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Abstract: Decision feedback in a decision 
feedback equaliser (DFE) performs a space 
translation that maps the DFE onto a transversal 
equaliser in the translated observation space. 
Properties of DFEs can therefore be analysed 
more easily by exploiting this geometric 
translation property. This approach is used to 
analyse the conventional DFE that employs a 
linear combination of the channel observations 
and the past decisions (the linear-combiner DFE). 
It is demonstrated that the usual minimum mean 
square error (MMSE) solution does not achieve 
the full performance potential of the linear- 
combiner DFE structure. A bit error rate (BER) 
expression for the linear-combiner DFE with 
binary signalling is obtained, and a method is 
proposed to optimally set the coefficients of the 
linear-combiner DFE. The performance of this 
minimum-BER (MBER) linear-combiner DFE is 
much closer to that of the optimal Bayesian DFE, 
compared with the MMSE linear-combiner DFE. 

1 Introduction 

Decision feedback is a powerful technique for combat- 
ing intersymbol interference (ISI) distortion. The con- 
ventional DFE [I] is based on a symbol-decision 
structure that employs a linear combination of the 
channel observations and the past decisions. We call 
this DFE the linear-combiner DFE, in contrast to 
other DFE structures that use nonlinear combinations 
of the channel observations and the past decisions [2- 
61. One advantage of the linear-combiner DFE is its 
computational simplicity. The optimal solution for the 
symbol-decision structure with feedback is the Bayesian 
DFE 141. The adaptive Bayesian DFE has been shown 
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to outperform the adaptive maximum likelihood 
sequence estimator (MLSE) for severely fading mobile 
channels [7]. This is because the MLSE [8], although 
offering the best solution for equalisation under sta- 
tionary conditions, can suffer from the drawback of 
accumulating channel tracking errors under highly non- 
stationary environment. The Bayesian DFE can be 
viewed as a special case of the Bayesian sequence esti- 
mation [3, 91. 

Previous research has demonstrated that decision 
feedback in a DFE translates the channel observation 
space (e.g. [3, lo]). In this paper we further investigate 
this geometric translation property and derive the 
explicit formula for performing this space translation. 
Viewed from the translated observation space, a DFE 
becomes a simpler transversal equaliser. Many proper- 
ties of DFEs can therefore be analysed more easily by 
considering their equivalent forms on the translated 
space. For example, by adopting this geometric 
approach, a concise form of the Bayesian DFE has 
been developed [ 1 11 which has certain advantages over 
the original form of the Bayesian DFE given in [4]. 

The Wiener or MMSE solution is often said to pro- 
vide the optimal solution for the coefficients of the lin- 
ear-combiner DFE. An elegant and rigorous analysis of 
the MMSE linear-combiner DFE is given in [12]. It is 
well known however that the MMSE solution does not 
necessarily correspond to the MBER solution, the BER 
being the ultimate performance criterion of equalisa- 
tion. Using the geometric translation approach it 
becomes obvious that the subsets of the translated 
channel states corresponding to different decisions are 
linearly separable. The linear-combiner DFE realises a 
linear decision boundary in the translated observation 
space. In the asymptotic case, where the signal-to-noise 
ratio (SNR) tends to infinity, the hyperplanes of the 
Wiener decision boundary are orthogonal to the last 
axis of the translated observation space. We demon- 
strate that the best or optimal linear decision boundary 
can be very different from the decision boundary of the 
Wiener solution. 

Since the MMSE solution does not achieve the full 
performance potential of the linear-combiner DFE 
structure, a substantial BER reduction over the MMSE 
solution is possible by searching for a better solution of 
the linear-combiner DFE. We derive a BER expression 
for the linear-combiner DFE with binary signalling. 
Using this BER estimator as the optimisation criterion, 
a method is proposed to optimally adjust the coeffi- 
cients of the linear-combiner DFE. The decision 
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boundary of this MBER linear-combiner DFE is the 
best linear approximation to the nonlinear Bayesian 
decision boundary. Adaptive implementation of this 
MBER linear-combiner DFE is also discussed. A draw- 
back of the MBER linear-combiner DFE is that the 
computational complexity increases significantly when 
extending to the multilevel signalling case. 

