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the simulation results 
on�rm that the optimal FWL realizations of the Æ-operator based
ontroller have better 
losed-loop stability margins than those of the usual shift-operatorbased 
ontroller, espe
ially under fast sampling 
onditions.Index Terms: Sampled-data system, shift and Æ operators, �nite word length, stability.1 Introdu
tionAlthough the number of 
ontroller implementations using 
oating-point pro
essors is in-
reasing due to their redu
ed pri
e, for reasons of 
ost, simpli
ity, speed, memory spa
eand ease-of-programming, the use of �xed-point pro
essors is more desired for many in-dustrial and 
onsumer appli
ations, parti
ularly for mass market appli
ations in the au-tomotive and 
onsumer ele
troni
s se
tors. Furthermore, due to their reliability andwell-understood properties, �xed-point pro
essors predominate in 
riti
al-safety systems.It is well known that a designed stable 
losed-loop system may be
ome unstable whenthe \in�nite-pre
ision" 
ontroller is implemented using a �xed-point pro
essor due to theFWL e�e
t. The \robustness" of 
losed-loop stability under 
ontroller parameter pertur-bations is therefore a 
riti
al issue in �xed-point implementations.Many studies have addressed the problem of digital 
ontroller realizations with �nite-pre
ision 
onsiderations [1℄{[6℄. The �rst FWL stability measure, denoted as �0, wasproposed in 1994 [3℄, but 
omputing expli
itly this measure is still an unsolved openproblem. Re
ently, two tra
table FWL stability related measures, 
onne
ted to �0, havebeen derived and the design pro
edures for sear
hing for optimal FWL 
ontroller real-izations have been developed [5℄,[6℄. In the original works [5℄,[6℄, the term lower boundstability measure was used. We prefer to use the term stability related measure, as itis a lower bound of �0 only under some restri
ted 
onditions. It 
an be shown that themeasure of [6℄ is \
loser" to �0 than that of [5℄, and the investigations on FWL 
ontrollerrealizations have mainly been based on this stability related measure [7℄{[13℄.In all the above-mentioned studies, digital 
ontroller stru
tures were des
ribed andrealized with the usual shift operator z. A dis
rete-time system 
an also be des
ribedand realized with a di�erent operator, 
alled the delta operator Æ [14℄. Two major advan-2



tages are 
laimed for the use of Æ operator realization: a theoreti
ally uni�ed formulationof 
ontinuous-time and dis
rete-time systems; and better numeri
al properties in FWLimplementations [2℄. For signal pro
essing appli
ations, it is well known that the digital�lter realized with the Æ operator has lower round-o� noise, lower 
oeÆ
ient error andlower output error varian
e than the shift operator realization [15℄,[16℄. The use of the Æoperator as opposed to the shift operator in 
ontrol appli
ations has also been promoted[17℄,[18℄. However, no study to date addresses the 
losed-loop stability issues of FWL
ontroller stru
tures using the Æ operator formulation.This paper analyzes the 
losed-loop stability of sampled-data 
ontrol systems in the Ædomain with FWL 
onsiderations. We derive a new measure quantifying FWL e�e
ts onthe 
losed-loop stability. For the 
omputational purpose, a tra
table stability related mea-sure is given. The optimal digital 
ontroller realization in the Æ domain 
an be obtained bymaximizing this measure. As the optimization 
riterion is non-smooth and non-
onvex,an eÆ
ient non-gradient based global optimization method, known as the ASA [19℄{[23℄,is employed to sear
h for the true optimal 
ontroller realization. It turns out that theapproa
h of analyzing FWL digital 
ontrollers in the z domain [3℄,[5℄,[6℄ 
an be extendedto study Æ-based FWL digital 
ontrollers, and the Æ-based 
ontroller realization has better
losed-loop stability robustness to FWL e�e
ts over the z-domain approa
h.The paper is organized as follows. Se
tion 2 summarizes the de�nition of Æ operatorand the equivalent relationship between representing a dis
rete-time system in the z andÆ domains. Se
tion 3 formulates the problem and establishes ne
essary notations andde�nitions. A 
losed-loop stability related measure that 
an be 
omputed easily for a given
ontroller realization is given in Se
tion 4. The optimal 
ontroller realization problem isalso de�ned in this se
tion, whi
h is to �nd a realization that maximizes the proposedmeasure. Se
tion 5 presents the optimization framework for obtaining the general optimalFWL 
ontroller realization. The problem is formulated as a 
onstrained optimizationproblem. Se
tion 6 spe
i�
ally studies the optimal FWL PID 
ontroller realization. It isshown that the 
onstrained optimization problem 
an be de
oupled into two un
onstrainedones. In Se
tion 7, the e�e
tiveness of the proposed optimization strategy is illustratedby two numeri
al examples. The paper 
on
ludes in Se
tion 8.3



