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Abstract

The paper derives a tractable closed-loop stability related measure for controller struc-
tures, realized using the 0 operator and digitally implemented with finite-word-length

(FWL). The optimal realizations of the general finite-precision controller are defined as

those that maximize this measure and are shown to be the solutions of a constrained

nonlinear optimization problem. For the special case of digital PID controllers, the con-
strained problem can be decoupled into two simpler unconstrained optimization prob-
lems. A global optimization strategy based on the adaptive simulated annealing (ASA)
is adopted to provide an efficient method for solving this complex optimal realization

problem. Two numerical examples are presented to illustrate the design procedure, and
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the simulation results confirm that the optimal FWL realizations of the d-operator based
controller have better closed-loop stability margins than those of the usual shift-operator

based controller, especially under fast sampling conditions.

Index Terms: Sampled-data system, shift and 0 operators, finite word length, stability.

1 Introduction

Although the number of controller implementations using floating-point processors is in-
creasing due to their reduced price, for reasons of cost, simplicity, speed, memory space
and ease-of-programming, the use of fixed-point processors is more desired for many in-
dustrial and consumer applications, particularly for mass market applications in the au-
tomotive and consumer electronics sectors. Furthermore, due to their reliability and
well-understood properties, fixed-point processors predominate in critical-safety systems.
It is well known that a designed stable closed-loop system may become unstable when
the “infinite-precision” controller is implemented using a fixed-point processor due to the
FWL effect. The “robustness” of closed-loop stability under controller parameter pertur-

bations is therefore a critical issue in fixed-point implementations.

Many studies have addressed the problem of digital controller realizations with finite-
precision considerations [1]-[6]. The first FWL stability measure, denoted as pg, was
proposed in 1994 [3], but computing explicitly this measure is still an unsolved open
problem. Recently, two tractable FWL stability related measures, connected to pg, have
been derived and the design procedures for searching for optimal FWL controller real-
izations have been developed [5],[6]. In the original works [5],[6], the term lower bound
stability measure was used. We prefer to use the term stability related measure, as it
is a lower bound of g only under some restricted conditions. It can be shown that the
measure of [6] is “closer” to pg than that of [5], and the investigations on FWL controller

realizations have mainly been based on this stability related measure [7] [13].

In all the above-mentioned studies, digital controller structures were described and
realized with the usual shift operator z. A discrete-time system can also be described

and realized with a different operator, called the delta operator ¢ [14]. Two major advan-



tages are claimed for the use of § operator realization: a theoretically unified formulation
of continuous-time and discrete-time systems; and better numerical properties in FWL
implementations [2]. For signal processing applications, it is well known that the digital
filter realized with the § operator has lower round-off noise, lower coefficient error and
lower output error variance than the shift operator realization [15],[16]. The use of the ¢
operator as opposed to the shift operator in control applications has also been promoted
[17],[18]. However, no study to date addresses the closed-loop stability issues of FWL

controller structures using the ¢ operator formulation.

This paper analyzes the closed-loop stability of sampled-data control systems in the ¢
domain with FWL considerations. We derive a new measure quantifying FWL effects on
the closed-loop stability. For the computational purpose, a tractable stability related mea-
sure is given. The optimal digital controller realization in the § domain can be obtained by
maximizing this measure. As the optimization criterion is non-smooth and non-convex,
an efficient non-gradient based global optimization method, known as the ASA [19]-[23],
is employed to search for the true optimal controller realization. It turns out that the
approach of analyzing FWL digital controllers in the z domain [3],[5],[6] can be extended
to study d-based FWL digital controllers, and the §-based controller realization has better

closed-loop stability robustness to FWL effects over the z-domain approach.

The paper is organized as follows. Section 2 summarizes the definition of § operator
and the equivalent relationship between representing a discrete-time system in the z and
0 domains. Section 3 formulates the problem and establishes necessary notations and
definitions. A closed-loop stability related measure that can be computed easily for a given
controller realization is given in Section 4. The optimal controller realization problem is
also defined in this section, which is to find a realization that maximizes the proposed
measure. Section 5 presents the optimization framework for obtaining the general optimal
FWL controller realization. The problem is formulated as a constrained optimization
problem. Section 6 specifically studies the optimal FWL PID controller realization. It is
shown that the constrained optimization problem can be decoupled into two unconstrained
ones. In Section 7, the effectiveness of the proposed optimization strategy is illustrated

by two numerical examples. The paper concludes in Section 8.