Throughout this study the channel and the symbol 
constellation are assumed to be real valued. This corre- 
sponds to the use of multilevel pulse amplitude modu- 
lation (M-PAM) scheme. For the complex-valued 
channel and modulation schemes, the results of the cur- 
rent study are still valid [ 5 ] .  Specifically, the channel is 
modelled as a finite impulse response filter with the 
transfer function 

n, -1 

A(%) = a& (1) 
i = O  

where n, is the length of the channel impulse response 
and ai are the channel tap weights. The symbol 
sequence { s(k)} is independently identically distributed 
(IID) and has an M-PAM constellation defined by the 
set 

s i x 2 i - M - 1 ,  l < i < M  (2) 
The received signal is given by 

r ( k )  = ~ ( k )  + e ( k )  = 
n,-l 

ais(k  - i )  + e ( k )  (3) 

where V(k) is the noiseless channel observation, e(k) is 
an IID gaussian noise source with zero mean and vari- 
ance E[e2(k)] = 0: and is uncorrelated with s(k), and 
E[.] denotes the expectation operator. The SNR of the 
system is defined as 

S N R  = E [.2(k)] / E  [e2(k)]  = g: ( a:) /oz 

i=O 

n,-1 

i=O 

(4) 
where 0; = E[s2(k)] is the symbol variance. 

decision 
device filtering 

r(k)l r(k-l)I r(k-m+l)l 

'(k-d) 

w- I 

Fig. 1 Schematic of generic decision feedback equaliser 

2 

The structure of a generic DFE is depicted in Fig. 1. 
The equalisation process defined in Fig. 1 uses the 
information present in the observed channel output 
vector 

Decision feedback as space translation 

r(k)  = [ r ( k ) .  . . r ( k  - m + t)]' (5) 
and the past detected symbol vector 

& ( k )  = [ i ( k  - d - 1). . . i'(k - d - n)]' (6) 
to produce an estimate d(k - 4 of s(k - d). The integers 
d, m and n are known as decision delay, feedforward 
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order and feedback order, respectively. Without the 
loss of generality, d = n, - 1 is chosen to cover the 
entire channel dispersion, m is related to d by m = d + 
1 = n,, and n is given by n = n, + m - d - 2 = n, - 1. 
We show that this choice of the DFE structure param- 
eters is sufficient to guarantee the linear separability of 
the subsets of the channel states related to the different 
decisions. 

Applying the channel model (eqn. 3 )  to each element 
of the observation vector (eqn. 5) gives rise to 

r(k) = F s ( k )  + e (k )  (7) 
where e(k) = [e(k) ... e(k - m + 1)IT, s(k) = [sfT(k) 
sbT(k)lT with 

T }  ( 8 )  
S f ( k )  = [ s ( k )  . . . s (k  - d) lT  
sb(k) = [S(k - d - 1) .  . . S ( k  - d - n)] 

and the m x (d + 1 + n) matrix F has the form 

F = [Fl F 2 1  (9) 
with the m x (d + 1) matrix Fl and m x n matrix F2 
defined by 

and 

Fz = 

respectively. Under the assumption that the feedback 
vector is correct, that is, Sb(k) = sb(k), eqn. 7 can be 
rewritten as 

r(k) = F I s f ( k )  + F2&,(k) + e ( k )  (12) 
Thus the original observation space r(k) is transformed 
into a new space r'(k) owing to decision feedback 

r'(k) = r(k) - F2sb(k) (13) 
Furthermore, the elements of r'(k) can be computed 
recursively according to the formula 

I ~ ' ( k -  i )  = K I T ' ( &  i + 1) - an,-,?(k - d - I), 
i = m - 1,. . . , 2 , 1  

? - ' ( I C )  = r ( k )  
(14) 

where 2-l should be interpreted as the unit delay opera- 
tor. Based on this interpretation of decision feedback, 
an alternative DFE structure is depicted in Fig. 2. A 
DFE is reduced to a transversal equaliser in the trans- 
lated space. Some researchers have realised this space 
translation nature of decision feedback [3, 101 but they 
did not go as far as to derive eqn. 14 and Fig. 2. Since 
the structure of Fig. 2 is equivalent to that of Fig. 1, 
certain properties of a DFE can be studied by consider- 
ing its corresponding transversal equaliser, which is an 
easier task. This is the approach adopted in [ll] to 
derive a concise version of the Bayesian DFE. Iltis [13] 
has developed an importance sampling simulation tech- 
nique for evaluating the performance of the Bayesian 
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equaliser. This technique can readily be applied to eval- 
uate the lower-bound performance (with correct feed- 
back) of the Bayesian DFE based on space translation. 

“..‘I 

r’(k-1) r’(k-2) r’(k-m+ 1) 

filtering 

f 

decision 
device 

$k-d) 

Fig. 2 Schematic of translated decision feedback equaliser. 