2 The Æ operatorFrom a 
ontinuous-time transfer fun
tion G(s), as the result of dis
retization pro
edurewith a sampling period h, a dis
rete-time transfer fun
tion Gz(z) based on the shiftoperator z 
an be obtained. De�ne the Æ operator as [14℄:Æ = z � 1h : (1)The transfer fun
tion Gz(z) 
an be re-expressed in Æ form: GÆ(Æ) = Gz(z). ObviouslyGz(z) and GÆ(Æ) are two di�erent but equivalent parameterizations representing the sameinput-output relationship. The state-spa
e models in the z and Æ domains are [24℄,[25℄z xz(k) = Azxz(k) +Bzu(k)y(k) = Czxz(k) +Dzu(k) ) (2)and Æ xÆ(k) = AÆxÆ(k) +BÆu(k)y(k) = CÆxÆ(k) +DÆu(k) ) (3)respe
tively, where the various ve
tors and matri
es are understood to have appropriatedimensions, andGz(z) = Cz(z I�Az)�1Bz +Dz = GÆ(Æ) = CÆ(Æ I�AÆ)�1BÆ +DÆ : (4)It follows from (4) that the relationships relate the two state-spa
e representations areAz = hAÆ + I; Bz = hBÆ; Cz = CÆ; Dz = DÆ : (5)It is well known that the state-spa
e realization of an input-output transfer fun
tion isnot unique. De�ne a generalized operator �, where � = z or Æ, andS� 4= f(A�;B�;C�;D�) : G�(�) = C�(� I�A�)�1B� +D�g : (6)Then if (A�;B�;C�;D�) 2 S�, (T�1A�T;T�1B�;C�T;D�) 2 S� for any nonsingular T.Let f��;ig be the eigenvalues of A�. The following lemma relates f�Æ;ig to f�z;ig.Lemma 1 �z;i = 1 + h �Æ;i; 8i.The proof of lemma 1 is straightforward based on the de�nition of eigenvalue and therelationshipAz = hAÆ+I. It is well known that the dis
rete-time system (Az;Bz;Cz;Dz)is stable if and only if all the eigenvalues j�z;ij < 1. From lemma 1, we have the 
onditionof the stability for the dis
rete-time system des
ribed with the Æ operator.4



Lemma 2 The dis
rete-time system (AÆ;BÆ;CÆ;DÆ) is stable if and only if�����Æ;i + 1h ���� < 1h; 8i : (7)3 FWL stability issue in the Æ domainConsider the sampled-data system depi
ted in Fig. 1, where P (s) is stri
tly proper. Thedis
rete-time plant P (Æ) = ShP (s)Hh has a state-spa
e realization (Ap;Bp;Cp; 0) in theÆ domain, where Ap 2 Rm�m, Bp 2 Rm�l and Cp 2 Rq�m. The 
ontroller C(Æ) hasa state-spa
e realization (A
;B
;C
;D
) with A
 2 Rn�n, B
 2 Rn�q, C
 2 Rl�n andD
 2 Rl�q. The 
orresponding realization ( �A; �B; �C; �D) of the 
losed-loop system is:�A = " Ap +BpD
Cp BpC
B
Cp A
 # = " Ap 00 0 # + " Bp 00 In # " D
 C
B
 A
 # " Cp 00 In #=M0 +M1XÆM2 = �A(XÆ) ; (8)�B = " Bp0 # ; �C = [Cp 0℄; �D = 0 ; (9)where all 0's are zero matri
es of proper dimensions, In is the n� n identity matrix, andXÆ = " D
 C
B
 A
 # = 266664 p1 p2 � � � pq+npq+n+1 pq+n+2 � � � p2(q+n)... ... � � � ...p(l+n�1)(q+n)+1 p(l+n�1)(q+n)+2 � � � p(l+n)(q+n) 377775 (10)is the 
ontroller matrix. Let C(Æ) be 
hosen to make the feedba
k system stable. Thenall the eigenvalues of �A(XÆ), denoted by f�i; 1 � i � m + ng, satisfy ����i + 1h ��� < 1h , 8i.When the realization (A
;B
;C
;D
) is implemented with a �xed-point digital 
ontrolpro
essor, XÆ is perturbed into XÆ +�XÆ due to the FWL e�e
ts, where�XÆ = 266664 �p1 �p2 � � � �pq+n�pq+n+1 �pq+n+2 � � � �p2(q+n)... ... � � � ...�p(l+n�1)(q+n)+1 �p(l+n�1)(q+n)+2 � � � �pN 377775 (11)and N = (l + n)(q + n). Ea
h element of �XÆ is bounded by �2 , that is,�(�XÆ) 4= max1�i�N j�pij � �2 : (12)5