2 The ¢ operator

From a continuous-time transfer function G(s), as the result of discretization procedure
with a sampling period h, a discrete-time transfer function G,(z) based on the shift

operator z can be obtained. Define the ¢ operator as [14]:

Zhl- (1)

§—

The transfer function G,(2) can be re-expressed in 0 form: Gs(0) = G,(z). Obviously
G,(z) and G5(9) are two different but equivalent parameterizations representing the same

input-output relationship. The state-space models in the z and § domains are [24],[25]

2%, (k) = A,x. (k) + B,u(k)
y(k) = C.x,(k) + D,u(k) } (2)

and
(SX(;(]{) = A5X5(k> + B(su(k) } (3)
y(k) = Csxs(k) + Dsu(k)

respectively, where the various vectors and matrices are understood to have appropriate

dimensions, and
G.(2) =C,(21 - A,) 'B,+ D, = Gs(5) = Cs(61 — As) 'B; + D;. (4)
It follows from (4) that the relationships relate the two state-space representations are
A, =hA;+1 B,=hBs; C,=C;, D, =Dy. (5)

It is well known that the state-space realization of an input-output transfer function is

not unique. Define a generalized operator p, where p = z or §, and
A _
Sp = {(Am B,,C,, Dp) : Gp(P) = Cp(PI - Ap) pr + Dp} : (6)

Then if (A,,B,,C,,D,) € S,, (T"'A,T,T 'B,,C,T,D,) € S, for any nonsingular T.
Let {),;} be the eigenvalues of A,. The following lemma relates {\s,} to {),,}.

Lemma 1 )\z,i =1+ h,)\(;,z', V.

The proof of lemma 1 is straightforward based on the definition of eigenvalue and the
relationship A, = h A;+1. Tt is well known that the discrete-time system (A, B,, C,,D,)
is stable if and only if all the eigenvalues |A, ;| < 1. From lemma 1, we have the condition

of the stability for the discrete-time system described with the § operator.
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Lemma 2 The discrete-time system (A, Bs, Cs, Dy) is stable if and only if

1 1
st~ < 2 vi -
bt < v (™)

3 FWL stability issue in the ¢ domain

Consider the sampled-data system depicted in Fig. 1, where P(s) is strictly proper. The
discrete-time plant P(0) = S, P(s)H}, has a state-space realization (A,, B,, C,,0) in the
§ domain, where A, € R™™ B, € R™! and C, € R?™. The controller C(4) has
a state-space realization (A., B,, C.,D.) with A, € R"*", B, € R™*?, C, € R*™ and

D. € R™4. The corresponding realization (A, B, C, D) of the closed-loop system is:

A_|A+BDC, BC.]_[A, 0] [B, 0][D. C][C, 0
B.C, A, 0 0 0 I,||B. A || 0 I,
= My + M, X;M, = A(X,), 8)
_ B _ _
B—lO”],C—[CPO],D—O, (9)

where all 0’s are zero matrices of proper dimensions, I,, is the n x n identity matrix, and

b1 b2 T Pg4n
. DC CC . Pg+n+1 Pg+n+2 Tt p?(qun)
X“pr AC]_ : : ; (10)
D+n—1)(g+n)+1  P(+n=1)(g+n)+2 " P(l+n)(g+n)

is the controller matrix. Let C(d) be chosen to make the feedback system stable. Then
all the eigenvalues of A (X;), denoted by {\;, 1 < i < m + n}, satisfy

N+ i < £, Vi

When the realization (A., B., C., D,) is implemented with a fixed-point digital control
processor, X is perturbed into X5 + AX; due to the FWL effects, where

Apy Aps oo APgin
AX; = p,,.+ 1 p,,'+ +2 p2Fq+ ) (1)
Apisn—1)(gin)+1  ADUtn-1)(gtm)+2 - Apy

and N = (I 4 n)(q + n). Each element of AXj is bounded by §, that is,

A

H(AX,) . (12)

<
max |Api| <

[Nl e )

bt



For a fixed-point processor of By bits

e = 27 (Bs=Bx)

, (13)

where 28 is a normalization factor such that the absolute value of each element of 27 8x X
is not larger than 1. With the perturbation AXy, A; is moved to 5\7 The sampled-data

system will be unstable if and only if there exists i € {1,---,m+n} such that

5\14—%‘2%

To see when the round off error will cause the closed-loop system to become unstable,

let us introduce the following stability measure:
ps0(Xs) 2 inf{u(AX;) : A(X; + AXy) is unstable} . (14)

From this definition, it is obvious that:
Proposition 1 A(X; + AXj) is stable if u(AXs) < pu50(Xs).

