Bt|wMAP

)

. (21)

The hyperparameters α are updated using [17]

α
new
i =

1 − αold
i λi,i

µ2
i

(22)

with λi,i being the diagonal elements of Λ.

The introduction of an individual hyperparameter for every weight
of the model (12) is the key feature of the RVM aided approach, and
it is ultimately responsible for its attractively low number of ker-
nels [16]. During the optimization process, many of the αi hyper-
parameters are driven to large values and hence the corresponding
model weights wi are effectively pruned out. Thus the correspond-
ing model terms Fi(·) can be removed from the trained model rep-
resented by (12). The simple iterative procedure that we adopt for
constructing a RVM aided MUD is summarized as follows:

Initialization. The K × nR kernel matrix Φ is initialized
with nR = K, i.e. every training data point is considered
as a candidate kernel. Each weight wi is initially associ-
ated with an identical value of the hyperparameter αi.
Step 1. Given the current value α, find wMAP by mini-
mizing the cost function of (17). A simplified conjugate
gradient algorithm [20] is used in the optimization. Al-
ternatively, the iteratively-re-weighted least-square algo-
rithm [21] can be used.
Step 2. The hyperparameters are updated using (22). If we
have αi > Lg , where Lg is a preset large positive value,

we assign nR := nR − 1, and the corresponding column
in Φ is removed. Thus the corresponding weight wi and
model term Fi(·) is pruned out the model.
Test. If the hyperparameters α remain sufficiently un-
changed in two successive iterations or a pre-set maxi-
mum number of iterations is reached, stop; otherwise go
to Step 1.

The set of RVs {xl}nR

l=1 selected is typically a small subset of the
training points. The RVM aided MUD thus computes the decision
variable as follows:

y(r(k)) =

nR
∑

l=1

wlFl(r(k)) (23)

and carries out the decision according to:

b̂i(k) = sgn(y(r(k))) . (24)

V. SIMULATION RESULTS

Two simulation examples were used for comparing the performance
of the proposed RVM aided MUD to that of the linear MMSE, opti-
mal Bayesian and the SVM assisted MUDs. It is worth pointing out
again that the linear MMSE and the optimal MUDs are designed
based on the complete knowledge of the system (the system matrix
P and the noise variance), while the SVM and RVM aided MUDs
are trained using a block of the noisy received signal samples.

Example 1. This was a two-user system with 4 chips per bit.
The code sequences of the two users were (+1, +1,−1,−1) and
(+1,−1,−1, +1), respectively, and the transfer function associ-
ated with the CIR was H(z) = 0.3 + 0.7z−1 + 0.3z−2. The two
users had equal signal power, that is, the signal to noise ratio SNR1

of user 1 was equal to SNR2 of user 2. In order to construct a
kernel-based MUD for user 2, a total of 160 training data points
were generated for each given noise variance. The number of SVs
selected by the SVM method is influenced by the control parameter
C, which provides a trade-off between the model’s complexity (the
number of SVs) and the training error [13]. The appropriate value
for C was found in the simulations experimentally. When using
C = 8.0, the number of SVs was found typically to be around 40.
For the RVM method, there was no need to specify such a control
parameter, and the numbers of RVs found ranged from 6 (for low
SNRs) to 18 (for high SNRs).

Table I summarizes the results obtained using the SVM and RVM
methods, respectively, in comparison to the optimal Bayesian
MUD, given SNR1 = SNR2 = 20 dB. Fig. 2 depicts the typi-
cal decision boundaries of the SVM and RVM MUDs, respectively,
together with that of the optimal Bayesian decision boundary. It is
clear that for user 2 R− and R+ are not linearly separable and the
linear MMSE detector will have an irreducible error floor of 0.125,
as can be seen in Fig. 3, where the BERs of the optimal and the
RVM aided MUDs are also shown. Compared to the results given
in [11], it can be seen that the RVM aided MUD has a similar per-
formance to that of the SVM assisted MUD. However, it requires a
significantly lower number of kernels, than the SVM assisted MUD
for closely approximating the optimal MUD’s performance.
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TABLE I
BER PERFORMANCE AND NUMBER OF KERNELS USED BY VARIOUS

MUDS FOR USER 2 OF EXAMPLE 1, GIVEN SNR1 = SNR2 = 20 DB.
THE SVM USED C = 8.0.

model log10(BER) kernels
SVM -3.019 40
RVM -3.045 18

Bayesian -3.155 16

Example 2. This was a 3-user system employing 8
chips per bit. The code sequences for the three users
were (+1, +1, +1, +1,−1,−1,−1,−1), (+1,−1, +1,−1,−1,

+1,−1, +1) and (+1,−1,−1, +1,−1, +1, +1, −1), respec-
tively, and the z-domain transfer function associated with the CIR
was H(z) = 0.5 + 1.0z−1 − 0.5z−2. The three users had equal
signal power. The number of training data used for constructing the
kernel-based MUDs was 640 for each given SNR. For user 3, typ-
ically 200 SVs were selected from the training data set, while the
number of RVs selected ranged from 14 (for low SNRs) to 38 (for
high SNRs). Table II summarizes the results for three MUDs, given
SNRi = 15 dB, 1 ≤ i ≤ 3. The BERs of the resultant RVM aided
MUDs of user 3 experienced under different SNR conditions are
given in Fig. 4, in comparison to the corresponding linear MMSE
and optimal MUDs. The results again demonstrate that the RVM
aided MUD is capable of closely approximate the performance of
the optimal detector using a low number of kernels. This reduces
the complexity of classifying the received signal vector into one of
the legitimate classes, which is ultimately required for carrying out
a binary decision.