For a �xed-point pro
essor of Bs bits� = 2�(Bs�BX) ; (13)where 2BX is a normalization fa
tor su
h that the absolute value of ea
h element of 2�BXXÆis not larger than 1. With the perturbation �XÆ, �i is moved to ~�i. The sampled-datasystem will be unstable if and only if there exists i 2 f1; � � � ; m+ng su
h that ���~�i + 1h ��� � 1h .To see when the round o� error will 
ause the 
losed-loop system to be
ome unstable,let us introdu
e the following stability measure:�Æ0(XÆ) 4= inff�(�XÆ) : �A(XÆ +�XÆ) is unstableg : (14)From this de�nition, it is obvious that:Proposition 1 �A(XÆ +�XÆ) is stable if �(�XÆ) < �Æ0(XÆ).The larger �Æ0(XÆ) is, the bigger FWL error the 
losed-loop stability 
an tolerate. LetBmins be the smallest word length that, when used to implement XÆ, 
an guarantee the
losed-loop stability. It would be highly desirable to know Bmins . However, ex
ept insimulation, it is impossible to test the 
losed-loop system by redu
ing Bs until it be
omesunstable. Assuming that h is realized exa
tly, an estimate of Bmins 
an be provided byB̂mins0 = Int[� log2(�Æ0(XÆ))℄� 1 +BX ; (15)where Int[x℄ rounds x to the nearest integer and Int[x℄ � x. From (12) to (15), it 
anbe seen that the 
losed-loop system is stable when XÆ is implemented with a �xed-pointpro
essor of at least B̂mins0 bits.It is worth emphasizing an often overlooked 
onstraint on the FWL implementation ofÆ-based 
ontrollers. The state-spa
e equation of the Æ-based 
ontroller, Æ x(k) = A
x(k)+B
u(k), is realized using: x(k+1) = x(k)+h (A
x(k) +B
u(k)). The sampling period hshould be realized exa
tly without FWL errors. Otherwise, analysis based on XÆ may notbe valid. Spe
i�
ally, assume that h 
an be realized exa
tly by Bh bits with the integerpart of h requiring BhI bits and the fra
tional part of h requiring BhF bits. A modi�edestimate of the minimum bit length that 
an guarantee the 
losed-loop stability isB̂mins0h = maxfBhI; BXg+maxfBhF ; B̂mins0 �BXg : (16)6



Noti
e that the Æ-domain stability measure �Æ0, de�ned in (14), is similar to thestability measure �0 for z-operator based 
ontroller realizations given in [3℄. Like �0, howto 
ompute expli
itly the value of �Æ0 for a given realization XÆ is also an unsolved openproblem. Thus, the stability measure �Æ0(XÆ) has very limited pra
ti
al value. Alternativemeasure that 
an not only quantify the FWL e�e
ts on stability robustness but also be
omputed easily must be sought.4 FWL stability related measure in the Æ domainRoughly speaking, how easily the FWL error �XÆ 
an 
ause a stable 
ontrol system tobe
ome unstable is strongly determined by how 
lose �i are to the unstable boundaryand how sensitive they are to the 
ontroller parameter perturbations. We propose thefollowing stability related measure:�Æ1(XÆ) 4= min1�i�m+n 1h � ����i + 1h ���PNj=1 ���� ��i�pj ���XÆ ���� : (17)Let �l and ~�l be the lth eigenvalues of �A(XÆ) and �A(XÆ +�XÆ), respe
tively, and de�neP(XÆ) 4= 8<:�XÆ : ����~�l + 1h ����� �����l + 1h ���� � �(�XÆ) NXj=1 ������ ��l�pj �����XÆ ������ ; 8l9=; : (18)We have the following proposition:Proposition 2 �A(XÆ +�XÆ) is stable if �XÆ 2 P(XÆ) and �Æ1(XÆ) > �(�XÆ).Proof: For �XÆ 2 P(XÆ),����~�l + 1h ����� �����l + 1h ���� � �(�XÆ) NXj=1 ������ ��l�pj �����XÆ ������ ; 8l : (19)It follows from �Æ1(XÆ) > �(�XÆ) that����~�l + 1h ���� � �����l + 1h ����+ �(�XÆ) NXj=1 ������ ��l�pj �����XÆ ������< �����l + 1h ����+ 1h � ����l + 1h ���PNj=1 ���� ��l�pj ���XÆ ���� NXj=1 ������ ��l�pj �����XÆ ������ = 1h; 8l ; (20)7