The larger ps0(Xs) is, the bigger FWL error the closed-loop stability can tolerate. Let
B;“i“ be the smallest word length that, when used to implement Xy, can guarantee the
closed-loop stability. It would be highly desirable to know B™". However, except in
simulation, it is impossible to test the closed-loop system by reducing B, until it becomes

unstable. Assuming that h is realized exactly, an estimate of B™" can be provided by
BI™ = Int[— logy(1150(X5))] — 1+ By, (15)

where Int[z] rounds x to the nearest integer and Int[z] > z. From (12) to (15), it can
be seen that the closed-loop system is stable when X is implemented with a fixed-point

processor of at least B™" bits.

It is worth emphasizing an often overlooked constraint on the FWL implementation of
d-based controllers. The state-space equation of the d-based controller, d x(k) = A.x(k)+
B.u(k), is realized using: x(k+1) = x(k) +h (Ax(k) + B.u(k)). The sampling period h
should be realized exactly without FWL errors. Otherwise, analysis based on X; may not
be valid. Specifically, assume that h can be realized exactly by B; bits with the integer
part of h requiring By bits and the fractional part of h requiring B,z bits. A modified

estimate of the minimum bit length that can guarantee the closed-loop stability is
B:(])]]? = maX{Bh;,Bx}+max{Bhp,B:(’)i" *Bx}. (16)
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Notice that the J-domain stability measure fi5, defined in (14), is similar to the
stability measure (i for z-operator based controller realizations given in [3]. Like ug, how
to compute explicitly the value of sy for a given realization Xy is also an unsolved open
problem. Thus, the stability measure j150(X;) has very limited practical value. Alternative
measure that can not only quantify the FWL effects on stability robustness but also be

computed easily must be sought.

4 FWL stability related measure in the ) domain

Roughly speaking, how easily the FWL error AX; can cause a stable control system to
become unstable is strongly determined by how close \; are to the unstable boundary
and how sensitive they are to the controller parameter perturbations. We propose the

following stability related measure:

1>

i ar)
Xa‘

Let \; and )\, be the Ith eigenvalues of A (X;) and A(Xs+ AX;), respectively, and define

st (Xs) 1352}}11% N

o\
Op;

N o1 oA
N+ — ‘<MAX5)Z -t

< 1
N+ -

;

P(Xg) é {AX5 :

,vz} . (18)

We have the following proposition:
Proposition 2 A(X; + AXj) is stable if AX; € P(X;) and pg1(Xs) > u(AXy).

Proof: For AX; € P(X;),

Y B W ‘< Ax)fj NIy (19)
) 7 ) :u’ a ’ .
S RS 5 2| apy |y
It follows from ps (Xs) > p(AXy) that

o1 Yo

)\l—i——‘ )\l—i— ‘—FMAX(;) e

h h ]z_:l ap] X,
1 1
b s 2an] |
< )\l—FE‘ M a—l :E, Vi, (20)




which means that A(X; + AXj;) is stable.

Remarks: The requirement AX; € P(Xjy) is not over restricted. In practice, we are only
interested in those AXy which lie in a bounded region including AX; = 0. More plainly,

we are only interested for those AXjy lying in (see proposition 1):

Q(X5) = {AX; : u(AX5) < pso(Xs)} - (21)
Since % is continuous,
1 on] | [on] |
A,+h =\+— +Z/ o, = )\;+h+2 (Re [8—]9] ajJ +ilm [8—197 ij Apj, (22)

where C is the oriented segment from X; to X; + AXj, a; and b; are some points on C,

Re[z] and Im[x] are the real and imaginary parts of the complex number z, respectively,

and 7 = +/—1. Hence

L+%‘—Al+%‘§ ;(Re[a—p; ]+i1m[g—;\;bj )Apj . (23)
Now let us compare
Z (Re g—pl ] +4Im {% ) Ap; (24)
j=1 7 la; 7 b,
with N
> n(axs). (25)
J=1 71X
Notice that all the N real-valued items g—;‘: X, are in alignment; while the N complex-
valued items (Re {g—;}; N +2Im {‘9;\’ b, ) are generally out of alignment. Moreover,
|Ap;| < p(AX;), Re [8’\7’} and Im [g;}ﬂ are differentiable. Thus, there exists a rather
large k such that VAX; 6 {AX; : u(AXy) < K},
i (Re 2 +iIm [ ox ]) Z O\ 1(AXy) . (26)
7=1 [3]9]- ajJ [3]9]- b.iJ = Xs

The above analysis shows that P(X;) exists and a rather large part of Q(X;) can be
covered by P(Xj), that is, the condition AX; € P(X;) is not too restricted.