VI. CONCLUSIONS

The RVM technique has been applied for adaptive nonlinear mul-
tiuser detection in DS-CDMA systems. It has been shown that the
RVM MUD trained using noisy data is capable of closely approx-
imating the performance of the optimal Bayesian one-shot detec-
tor using less kernels than the Bayesian MUD. Compared to the
SVM aided technique, the RVM assisted MUD results in a less com-
plex received vector classification in the MUD. A disadvantage of
the RVM aided MUD is, however that it requires solving a more
complex nonlinear optimization problem. Like the SVM method,
the RVM method is a block-based technique. Future research is
required for investigating how to incorporate a sample-by-sample

TABLE II
BER PERFORMANCE AND NUMBER OF KERNELS USED BY VARIOUS

MUDS FOR USER 3 OF EXAMPLE 2, GIVEN SNRi = 15 DB, 1 ≤ i ≤ 3.
THE SVM USED C = 5.0.

model log10(BER) kernels
SVM -2.452 199
RVM -2.489 30

Bayesian -2.780 64
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Fig. 2. Comparison of the optimal Bayesian decision boundary (thick solid)
with those (thin solid) of the SVM MUD (a) and the RVM MUD (b) for user
2 of Example 1, given SNR1 = SNR2 = 20 dB. The × and + are the two
classes of the noise-free signal states, small circles and dishes are the two
classes of the training data, respectively, and big circles denote SVs (a) and
RVs (b).
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bers of RVs found ranged from 14 (for low SNRs) to 38 (for high SNRs).

adaptive methodology into the RVM approach.
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[4] H.V. Poor and S. Verdú, “Probability of error in MMSE multiuser de-
tection,” IEEE Trans. Information Theory, Vol.43, No.3, pp.858–871,
1997.

[5] G. Woodward and B.S. Vucetic, “Adaptive detection for DS-CDMA,”
Proc. IEEE, Vol.86, No.7, pp.1413–1434, 1998.

[6] L. Hanzo, C.H. Wong, M.S. Yee: Adaptive wireless transceivers:
Turbo-Coded, Turbo-Equalised and Space-Time Coded TDMA,
CDMA and OFDM systems, John Wiley, in press

[7] B. Aazhang, B.P. Paris and G.C. Orsak, “Neural networks for mul-
tiuser detection in code-division multiple-access communications,”
IEEE Trans. Communications, Vol.40, No.7, pp.1212–1222, 1992.

[8] U. Mitra and H.V. Poor, “Neural network techniques for adaptive
multiuser demodulation,” IEEE J. Selected Areas in Communications,
Vol.12, No.9, pp.1460-1470, 1994.

[9] D.G.M. Cruickshank, “Radial basis function receivers for DS-
CDMA,” Electronics Letters, Vol.32, No.3, pp.188-190, 1996.

[10] R. Tanner and D.G.M. Cruickshank, “Volterra based receivers for DS-
CDMA,” in Proc. 8th IEEE Int. Symp. Personal, Indoor and Mobile
Radio Communications, September 1997, Vol.3, pp.1166-1170.

[11] S. Chen, A.K. Samingan and L. Hanzo, “Adaptive multiuser receiver
using support vector machine technique,” Proceedings of VTC 2001
Spring Conf. (Rhodes, Greece), May 6-9 2001, pp 604-608

[12] S. Chen, A.K. Samingan and L. Hanzo, “Support vector machine mul-
tiuser receiver for DS-CDMA signals in multipath channels,” IEEE
Trans. Neural Networks, Vol. 12, No.3, May 2001, pp 604-611

[13] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[14] B. Schölkopf, K.K. Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T. Pog-
gio and V. Vapnik, “Comparing support vector machines with Gaus-
sian kernels to radial basis function classifiers,” IEEE Trans. Signal
Processing, Vol.45, No.11, pp.2758–2765, 1997.

[15] C.J.C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, Vol.2, No.2,
pp.121–167, 1998.

[16] M.E. Tipping, “The relevance vector machine,” in Sara A. Solla, Todd
K. Leen and Klaus-Robert Müller, eds., Advances in Neural Informa-
tion Processing Systems 12, Cambridge, MA: MIT Press, 2000.

[17] D.J.C. MacKay, “Bayesian interpolation,” Neural Computation, Vol.4,
No.3, pp.415–447, 1992.

[18] D.J.C. MacKay, “The evidence framework applied to classification
networks,” Neural Computation, Vol.4, pp.720–736, 1992.

[19] S. Chen, B. Mulgrew and P.M. Grant, “A clustering technique for dig-
ital communications channel equalisation using radial basis function
networks,” IEEE Trans. Neural Networks, Vol.4, No.4, pp.570–579,
1993.

[20] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming:
Theory and Algorithms. New York: John Wiley, 1993.

[21] I.T. Nabney, “Efficient training of RBF networks for classification,” in
Proc. 9th ICANN, 1999, Vol.1, pp.210–215.

686


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