whi
h means that �A(XÆ +�XÆ) is stable.Remarks: The requirement �XÆ 2 P(XÆ) is not over restri
ted. In pra
ti
e, we are onlyinterested in those �XÆ whi
h lie in a bounded region in
luding �XÆ = 0. More plainly,we are only interested for those �XÆ lying in (see proposition 1):Q(XÆ) 4= f�XÆ : �(�XÆ) < �Æ0(XÆ)g : (21)Sin
e ��l�pj is 
ontinuous,~�l+ 1h = �l+ 1h+ NXj=1 ZC ��l�pj dpj = �l+ 1h+ NXj=10�Re 24 ��l�pj �����aj35+ i Im24 ��l�pj �����bj351A�pj ; (22)where C is the oriented segment from XÆ to XÆ +�XÆ, aj and bj are some points on C,Re[x℄ and Im[x℄ are the real and imaginary parts of the 
omplex number x, respe
tively,and i = p�1. Hen
e����~�l + 1h ����� �����l + 1h ���� � ������ NXj=10�Re 24 ��l�pj �����aj35+ i Im24 ��l�pj �����bj351A�pj������ : (23)Now let us 
ompare ������ NXj=10�Re 24 ��l�pj �����aj35 + i Im24 ��l�pj �����bj351A�pj������ (24)with NXj=1 ������ ��l�pj �����XÆ �������(�XÆ) : (25)Noti
e that all the N real-valued items ���� ��l�pj ���XÆ ���� are in alignment; while the N 
omplex-valued items �Re � ��l�pj ���aj�+ i Im � ��l�pj ���bj�� are generally out of alignment. Moreover,j�pjj � �(�XÆ), Re h ��l�pj i and Im h ��l�pj i are di�erentiable. Thus, there exists a ratherlarge � su
h that 8�XÆ 2 f�XÆ : �(�XÆ) � �g,������ NXj=10�Re 24 ��l�pj �����aj35 + i Im24 ��l�pj �����bj351A�pj������ � NXj=1 ������ ��l�pj �����XÆ �������(�XÆ) : (26)The above analysis shows that P(XÆ) exists and a rather large part of Q(XÆ) 
an be
overed by P(XÆ), that is, the 
ondition �XÆ 2 P(XÆ) is not too restri
ted.Noti
e that, although �Æ1(XÆ) 
an be used to des
ribe the FWL stability 
hara
teris-ti
s, it is not generally true that \ �A(XÆ+�XÆ) is stable if �(�XÆ) < �Æ1(XÆ)". This is in8




ontrast to �Æ0(XÆ). For this reason, we prefer to 
all �Æ1(XÆ) a stability related measure.Also, generally speaking, there is no rigor relationship between �Æ0(XÆ) and �Æ1(XÆ), but�Æ1(XÆ) is 
onne
ted with a lower bound of �Æ0(XÆ) in some manners, as shown in thefollowing 
orollary. First, de�ne� (P(XÆ)) 4= inf�XÆ2= P(XÆ)�(�XÆ) : (27)Corollary 1 �Æ1(XÆ) � �Æ0(XÆ) if � (P(XÆ)) > �Æ0(XÆ).From 
orollary 1, it 
an be seen that �Æ1(XÆ) 
an be 
onsidered as a lower bound of�Æ0(XÆ), provided that �Æ0(XÆ) is small enough. The assumption of small �Æ0(XÆ) is notover restri
ted, as it does not make mu
h sense to study the FWL e�e
ts on the 
losed-loop stability for those situations where the 
losed-loop systems have a very large stabilityrobustness. It should be pointed out that most of digital 
ontrol systems do have a smallstability robustness, whi
h is espe
ially true when fast sampling is applied.To 
ompute �Æ1(XÆ), f��i�pj g are needed. The following theorem shows that these eigen-value sensitivities 
an easily be 
al
ulated.Theorem 1 Let A = M0 + M1XM2 2 Rv�v be diagonalisable and denote f�ig itseigenvalues, where X 2 Rl�r, and M0, M1 and M2 are independent of X with properdimensions. Let xi be a right eigenve
tor of A 
orresponding to the eigenvalue �i. De-note Mx = [x1 x2 � � � xv ℄ and My = [y1 y2 � � � yv ℄ = M�Hx , where H denotesthe transpose and 
onjugate operation and yi is 
alled the re
ipro
al left eigenve
tor
orresponding to �i. Then��i�X = 2666664 ��i�x11 ��i�x12 � � � ��i�x1r��i�x21 ��i�x22 � � � ��i�x2r... ... � � � ...��i�xl1 ��i�xl2 � � � ��i�xlr
3777775 =MT1 y�ixTi MT2 ; (28)where xkj is the (k; j)th element of X, and the supers
ript � denotes the 
onjugate oper-ation.Proof: Let � be a variable independent of M1 and M2. It follows from yHi xi = 1 that�yHi�� xi + yHi �xi�� = 0 : (29)9