Notice that, although ps (Xs) can be used to describe the FWL stability characteris-
tics, it is not generally true that “A(Xs+ AXs) is stable if u(AXs) < ps1(Xs)”. This is in
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contrast to 50(Xs). For this reason, we prefer to call ug (Xs) a stability related measure.
Also, generally speaking, there is no rigor relationship between p50(Xs) and p41(X;), but
ts1(Xs) is connected with a lower bound of p5(Xs) in some manners, as shown in the

following corollary. First, define

p(P(X;)) = s, E o H(AXG). (27)

Corollary 1 a1 (X,;) S ,U,(m(X(g) if 1% (P(Xg)) > ,U/(m(X(g).

From corollary 1, it can be seen that ps(X;) can be considered as a lower bound of
pso(Xs), provided that pso(Xs) is small enough. The assumption of small p50(X;) is not
over restricted, as it does not make much sense to study the FWL effects on the closed-
loop stability for those situations where the closed-loop systems have a very large stability
robustness. It should be pointed out that most of digital control systems do have a small

stability robustness, which is especially true when fast sampling is applied.

To compute p51(Xs), {g;"f} are needed. The following theorem shows that these eigen-
7

value sensitivities can easily be calculated.

Theorem 1 Let A = M, + M; XM, € R"*" be diagonalisable and denote {\;} its
eigenvalues, where X € R'™", and My, M; and M, are independent of X with proper
dimensions. Let x; be a right eigenvector of A corresponding to the eigenvalue \;. De-
note My = [x1 %2 -+ x,]and My = [y1 y2 - y,] =M. where H# denotes
the transpose and conjugate operation and y; is called the reciprocal left eigenvector

corresponding to ;. Then

ox1 Ox12 0z
o\ oA 9N L. 0N
) . O0xo1 Oxo90 Oxop _ T  x T T
= ) . ) =M;y;x; M, (28)
8X : : « s :
Oy Oxo Oy

where xy; is the (k, j)th element of X, and the superscript * denotes the conjugate oper-

ation.

Proof: Let a be a variable independent of M; and M. It follows from y?x; = 1 that

L= 0. (29)



Notice that Ax; = \;x; and \; = y*Ax;. Hence

o\, oyl ox
L= LAy y A 30
da  Ba T TYig it YiAg, (30)
It follows from (29) and y*A = \;y7* that
o\ oyH 0X; 0A 0A 0X
C = R+ Ay F—x; =y} ——x; = y]' My ——M,x; . 31
8(){ (80/ X; + yz 8(y>+yl 8O{X yz a(J{X yz ]8(){ 2X ( )
Let o = x;. Then
Oy (M) (32)
- ; Xi)j,
9o y; Vi) p(VlaX; )4

where (y/*M;); and (Msx;); are the kth and jth elements of y*M; and Msx;, respec-
tively. This leads to (28).

Since ps1(Xs) is computationally tractable, for a given controller realization Xj, we

can estimate the smallest word length B™™ based on ju5 (Xs) using the following
B = Int[— log, (1151 (X5))] — 1+ Bx . (33)

When the requirement for implementing h exactly is taken into account, the estimated

smallest bit length should be modified to
A?i]hn = maX{Bh;,Bx}+max{Bhp,BS"f“ *Bx}. (34)

It should be pointed out that although pgs (X;) can be used to estimate B;“in, its impor-
tance lies in the fact that it can be used as the optimization criterion to search for an

optimal controller realization, defined as:

AN
Xsopt = arg x, x| Mol (X5s) (35)
where
S(Xs) £ {Xs:C(6) = C.(61— A,) 'B.+D,}. (36)

is the set of all the realizations of the controller C'(§). The realization Xsopt is optimal in
the sense that it has maximum stability robustness to FWL effects. The digital controller
implemented with an optimal realization means that the stability of the closed-loop sys-
tem is guaranteed with a minimum hardware requirement in terms of word length. The
detailed design procedure for finding an optimal controller realization will be discussed in

the next section.
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5 Optimal realization of FWL controller structures
in the ) domain