We have the following result for the general DFE. 
Let the Nf = Md+’ sequences or states of skk) be sJj for 
1 s j  5 Nf. The set of the noiseless channel states in the 
translated space is 

This set can be partitioned into M subsets conditioned 
on s(k - d) = sI, 1 s i 5 M ,  

a R(’) = {ri E R’JS(/C - ci) = s ’ } ,  1 5 z 5 M 
(16) 

Result I :  R(I), 1 5 i 5 M ,  are linearly separable. 
The proof of this result is given in the Appendix (Sec- 
tion 7.1). This result shows that the mapping Fl : r’ = 
Fl sf maps linearly separable sets in the sfspace onto 
linearly separable sets in the r’-space. This is in contrast 
to the case of an equaliser without decision feedback 
where the mapping F : r = Fs maps a large space s onto 
a smaller space r. Hence states which are linearly sepa- 
rable in the s-space will not necessarily be linearly sepa- 
rable in the r-space (see appendix in [14]). Even though 
R(I), 1 s i 5 A4 are linearly separable, the optimal deci- 
sion boundary will generally be nonlinear (the Bayesian 
DFE). However, linear separability of the channel 
states related to the different decisions is a desired 
property to have because equalisation performance in 
this case is generally much better than that of the non- 
linear separable case. 

We use a simple example to illustrate the space trans- 
lation property of decision feedback. Consider the 
channel 

A1 ( z )  = 0.5 + 1 . O K 1  (17) 
and the equaliser structure of d = 1, JW = 2 and M 1 1 .  
Assume that the symbol constellation is 2-PAM, that 
is, s(k) E 121). The set of the channel states in the orig- 
inal observation space r(k) is listed in Table 1 and 
depicted in Fig. 3. The decision feedback s(k - 2) corre- 
sponds to a space translation, the effect of which is also 
illustrated in Fig. 3. It can be seen that decision feed- 
back effectively merges channel states and this simpli- 
fies the decision process. The two subsets of the 
translated states, the darkened states {dl, rr2} and {rf3, 
rr4} in Fig. 3, are obviously linearly separable. 
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Fig.3 
states for chunnel Al(z) = 0.5 t I.0z-l with a 2-PAM constellation 

Illustration of effect of decision feedback sjk - 2) on channel 

Table 1: Symbol and channel states for A,(z) 0.5 + 
1 . 0 ~ ’  with 2-PAM constellation 

NO. ~ ( k )  ~ ( k -  1) ~ ( k - 2 )  T(k) T(k-  1) 

1 -1 -1 -1 -1.5 -1.5 

2 1 -1 -1 -0.5 -1.5 

3 -1 1 -1 0.5 -0.5 

4 1 1  -1 1.5 -0.5 

5 -1 -1 1 -1.5 0.5 

6 1 -1 1 -0.5 0.5 
7 -1 1 1 0.5 1.5 

8 1 1  1 1.5 1.5 

3 Linear-combiner DFE 

The linear-combiner DFE is based on a linear filtering 
of r(k) and s^b(k), and the decision is made by quan- 
tising the filter output 

f ( r ( k ) , & , ( k ) )  = wTr(k) + bTgb(k)  (18) 
where w = [wo ... wm-l]T and b = [b, ... b,lT are the coef- 
ficients of the feedforward and feedback filters, respec- 
tively. Since the linear-combiner DFE is a special case 
of the generic DFE structure depicted in Fig. 1, by per- 
forming the translation of eqn. 13, it is reduced to the 
equivalent linear equaliser ‘without decision feedback’: 

f’(r’(k)) = wTr’(k) (19) 
The decision boundary of this equivalent linear equal- 
iser consists of M - 1 hyperplanes defined by: (r’ ; wTr’ 
= 2i - M } ,  1 5 i 5 M ~ 1. These M - 1 parallel hyper- 
planes can always be designed properly to separate the 
M subsets of the translated channel states 1 5 i s 
M.  In particular, for M = 2, the decision boundary, {r‘ 
: wTr’ = 0}, is a hyperplane passing through the origin 
of the r’(k)-space. 