Noti
e that Axi = �ixi and �i = yHi Axi. Hen
e��i�� = �yHi�� Axi + yHi �A�� xi + yHi A�xi�� : (30)It follows from (29) and yHi A = �iyHi that��i�� =  �yHi�� �ixi + �iyHi �xi�� !+ yHi �A�� xi = yHi �A�� xi = yHi M1�X��M2xi : (31)Let � = xkj. Then ��i�� = (yHi M1)k(M2xi)j ; (32)where (yHi M1)k and (M2xi)j are the kth and jth elements of yHi M1 and M2xi, respe
-tively. This leads to (28).Sin
e �Æ1(XÆ) is 
omputationally tra
table, for a given 
ontroller realization XÆ, we
an estimate the smallest word length Bmins based on �Æ1(XÆ) using the followingB̂mins1 = Int[� log2(�Æ1(XÆ))℄� 1 +BX : (33)When the requirement for implementing h exa
tly is taken into a

ount, the estimatedsmallest bit length should be modi�ed toB̂mins1h = maxfBhI; BXg+maxfBhF ; B̂mins1 �BXg : (34)It should be pointed out that although �Æ1(XÆ) 
an be used to estimate Bmins , its impor-tan
e lies in the fa
t that it 
an be used as the optimization 
riterion to sear
h for anoptimal 
ontroller realization, de�ned as:XÆopt 4= arg maxXÆ2S(XÆ)�Æ1(XÆ) ; (35)where S(XÆ) 4= fXÆ : C(Æ) = C
(Æ I�A
)�1B
 +D
g : (36)is the set of all the realizations of the 
ontroller C(Æ). The realization XÆopt is optimal inthe sense that it has maximum stability robustness to FWL e�e
ts. The digital 
ontrollerimplemented with an optimal realization means that the stability of the 
losed-loop sys-tem is guaranteed with a minimum hardware requirement in terms of word length. Thedetailed design pro
edure for �nding an optimal 
ontroller realization will be dis
ussed inthe next se
tion. 10



5 Optimal realization of FWL 
ontroller stru
turesin the Æ domainTo begin with the optimal design pro
edure, assume that an initial 
ontroller realizationXÆ0 is given to be XÆ0 = " D0
 C0
B0
 A0
 # ; (37)where C(Æ) = C0
(Æ I�A0
)�1B0
 +D0
. Any realization of C(Æ) 
an be expressed as:XÆT 4= " Il 00 T�1 #XÆ0 " Iq 00 T # ; (38)where T 2 Rn�n and det(T) 6= 0. From (8), it 
an be shown that the transition matrixof the 
losed-loop system is�A(XÆT) = " Im 00 T�1 # �A(XÆ0) " Im 00 T # : (39)From (39), applying theorem 1 results in��i�XÆ �����XÆ=XÆT = " Il 00 TT # ��i�XÆ �����XÆ=XÆ0 " Iq 00 T�T # ; (40)where ��i�XÆ ���XÆ=XÆ0 is readily 
omputed using theorem 1.Let �0i be the ith eigenvalue of �A(XÆ0). Obviously, �A(XÆ0) and �A(XÆT) have theidenti
al eigenvalues, and the optimization problem (35) 
an be expressed as:Topt 4= arg maxT2Rn�ndet(T)6=0 0BB� min1�i�m+n 1h � ����0i + 1h ���PNj=1 ���� ��i�pj ���XÆ=XÆT����1CCA : (41)Given Topt, the optimal 
ontroller realization XÆopt is readily 
omputed using (38). Forthe 
omplex-valued matrix M 2 C(l+n)�(q+n) with elements mij, de�ne the matrix normkMkF 4= l+nXi=1 q+nXj=1 jmijj: (42)The maximisation problem (41) is equivalent to the minimization problemTopt 4= arg minT2Rn�ndet(T)6=0 0B� max1�i�m+n k ��i�XÆ ���XÆ=XÆT kF1h � ����0i + 1h ��� 1CA= arg minT2Rn�ndet(T)6=0  max1�i�m+n 




" Il 00 TT #�i " Iq 00 T�T #




F! ; (43)11



where �i = ��i�XÆ ���XÆ=XÆ01h � ����0i + 1h ��� : (44)Thus �nding an optimal 
ontroller realization is equivalent to obtaining a similarity trans-formation that is a solution of the following 
onstrained nonlinear optimization problemTopt = arg minT2Rn�ndet(T)6=0 fÆ(T) (45)with the 
ost fun
tionfÆ(T) = max1�i�m+n 




" Il 00 TT #�i " Iq 00 T�T #




F : (46)Be
ause the 
ost fun
tion fÆ(T) is non-smooth and non-
onvex, optimization must bebased on a dire
t sear
h without the aid of 
ost fun
tion derivatives. The 
onventional op-timization methods for this kind of problem, su
h as Rosenbro
k and Simplex algorithms[26℄{[28℄, generally 
an only �nd a lo
al minimum. Noti
e that, although the 
hoi
e ofinitial realization will not a�e
t the 
losed-loop eigenvalues, the eigenvalue sensitivities��i�XÆ depend on the 
hosen initial realization. Thus for di�erent XÆ0 the shape of the 
ostfun
tion fÆ(T) will 
hange, giving rise to di�erent degree of diÆ
ulty in the optimizationpro
edure. It is therefore important to use an eÆ
ient and preferably global optimizationmethod. We adopt a global optimization strategy based on the ASA [19℄{[23℄ to sear
hfor a true global optimum Topt. The detailed ASA optimizer applied to optimize thestability related measure in the z domain 
an be found in [12℄, where it is also shown howthe 
onstraint det(T) 6= 0 is dealt with during the optimization iteration.6 Optimal realization of FWL PID 
ontrollers in theÆ domainIn this se
tion, we spe
i�
ally dis
uss the optimal realization problem of FWL Æ-basedPID 
ontrollers. It is well-known that a 
onstrained nonlinear optimization problemis generally mu
h more diÆ
ult to solve than an un
onstrained one. For the FWL z-based 
ontroller realization problem, the previous works have shown that the 
onstrainedoptimization problem 
an be de
oupled into two simpler un
onstrained ones [11℄,[13℄.12