To begin with the optimal design procedure, assume that an initial controller realization

X0 is given to be

D; C;
where C(§) = CY(6I — A%)"'B? + DY. Any realization of C(§) can be expressed as:
AL 0 I, O
X&T:[Ol T1]X60[3 T]’ (38)

where T € R™*™ and det(T) # 0. From (8), it can be shown that the transition matrix

of the closed-loop system is

A(Xyr) = [Ig o ]A(xgo)[lgl g] (39)

From (39), applying theorem 1 results in

o\ I, 0 o\ I, O
0X 1o T | 59X o T 7 |- (40)
é Xs=XsT g X5=Xs0
O\ . . .
where X %, x5 readily computed using theorem 1.

Let A) be the ith eigenvalue of A(Xs). Obviously, A(Xs) and A(Xsr) have the

identical eigenvalues, and the optimization problem (35) can be expressed as:

1 1
R = A+
. h i h
Topt = arg max min (41)
Ternxn | 1<i<m4n N | 9);
det (T)70 ijl i | X s=X 5

Given T, the optimal controller realization X, is readily computed using (38). For
the complex-valued matrix M € C!+)*(@+) with elements m;;, define the matrix norm
A l+n g+n
[M[p =23 mil. (42)

i=1 j=1

The maximisation problem (41) is equivalent to the minimization problem

A . I 36))&2 XyeXpr |
Topt = arg min max 0 — 20T
Ternxn | 1<i<m+n L1 _ )0 + 1
det(T)#0 h L h

L 0,1 o
o T | |0 T"”

11
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where
O
®, = 13"6% _ (44)
P

Thus finding an optimal controller realization is equivalent to obtaining a similarity trans-
formation that is a solution of the following constrained nonlinear optimization problem
Topt = arg min f5(T) (45)

TeRNX"
det(T)#0

with the cost function

fs(T) = max

1<i<m+n

(46)

L 0,1 o
o T | |0 T"”

Because the cost function f5(T) is non-smooth and non-convex, optimization must be

F

based on a direct search without the aid of cost function derivatives. The conventional op-
timization methods for this kind of problem, such as Rosenbrock and Simplex algorithms
[26]-[28], generally can only find a local minimum. Notice that, although the choice of

initial realization will not affect the closed-loop eigenvalues, the eigenvalue sensitivities

N
X 5

depend on the chosen initial realization. Thus for different X, the shape of the cost
function f5(T) will change, giving rise to different degree of difficulty in the optimization
procedure. It is therefore important to use an efficient and preferably global optimization
method. We adopt a global optimization strategy based on the ASA [19] [23] to search
for a true global optimum T,,. The detailed ASA optimizer applied to optimize the
stability related measure in the z domain can be found in [12], where it is also shown how

the constraint det(T) # 0 is dealt with during the optimization iteration.

6 Optimal realization of FWL PID controllers in the
0 domain

In this section, we specifically discuss the optimal realization problem of FWL J-based
PID controllers. It is well-known that a constrained nonlinear optimization problem
is generally much more difficult to solve than an unconstrained one. For the FWL z-
based controller realization problem, the previous works have shown that the constrained

optimization problem can be decoupled into two simpler unconstrained ones [11],[13].
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This result can readily be extended to the case of FWL d-based PID controller structures.
A digital PID controller is an order n = 2 system. For notational simplicity, we will
also restrict to the single-input and single-output controller, that is, [ = ¢ = 1. Let an
initial realization for such a digital PID controller C(§) be (A? € R**2 BY ¢ R**! C" e
R DY € R). From (43), the optimal PID controller realization problem is defined as

the optimization problem:

BRll])

The aim is to avoid handling the constraint det(T) # 0 directly in optimization. The

A .
Vs = min max
Ter2x2 \ 1<i<m—+2
det(T)#£0

following theorem shows that the optimization problem (47) can be solved by solving for

the two simpler unconstrained problems. First define the two cost functions

w 0 O-I {1/11) 0 0

fﬁl(x’y’w):g%%{n {0 x 0 J@,{ 0 1/z OJ (48)
0 y 1/x 0 -y = ||,
and
w 0 0 1/w 0 0
foo(x,y,u,w) = max 0 x u | P, | 0 Yy —u . (49)
1<i<m+2
0 (zy—1)/u y 0 (I-ay)/u =z [|,
Theorem 2 Let
v = min fy(2.y.w) (50)
yE(fo’od»oo)
w€ (0,+00)
and
Vgy = ze({noir}roo) foa(z,y, u,w) . (51)
v (o0, +o0)
u€(0,4+00)
we€ (0,+00)
Then
vs = min{vs, vsa } . (52)