The Wiener or MMSE solution is often said to pro- 
vide the optimal w and b. It is however optimal only 
with respect to the mean square error criterion. Obvi- 
ously, there must exist a solution wept which achieves 
the best equalisation performance for the structure of 
eqn. 19. We refer to this wept as the MBER solution of 
the linear-combiner DFE. The MMSE linear-combiner 
DFE is generally not this MBER solution. A natural 
question is how different the MMSE and MBER solu- 
tions can be. We demonstrate that the performance gap 
between these two solutions can be large. 
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3.1 MMSE linear-combiner DFE 
The MMSE solution for the linear-combiner DFE is 
well known [12]. Let w and 6 be the MMSE solution of 
w and b. It can readily be shown that 

[E] = [ -&] 
where 

and 
c = 0; [U,,- l  an,-2 . . .  aO]* (21) 

T = ( r -  
Here 

with 

(24) 
and 6(q) is the discrete Dirac delta function. Since 
wTF2 = -bT, 

WTr(k) + IjT;b(k) = WTr'(k) (25) 
It merely confirms the space translation nature of 
decision feedback. Thus, when examining the MMSE 
linear-combiner DFE we can simply study the feedfor- 
ward part of the solution. In the asymptotic case of 
SNR - to, we have the following result for G. 
Result 2: In the noise-free case 

W = [ O  0 

This result can be derived by setting 02 4 0 in eqn. 20. 
However, an alternative proof is given in the Appendix 
(Section 7.1). In the limit case of SNR - to, the hyper- 
planes of the MMSE solution are always orthogonal to 
the last axis of the r'(k)-space regardless of the channel. 
This cannot be the optimal solution for eqn. 19. Con- 
sider the example given in Table 1. The decision 
boundary of the Wiener solution for SNR - 00 is 
depicted in Fig. 4. The best possible linear decision 
boundary can easily be constructed for this example, 
and the MMSE solution in this case is far away from 
the best linear solution. 

When the noise is added the hyperplanes of the 
MMSE linear decision boundary will rotate and are no 
longer orthogonal to the axis r'(k - d). For the range of 
meaningful SNRs, however, the gap between the 
MMSE decision boundary and the best linear bound- 
ary can be large. Consider the example of Table 1 
again. When SNR 4 0, the Wiener decision boundary 
will rotate towards the line with a slope -2 (I?Jo/ivl = 2). 
For SNR = 15dB, the Wiener decision boundary is the 
line with a slope of -0.28 but the best linear decision 
boundary obtained by minimising the BER has a slope 
of -1.03. In general the MMSE solution is different 
from the MBER solution, and searching for the latter 
is worthwhile since the improvement in the BER per- 
formance over the MMSE solution can be substantial, 
at least for certain channels. 

............................................. \ ......... 1 

-2 -1 0 1 2 

r" 
Fig. 4 As mptotic decision bounduries corresponding to large SNR jor  
channel Al$j = 0.5 f I.Oz-' with 2-PAM constellation and decision fied- 
back. 
~ optimal Bayesian 
- - - -  best linear approximation 
. . . . . . .  Wiener solution 

3.2 MBER linear-combiner DFE 
For the notational simplicity we restrict the discussion 
to the 2-PAM constellation. Let R+ and R- be the two 
subsets of the translated channel states R' correspond- 
ing to s(k - d) = 21, respectively. Since R+ and R- are 
linearly separable, the results of Section 7.2 apply. 
Under the assumption of correct decisions being fed 
back, the BER of the linear-combiner DFE can be cal- 
culated using 

Nf I 2  2 
PE(w) = - Q ( E )  (27) 

Nf i=l C e  

where 
" 1  

Q ( x )  = ~ exp (-$) dx (28) 
fi 

and v is any point in the decision hyperplane. Since this 
hyperplane passes through the origin of the r'(k) space 
one can always choose v = 0. For the general M-PAM 
case, similar results can be derived but computation 
will increase dramatically as M increases. 

It is obvious that the MMSE solution does not mini- 
mise PE(w). The optimal linear-combiner DFE should 
minimise the BER of eqn. 27. The following algorithm 
can be employed to obtain the optimal weight vector 
wOpf for the MBER linear-combiner DFE. 
Algorithm 1 
Step 1. Use a channel estimator to obtain a channel 
model and an estimate of the noise variance 
Step 2. Compute the subset of channel states R+ and 
use the low noise Wiener solution (eqn. 26) as the ini- 
tial value w(0) 
Step 3. Use the gradient algorithm 

to optimise w, where is an adaptive gain. 
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The derivative of Pdw) with respect to w can be found 
in the Appendix (Section 7.2). The gradient algorithm 
(eqn. 30) is an offline optimisation procedure and does 
not involve any channel observation r'(k). Thus the 
algorithm 1 is suitable for application to stationary 
channels. For nonstationary channels it is desirable to 
update the weights after each new observation sample 
is taken, and the following recursive adaptive algorithm 
can be used to achieve this purpose. 
Algovithm 2. At the sample k: 
Step 1. Use the least mean square (LMS) algorithm to 
update the channel estimate a(k) = [ao(k) ... ~,,-~(k)]~ 
and a noise variance estimator to update 0,2(k) 
Step 2. Compute the subset of the channel states R+(k) 
and the gradient dPdw(k - 1))idw 
Step 3. Update the equaliser's weights according to 