This result 
an readily be extended to the 
ase of FWL Æ-based PID 
ontroller stru
tures.A digital PID 
ontroller is an order n = 2 system. For notational simpli
ity, we willalso restri
t to the single-input and single-output 
ontroller, that is, l = q = 1. Let aninitial realization for su
h a digital PID 
ontroller C(Æ) be (A0
 2 R2�2;B0
 2 R2�1;C0
 2R1�2;D0
 2 R). From (43), the optimal PID 
ontroller realization problem is de�ned asthe optimization problem:�Æ 4= minT2R2�2det(T)6=0  max1�i�m+2 
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F! : (47)The aim is to avoid handling the 
onstraint det(T) 6= 0 dire
tly in optimization. Thefollowing theorem shows that the optimization problem (47) 
an be solved by solving forthe two simpler un
onstrained problems. First de�ne the two 
ost fun
tionsfÆ1(x; y; w) = max1�i�m+2 
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F (48)andfÆ2(x; y; u; w) = max1�i�m+2 
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F : (49)Theorem 2 Let �Æ1 = minx2(0;+1)y2(�1;+1)w2(0;+1) fÆ1(x; y; w) (50)and �Æ2 = minx2(�1;+1)y2(�1;+1)u2(0;+1)w2(0;+1) fÆ2(x; y; u; w) : (51)Then �Æ = minf�Æ1; �Æ2g : (52)Moreover, if �Æ = �Æ1 and (xopt1; yopt1; wopt1) is the optimal solution of the problem (50),the optimal solution of the problem (47) is given as:Topt = 1wopt1 " xopt1 yopt10 1=xopt1 # ; (53)13



if �Æ = �Æ2 and (xopt2; yopt2; uopt2; wopt2) is the optimal solution of the problem (51), theoptimal solution of the problem (47) is given as:Topt = 1wopt2 " xopt2 (xopt2yopt2 � 1)=uopt2uopt2 yopt2 # : (54)The proof of theorem 2 is given in Appendix. Be
ause fÆ1(x; y; w) and fÆ2(x; y; u; w)are still non-smooth and non-
onvex fun
tions, an eÆ
ient global optimization methodis preferred and we will adopt the ASA optimizer to solve for these two un
onstrainednonlinear optimization problems.7 Appli
ation examplesTwo numeri
al examples were used to show how the optimization approa
h presentedearlier 
an be used eÆ
iently for designing optimal FWL Æ-based 
ontroller stru
tures.For the 
omparison purpose, both the z and Æ based 
ontrollers were investigated in thesimulation. The optimal realization problem of FWL z-based 
ontroller stru
tures withthe stability related measure �z 1(Xz) was de�ned in the previous works [6℄{[13℄.Example 1: We 
onsider the following IFAC93 ben
hmark PID 
ontrol system [29℄. The
ontinuous-time plant model isP (s) = 25(�0:4 s+ 1)(s2 + 3 s+ 25)(5 s+ 1) (55)and the designed PID 
ontroller isC(s) = 1:311 + 0:431s + 1:048 s1 + 12:92 s : (56)The sampled-data system with the in�nite-pre
ision digital 
ontroller in z-domain is stablewhen the sampling period h � 23. The range of the sampling period tested in thesimulation was 23 to 2�12, to 
over the slow to very fast sampling 
onditions.Given a sampling rate, the dis
rete-time plant model P (Æ) and the digital 
ontrollerC(Æ) with the Æ operator were obtained using the dis
retizing routines in MATLAB. Thedis
retization pro
edure was based on the bilinear (Tustin) transformations = 2h 1� z�11 + z�1 (57)14