Moreover, if vs = v and (Zopt1, Yopt1, Wopt1) 18 the optimal solution of the problem (50),

the optimal solution of the problem (47) is given as:

1 T Y
T - optl Yoptl : 53
opt Wopt1 [ 0 ]-/mopt] ; ( )

13



if vs = vso and (Topta, Yopta, Uopt2, Wopt2) 1S the optimal solution of the problem (51), the

optimal solution of the problem (47) is given as:

T o 1 mopt? (moptZyoptZ — 1)/uopt2 (54)
opt — .
Wopt2 | Yopt2 Yopt2

The proof of theorem 2 is given in Appendix. Because fs (z,y, w) and fs(x,y,u, w)
are still non-smooth and non-convex functions, an efficient global optimization method
is preferred and we will adopt the ASA optimizer to solve for these two unconstrained

nonlinear optimization problems.

7 Application examples

Two numerical examples were used to show how the optimization approach presented
earlier can be used efficiently for designing optimal FWL §-based controller structures.
For the comparison purpose, both the z and § based controllers were investigated in the
simulation. The optimal realization problem of FWL 2-based controller structures with

the stability related measure p1,1(X,) was defined in the previous works [6] [13].

Example 1: We consider the following IFAC93 benchmark PID control system [29]. The

continuous-time plant model is

25(—0.4541)

P(s) = 55
&) = T35 595) 657 1) (55)
and the designed PID controller is
0.431 1.048 s
C(s) =1.311 . 56
(%) T T i 1202 (56)

The sampled-data system with the infinite-precision digital controller in z-domain is stable
when the sampling period h < 23. The range of the sampling period tested in the

simulation was 23 to 27'?, to cover the slow to very fast sampling conditions.

Given a sampling rate, the discrete-time plant model P(J) and the digital controller
C(9) with the § operator were obtained using the discretizing routines in MATLAB. The
discretization procedure was based on the bilinear (Tustin) transformation

_21—2’1
 hl4 21

S

(57)
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with § = % The initial realization X7 was chosen to be the “controllable” canonical
form. When Xj, was provided, the eigenvalues {\!} of the ideal closed-loop system
without FWL effects and the eigenvalue sensitivity matrices {®;} were computed. The
ASA was then used to search for an optimal transform matrix T,y by solving for the
minimization problem (47) using theorem 2. This produced a corresponding optimal
controller realization Xyo,¢ that maximizes the stability related measure ps(X;s). The

entire process was repeated with the z operator parameterization to obtain the optimal

z-based realization X, ¢ that maximizes the stability related measure p,(X.,).

Fig. 2 shows the values of the FWL stability related measure us; given different sam-
pling rates for the initial and optimal d-based controller realizations X5, and Xspt, re-
spectively. It can be seen that, for this example, optimization achieved an improvement
by more than an order of magnitude on the stability related measure. Fig. 3 (a) and (b)
depict the estimated minimum bit lengths, B:ZT“, based only on the values of the stability
related measure for X5 and X, respectively. As mentioned previously, for the  op-
erator parameterization, the sampling period h should be implemented exactly without

FWL errors. Taking this into account, the modified estimate of the minimum bit length

for the optimal realization Xy is given in Fig. 3 (c).

Fig. 4 compares the FWL stability related measure for X, with that of the optimal
z-operator controller realization X, ,5¢. It is seen that the optimal d-based controller re-
alization has much larger FWL closed-loop stability margin than its z-based counterpart.
Furthermore, as the sampling rate is increasing, the stability related measure for X,
is improving slightly and eventually leveling out while the stability related measure for
X, opt is decreasing exponentially. This confirms with a well-known fact that the 6 param-
eterization has significant advantages over the usual z parameterization, especially under
fast sampling conditions. Fig. 5 gives the estimated minimal bit length for the optimal
z-operator controller realization. Notice that it does not need to consider h separately
in the z-operator parameterization, as the effect of h has already been included in the
controller realization X,. Comparing Fig. 5 with Fig. 3 (¢), even taking into account the
requirement of implementing h exactly, the optimal d-based realization requires a smaller

bit length in FWL implementation than the optimal z-based realization.
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Example 2: This example is the linearized model of a CH-47 tandem-rotor helicopter in
horizontal motion about a nominal airspeed [30]. The continuous-time plant model P(s)

given by [30] is in the state-space form (A,, Bs, Cy, Dy) with

—0.02 005 24 —32 0.14 —0.12
A _| 014 044 13 30| o _|036 86
T 0 0018 1.6 12 |’ " |035 0.009 |’
0 0 1 0 0 0
01 0 0 0 0
CS[O 0 057.3]’]35[0 0]‘ (58)