Computational complexity of the adaptive MBER lin- 
ear-combiner DFE is considerably more than that of 
the standard adaptive MMSE linear-combiner DFE. 
However, the performance gain justifies the increase in 
computation. Some of the channel states rll E R+ are 
far away from the decision boundary and contribute 
little to the performance criterion of eqn. 27. Computa- 
tional requirements of the MBER linear-combiner 
DFE can be reduced significantly by neglecting these 
states from the optimisation procedure with little per- 
formance degradation. For example, consider the case 
of Fig. 4. By just using the single state at (0.5, 0.5) in 
the optimisation, little performance degradation will 
occur, compared with using the full set R+ of the two 
states. 

I '  I I I I I I I 

I I I I I I 
4 6 8 10 12 14 16 18 

SNR, dB 
Fig. 5 
P A M  constellation with detected symbols being Sed back 
-0- MMSE DFE 
-t- MBER DFE 
-0- Bayesian DFE 

Peformance comparison for channel A (z) = 0 5 f I 0z-' and 2- 

3.3 Simulation study 
Two examples were used to compare the MBER and 
MMSE solutions of the linear-combiner DFE. The 
optimal weight vector wept for the linear-combiner DFE 
was obtained using the gradient algorithm (eqn. 30). 
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The first example was the channel given in Table 1. 
The decision boundary of the MBER linear-combiner 
DFE is depicted in Fig. 4 under the title 'best linear 
approximation' to emphasise the fact that it is the best 
linear approximation to the optimal nonlinear Bayesian 
boundary. This example clearly demonstrates that the 
MMSE solution does not achieve the full performance 
potential of the linear-combiner DFE structure. Fig. 5 
compares the BERs as a function of SNR with detected 
symbols being fed back for the Bayesian, MBER lin- 
ear-combiner and MMSE linear-combiner DFEs. For 
this example, the MBER linear-combiner DFE is far 
superior over the MMSE solution and is very close to 
the optimal nonlinear Bayesian solution. 

The second example was a five-tap channel with the 
transfer function given by 

A ~ ( z )  = 0.227 + 0 . 4 6 6 ~ ~ ~  + 0 . 6 8 8 ~ - ~  

+ 0 . 4 6 6 ~ ~ ~  + 0 . 2 2 7 ~ ~ ~  ( 3 2 )  
The structure of the DFE was chosen to be d = 4, m = 
5 and n = 4. The BERs of the Bayesian, MBER linear- 
combiner and MMSE linear-combiner DFEs with 
detected symbols being fed back are plotted in Fig. 6, 
where it can be seen that the performance of the 
MBER linear-combiner DFE is significantly better 
than that of the MMSE solution. The performance gap 
between the Bayesian DFE and the MBER linear-com- 
biner DFE confirms the fact that the real optimal solu- 
tion for the DFE structure of Fig. 1 is generally 
nonlinear. The best linear solution is suboptimal in 
nature. However, the usual MMSE solution is inferior 
to this best linear solution. 

-1 

-2 

LT W 
m 
0 -3 
cn 
- 

-4 

-5 

-6 I 1 I I I I I 

12 14 16 18 20 22 24 
SNR, dB 

Fi .6 Perfovmunce comparison for channel Az(z) = 0.227 + 0.4642-' f 

0 . 8 E 2  t 0.461%~ + 0 . 2 2 7 ~ ~  and 2-PAM constellation with detected 
svmbols being fed back 
lo- MMSE~DFE -+- MBER DFE 
-0- Bayesian DFE 

The convergence behaviour of the algorithm 2 was 
tested using the following example. Initially, the chan- 
nel had a transfer function A3(z) = 0.8 + 0.82' with 
SNR = 15dB. At the sample k = 0, the channel jumped 
to the transfer function Al(z)  = 0.5 + I.OZ-~. The LMS 
algorithm was used to estimate the channel taps with 
an adaptive gain 0.1 and eqn. 31 was used to update 
the equaliser weights with q = 0.1. The trajectories of 
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the channel estimates ao(k)/al(k) and the equaliser 
weights w,(k)/w,(k), averaged over 50 different runs, 
are plotted in Fig. 7. It can be seen that the conver- 
gence speed of this adaptive procedure is reasonable. 