with Æ = z�1h . The initial realization XÆ0 was 
hosen to be the \
ontrollable" 
anoni
alform. When XÆ0 was provided, the eigenvalues f�0i g of the ideal 
losed-loop systemwithout FWL e�e
ts and the eigenvalue sensitivity matri
es f�ig were 
omputed. TheASA was then used to sear
h for an optimal transform matrix Topt by solving for theminimization problem (47) using theorem 2. This produ
ed a 
orresponding optimal
ontroller realization XÆopt that maximizes the stability related measure �Æ1(XÆ). Theentire pro
ess was repeated with the z operator parameterization to obtain the optimalz-based realization Xz opt that maximizes the stability related measure �z 1(Xz).Fig. 2 shows the values of the FWL stability related measure �Æ1 given di�erent sam-pling rates for the initial and optimal Æ-based 
ontroller realizations XÆ0 and XÆopt, re-spe
tively. It 
an be seen that, for this example, optimization a
hieved an improvementby more than an order of magnitude on the stability related measure. Fig. 3 (a) and (b)depi
t the estimated minimum bit lengths, B̂mins1 , based only on the values of the stabilityrelated measure for XÆ0 and XÆopt, respe
tively. As mentioned previously, for the Æ op-erator parameterization, the sampling period h should be implemented exa
tly withoutFWL errors. Taking this into a

ount, the modi�ed estimate of the minimum bit lengthfor the optimal realization XÆopt is given in Fig. 3 (
).Fig. 4 
ompares the FWL stability related measure for XÆopt with that of the optimalz-operator 
ontroller realization Xz opt. It is seen that the optimal Æ-based 
ontroller re-alization has mu
h larger FWL 
losed-loop stability margin than its z-based 
ounterpart.Furthermore, as the sampling rate is in
reasing, the stability related measure for XÆoptis improving slightly and eventually leveling out while the stability related measure forXz opt is de
reasing exponentially. This 
on�rms with a well-known fa
t that the Æ param-eterization has signi�
ant advantages over the usual z parameterization, espe
ially underfast sampling 
onditions. Fig. 5 gives the estimated minimal bit length for the optimalz-operator 
ontroller realization. Noti
e that it does not need to 
onsider h separatelyin the z-operator parameterization, as the e�e
t of h has already been in
luded in the
ontroller realization Xz. Comparing Fig. 5 with Fig. 3 (
), even taking into a

ount therequirement of implementing h exa
tly, the optimal Æ-based realization requires a smallerbit length in FWL implementation than the optimal z-based realization.15



Example 2: This example is the linearized model of a CH-47 tandem-rotor heli
opter inhorizontal motion about a nominal airspeed [30℄. The 
ontinuous-time plant model P (s)given by [30℄ is in the state-spa
e form (As;Bs;Cs;Ds) withAs = 26664 �0:02 0:05 2:4 �32�0:14 0:44 �1:3 �300 0:018 �1:6 1:20 0 1 0 37775 ; Bs = 26664 0:14 �0:120:36 �8:60:35 0:0090 0 37775 ;Cs = " 0 1 0 00 0 0 57:3 # ; Ds = " 0 00 0 # : (58)A stabilizing 
ontinuous-time 
ontroller C(s) was designed using the LQG method [6℄ andthe 
ontroller C(s) is given in the state-spa
e form (At;Bt;Ct;Dt) withAt = 26664 �0:0175 �0:1436 0:3852 �26:35180:0084 �17:6863 �4:0536 �13:90650:001 0:0018 �6:7274 �33:25840 0:0031 1 �5:1191 37775 ; Bt = 26664 0:0158 �0:24059:0660 �0:17610:0091 0:2289�0:0031 0:0893 37775 ;Ct = " 0:0033 �0:0472 �14:6421 �60:8894�0:0171 1:0515 �0:2927 �3:2469 # ; Dt = " 0 00 0 # : (59)The range of sampling rate used in the simulation was 22 to 214.Using the generalized operator � to represent Æ or z, depending on whi
h operator is a
-tually employed, the dis
rete-time plant model P (�) and the dis
rete-time 
ontroller C(�)were obtained for ea
h given sampling rate using the dis
retizing routines in MATLAB.Be
ause the version of MATLAB, whi
h we have, does not have the dis
retizing routinethat 
an provide the 
anoni
al state-spa
e model for multi-input multi-output transferfun
tions, the initial 
ontroller realization X� 0 was 
hosen to be the non-
anoni
al formas the result of a dire
t dis
retizing the state-spa
e model of C(s) given in (59). TheASA was used to �nd the optimal Topt and hen
e the optimal X� opt that maximizes thestability related measure �� 1(X�) for both � = Æ and � = z.Fig. 6 plots the FWL stability related measures as fun
tion of sampling rate for theinitial and optimal Æ-operator 
ontroller realizations XÆ0 and XÆopt, where it 
an be seenthat the optimization very e�e
tively improves the FWL 
losed-loop stability robustness.Fig. 7 
ompares the FWL stability related measure for the Æ-based optimal realizationXÆopt with that of the z-based optimal realization Xz opt. Again, as the sampling rate in-
reases, the stability related measure for Xz opt de
reases exponentially while the stability16



related measure for XÆopt does not redu
e, and the optimal Æ-based 
ontroller realiza-tion has mu
h better FWL 
losed-loop stability robustness than its z-based 
ounterpart.Fig. 8 depi
ts the estimated minimum bit length, B̂mins1 , based only on the value of �Æ1for the optimal Æ-operator realization XÆopt and the modi�ed estimate of the minimumbit length, B̂mins1h , taking into a