A stabilizing continuous-time controller C'(s) was designed using the LQG method [6] and

the controller C(s) is given in the state-space form (A;, By, C;, D;) with

—0.0175 —0.1436  0.3852 —26.3518 0.0158  —0.2405
A — 0.0084 —17.6863 —4.0536 —13.9065 B — 9.0660 —0.1761
b 0.001 0.0018  —6.7274 —33.2584 |7 "7 | 0.0091  0.2289 |’

0 0.0031 1 —5.1191 —0.0031  0.0893

(59)

o _ | 00033 00472 146421 —60.8804] [0 0
7| 00171 1.0515 02927  -3.2469 | ' [0 0|

The range of sampling rate used in the simulation was 22 to 2'“.

Using the generalized operator p to represent d or z, depending on which operator is ac-
tually employed, the discrete-time plant model P(p) and the discrete-time controller C'(p)
were obtained for each given sampling rate using the discretizing routines in MATLAB.
Because the version of MATLAB, which we have, does not have the discretizing routine
that can provide the canonical state-space model for multi-input multi-output transfer
functions, the initial controller realization X,, was chosen to be the non-canonical form
as the result of a direct discretizing the state-space model of C(s) given in (59). The
ASA was used to find the optimal T,,; and hence the optimal X,,,; that maximizes the
stability related measure j,;(X,) for both p =6 and p = 2.

Fig. 6 plots the FWL stability related measures as function of sampling rate for the
initial and optimal d-operator controller realizations Xso and Xsop, where it can be seen
that the optimization very effectively improves the FWL closed-loop stability robustness.
Fig. 7 compares the FWL stability related measure for the d-based optimal realization
Xopt With that of the z-based optimal realization X, ... Again, as the sampling rate in-

creases, the stability related measure for X, ¢ decreases exponentially while the stability
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related measure for X, does not reduce, and the optimal d-based controller realiza-
tion has much better FWL closed-loop stability robustness than its z-based counterpart.
Fig. 8 depicts the estimated minimum bit length, Bf{in, based only on the value of g4
for the optimal d-operator realization X, and the modified estimate of the minimum
bit length, Bes"{ih"‘, taking into account the sampling period h. The estimated minimum

bit length for the z-operator realization X, is given in Fig. 9. Again, X0, Tequires a

smaller bit length to implement than X, ;.

8 Conclusions

The paper addresses the problem of digital controller structures realized using the § op-
erator and the relevant issues of closed-loop stability subject to FWL implementation. A
tractable stability related measure, quantifying the robustness of closed-loop stability to
the FWL effects in the § domain, has been derived. It has been shown that the optimal
realization problem of finite-precision d-based digital controllers can be interpreted as
a constrained nonlinear optimization problem. In particular, for d-based PID controller
realizations, the optimization can be decoupled into two unconstrained optimization prob-
lems. An efficient global optimization strategy based on the ASA has been adopted to

solve for this FWL optimal controller realization problem in the § domain.

Two numerical examples have been used to illustrate the optimal design procedure.
The results obtained also demonstrate that the digital controllers described with the ¢
operator has much better FWL closed-loop stability robustness in fast sampling condi-
tions, compared with the digital controllers described with the usual shift operator. In
this work, the main emphasis has been focused on the important FWL closed-loop sta-
bility issues of sampled-data control systems. Ongoing work will explore the integration
of the proposed optimization procedure with the closed-loop controller performance and
the sparseness consideration of optimal controller realizations. This will provide a multi-
objective framework to develop the optimal finite-precision controller realization that
possesses the optimal trade off between minimum computational requirements, improved

performance and stability robustness.
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Appendix Proof of theorem 2

Define the diagonal matrix set: Ugiag(n) 2 {diag(uy, ug, -~ uy,) 1 u; € {—1,1},1 <i <n}.
From the definition (42),
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Lemma 3 VM € C"™*", Uy € Ugiae(m) and Uy € Ugiag(n),