I I I I I I I I 
0 20 40 60 80 

samples 
Trajectories of channel estimates imd equaliser weights for chan- Fi .7 

ne?AI(zj = 0.5 t 1.0~-I with 2-PAM constellation 
Two lines indicate respective optimal values 

4 Conclusions 

The geometric translation property of the decision 
feedback in the DFE structure has been investigated in 
this paper. Basically, the decision feedback performs a 
space translation that maps the DFE onto an equiva- 
lent transversal equaliser in the translated observation 
space. In particular, viewed from the translated obser- 
vation space, the linear-combiner DFE is reduced to a 
simpler linear equaliser. We have shown that, in the 
translated observation space, the subsets of channel 
states corresponding to the different decisions are 
always linearly separable and, under very low noise 
conditions, the hyperplanes of the Wiener decision 
boundary are orthogonal to the last axis of the trans- 
lated space. This demonstrates that the MMSE solu- 
tion does not achieve the best possible performance of 
the linear-combiner DFE structure. Based on a BER 
expression, a novel MBER linear-combiner DFE has 
been derived for 2-PAM constellation, which achieves 
the full performance potential of the linear-combiner 
DFE structure and offers the best linear approximation 
to the nonlinear Bayesian solution. This MBER linear- 
combiner DFE can be extended to the general M-PAM 
case but computational requirements will increase sig- 
nificantly as M increases. 
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Appendix 

I Proof of results I and 2 



Since Fl is upper triangular with all the diagonal ele- 
ments being ao, Fl-I is lower triangular with all the 
diagonal elements being l /ao.  Hence 

w =  [ O  0 ’ . ’  0 (40) 
Notice that the weight vector (eqn. 40) is in fact the 
Wiener solution for the linear-combiner DFE in the 
case of zero noise. Let i = 1, ..., M - 1, we conclude 
that R(0, 1 5 I s  M ,  are linearly separable. 

7.2 BER of linear equaliser f(r(k)) = wTr(k) for 
2-PAM constellation 
There are two subsets of the channel states R+ and R- 
related to s(k ~ d) = -cl, respectively. Let Z+ and 2- be 
the regions of r(k) related to the decisions s^(k ~ d) = 
21, respectively. The BER is given by 

P Z  J’ pr(r~rt)dr+ c ~j / pr(rlrj)dr PE = 
r ,ER+ rEz.- r2ER-  r E Z +  

(41) 
where pT(r(k)lrJ is the probability density function 
(PDF) of r(k) conditioned on the received channel state 
being ri and pi is the a psiosi probability of ri. Let the 
number of the channel states be N,. For the symmetric 
and IID symbol constellation, pi = UN, and eqn. 41 is 
reduced to 

Ns / 2  2 
P E  = - Pe(ri), ri E Rf (42) 

N s  2 = 1  

where 

Pe (ri) = pr(rlri)dr, ri E R+ (43) 

is the conditional error probability when the received 
channel state is ri E R+. 

When the two subsets R+ and R- are linearly separa- 
ble, that is R+ and R- can be separated by the decision 
hyperplane wTr = 0, the BER expression can further be 
simplified. An orthogonal transformation x = Lr can 
be constructed which rotates the bases so that one of 
the transformed bases, say xI, is parallel to w, the 

normal of the decision hyperplane. Since LLT = I and 
the noise e(k) has an IID gaussian PDF, the condi- 
tional error probability (eqn. 43) is reduced to 

E ( r z )  = TPz(xddxl~Pz(x2)dx2.f. 7 Pz(zm)dzm 
P% --w --w 

00 

1 exp (-5) dx 2 Q (E) 
P% 

(44) 
where 

(45) 

is the euclidean distance between ri and the decision 
hyperplane, and v is any point in this hyperplane. The 
BER of the linear equaliser in this case can be 
expressed as 

Here we have included w in the expression to empha- 
sise that for a given channel the BER depends on the 
equaliser weights. The derivative of P,(r,) with respect 
to wj is 

x [(v - r z ) T ~ I I ~ / I - 3 w 3  - I I w I I - ~ ( ~ ~  - r t3)]  

(47) 
O < J < m - l  

where sgn(.) is the signum function, vj and r2/ are thejth 
elements of v and r,, respectively. The derivative of 
PE(w) with respect to w3 is then given by 
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