ount the sampling period h. The estimated minimumbit length for the z-operator realization Xz opt is given in Fig. 9. Again, XÆopt requires asmaller bit length to implement than Xz opt.8 Con
lusionsThe paper addresses the problem of digital 
ontroller stru
tures realized using the Æ op-erator and the relevant issues of 
losed-loop stability subje
t to FWL implementation. Atra
table stability related measure, quantifying the robustness of 
losed-loop stability tothe FWL e�e
ts in the Æ domain, has been derived. It has been shown that the optimalrealization problem of �nite-pre
ision Æ-based digital 
ontrollers 
an be interpreted asa 
onstrained nonlinear optimization problem. In parti
ular, for Æ-based PID 
ontrollerrealizations, the optimization 
an be de
oupled into two un
onstrained optimization prob-lems. An eÆ
ient global optimization strategy based on the ASA has been adopted tosolve for this FWL optimal 
ontroller realization problem in the Æ domain.Two numeri
al examples have been used to illustrate the optimal design pro
edure.The results obtained also demonstrate that the digital 
ontrollers des
ribed with the Æoperator has mu
h better FWL 
losed-loop stability robustness in fast sampling 
ondi-tions, 
ompared with the digital 
ontrollers des
ribed with the usual shift operator. Inthis work, the main emphasis has been fo
used on the important FWL 
losed-loop sta-bility issues of sampled-data 
ontrol systems. Ongoing work will explore the integrationof the proposed optimization pro
edure with the 
losed-loop 
ontroller performan
e andthe sparseness 
onsideration of optimal 
ontroller realizations. This will provide a multi-obje
tive framework to develop the optimal �nite-pre
ision 
ontroller realization thatpossesses the optimal trade o� between minimum 
omputational requirements, improvedperforman
e and stability robustness. 17
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Lemma 3 8M 2 Cm�n, U1 2 Udiag(m) and U2 2 Udiag(n),kU1MkF = kMkF and kMU2kF = kMkF :De�ne the setsT0 4= (T = " t1 t2t3 t4 # : t1 2 R; t2 2 R; t3 2 R; t4 2 R; t1t4 � t2t3 6= 0) ;T1 4= (T = " t1 t20 t4 # : t1 2 R; t2 2 R; t4 2 R; t1t4 6= 0) ; (60)T2 4= (T = " t1 t2t3 t4 # : t1 2 R; t2 2 R; t3 2 R; t4 2 R; t3 6= 0; t1t4 � t2t3 6= 0) :Constru
t the optimization problems�Æ1 4= minT2T1 max1�i�m+2 
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F (61)and �Æ2 4= minT2T2 max1�i�m+2 
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F : (62)Obviously T0 = T1 [ T2 and, therefore, �Æ = minf�Æ1; �Æ2g. De�ne the fun
tionsgn(x) = ( 1; x � 0 ;0; x < 0 : (63)Consider the optimization problem (61). 8T 2 T1 and 8i 2 f1; � � � ; m + 2g, utilizinglemma 3, we have:
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F :(64)De�ne x = vuut jt1jjt4j 2 (0;+1) ;y = sgn(t4) t2qjt1t4j 2 (�1;+1) ; (65)w = 1qjt1t4j 2 (0;+1) :21



Then fÆ1(x; y; w) 4= max1�i�m+2 
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F= max1�i�m+2 
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F ; (66)and �Æ1 4= minT2T1 max1�i�m+2 
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F = minx2(0;+1)y2(�1;+1)w2(0;+1) fÆ1(x; y; w) : (67)If �Æ = �Æ1 and (xopt1; yopt1; wopt1) is the solution of the optimization problem (67),�Æ = �Æ1 = max1�i�m+2 
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F ;(68)whi
h means that Topt = 1wopt1 " xopt1 yopt10 1=xopt1 # (69)is the optimal solution of the problem (47).By 
onsidering (62) in a similar way, we 
an prove the rest of theorem 2.
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Figure 1: Sampled-data system with digital 
ontroller realization.
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Figure 7: Comparison of FWL stability related measures for the optimal z-based andÆ-based 
ontroller realizations. Heli
opter 
ontrol system example.26
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(b) B̂mins1h based on �Æ1 and h for the optimal realization XÆoptFigure 8: Estimated minimum bit lengths as a fun
tion of sampling rate for the optimalÆ-based 
ontroller realization. Heli
opter 
ontrol system example.

Es
tim

at
ed

 M
in

im
al

 B
it 

Le
ng

th

5432 6 7 8 9 10 11 12 13 14
log (Sampling Rate)2

B̂min
28
26
24
22
20
18
16
14
12
10
8

s1 (Optimal shift realization)

Figure 9: Estimated minimum bit length as a fun
tion of sampling rate for the optimalz-based 
ontroller realization. Heli
opter 
ontrol system example.27