[UM[|p = [[M]|p and [[MUs|| = [[M]|x -

Define the sets

T
T, 2 {T— L :t1€R,tQER,t3€R,t4€R,t1t4t2t37£0},
[ T4
AN -t] tQ-
7—1 = T = 0t 2t1€R,t2€R,t4€R,t1t4§£0 , (60)
4
AN -t] tQ-
75 = = e 2t1€R,t2€R,t3€R,t4ER, t37é0,t1t4—t2t37£0 .
3 1

Construct the optimization problems

A 1 0 1 0
LI S l o T” ] @i l o T7" ] . (61)
and
A 1 0 1 0
Yoz = 'glel% 1§Iir%%§+2 l o T? ] @i l o T7 ] " (62)
Obviously 7o = T; U T3 and, therefore, vs = min{wvs;, vs2}. Define the function
1, >0,
sen(r) = { 0, 2<0. (63)

Consider the optimization problem (61). VT € 7; and Vi € {1,---,m + 2}, utilizing

lemma 3, we have:

1 0 0 1 0 0
1
F 0 £y ty 0 —to/(tit)) 1/t ||,

1/\/[tita 0 0 it 0 0
0
0

Ity /t4] 0 D 0 It4/t] 0
sgn(ta)ta/\/Itrtal /ta/t:] 0 —sgn(tats/\/[tita /It /8]
(64)
Define
t
M € (0, +00),
|14
to
y = sgn(ty) € (—o00,+00), (65)
t1t4]
1
w = € (0, +00)
t1t4]



Then

N w 0 0 ] I/w 0 0
for(z,y,w) =  max 0Oz 0 [®| 0O 1/z 0
1<i<m+2
0 y 1/z | 0 -y =z ]|,
1 O 1 0
B 1§Ii2%(+2 l 0o T" ] @i |0 T 7 ] p ' (66)
and
A 1 0 1 0 .
v = R e, lo ! ] i l o T7 ]H = i falwyw). o (67)
Voot
If vs = v51 and (Topt1, Yopt1; Wopt1) 1S the solution of the optimization problem (67),
Wopt1 0 0 | l/woptl 0 0
Vs = Vg1 = ]Sl’iréiﬁa 0 Topt1 0 (I)Z 0 l/moptl 0
0 Yopt1 1/370pt1 ] 0 —Yopt1  Toptl P
1 Wopt1 0 0 [ 1/ wopt 0 0
— 1SI%%")'(+2 o 0 Zoptt 0 d; 0 1/opt1 O Wopt1||
0 Yopt1 l/xoptl L 0 —Yopt1  Toptl F
(68)
which means that
T _ optl Yoptl 69
opt Wopt1 [ 0 1/zopn (69)

is the optimal solution of the problem (47).

By considering (62) in a similar way, we can prove the rest of theorem 2.
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Figure 1: Sampled-data system with digital controller realization.
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Figure 2: FWL stability related measure u4 as a function of sampling rate for two different
d-based controller realizations. IFAC93 benchmark PID control system.
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Estimated Minimal Bit Length

(a) Bm" based on 5, only for the initial realization X

o
[e)]
1

144~
124
109

Estimated Minimal Bit Length

-3-2-1 01234567 89101112
log,(Sampling Rate)

(b) Bsmli“ based on ji45 only for the optimal realization Xspt

Estimated Minimal Bit Length

(c) B;?‘,? based on 45 and h for the optimal realization Xqp

Figure 3: Estimated minimum bit lengths as a function of sampling rate for two different
d-based controller realizations. IFAC93 benchmark PID control system.
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Figure 4: Comparison of FWL stability related measures for the optimal z-based and
0-based controller realizations. IFAC93 benchmark PID control system.
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Figure 5: Estimated minimum bit length as a function of sampling rate for the optimal
z-based controller realization. IFAC93 benchmark PID control system.
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Figure 6: FWL stability related measure p4 as a function of sampling rate for two different
0-based controller realizations. Helicopter control system example.
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Figure 7: Comparison of FWL stability related measures for the optimal z-based and
d-based controller realizations. Helicopter control system example.
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(a) Ef{i“ based on p4 only for the optimal realization Xsopt
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(b) B;ﬁ“,{‘ based on f5 and h for the optimal realization X,

Figure 8: Estimated minimum bit lengths as a function of sampling rate for the optimal
0-based controller realization. Helicopter control system example.
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Figure 9: Estimated minimum bit length as a function of sampling rate for the optimal
z-based controller realization. Helicopter control system example.
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