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the simulation results on�rm that the optimal FWL realizations of the Æ-operator basedontroller have better losed-loop stability margins than those of the usual shift-operatorbased ontroller, espeially under fast sampling onditions.Index Terms: Sampled-data system, shift and Æ operators, �nite word length, stability.1 IntrodutionAlthough the number of ontroller implementations using oating-point proessors is in-reasing due to their redued prie, for reasons of ost, simpliity, speed, memory spaeand ease-of-programming, the use of �xed-point proessors is more desired for many in-dustrial and onsumer appliations, partiularly for mass market appliations in the au-tomotive and onsumer eletronis setors. Furthermore, due to their reliability andwell-understood properties, �xed-point proessors predominate in ritial-safety systems.It is well known that a designed stable losed-loop system may beome unstable whenthe \in�nite-preision" ontroller is implemented using a �xed-point proessor due to theFWL e�et. The \robustness" of losed-loop stability under ontroller parameter pertur-bations is therefore a ritial issue in �xed-point implementations.Many studies have addressed the problem of digital ontroller realizations with �nite-preision onsiderations [1℄{[6℄. The �rst FWL stability measure, denoted as �0, wasproposed in 1994 [3℄, but omputing expliitly this measure is still an unsolved openproblem. Reently, two tratable FWL stability related measures, onneted to �0, havebeen derived and the design proedures for searhing for optimal FWL ontroller real-izations have been developed [5℄,[6℄. In the original works [5℄,[6℄, the term lower boundstability measure was used. We prefer to use the term stability related measure, as itis a lower bound of �0 only under some restrited onditions. It an be shown that themeasure of [6℄ is \loser" to �0 than that of [5℄, and the investigations on FWL ontrollerrealizations have mainly been based on this stability related measure [7℄{[13℄.In all the above-mentioned studies, digital ontroller strutures were desribed andrealized with the usual shift operator z. A disrete-time system an also be desribedand realized with a di�erent operator, alled the delta operator Æ [14℄. Two major advan-2



tages are laimed for the use of Æ operator realization: a theoretially uni�ed formulationof ontinuous-time and disrete-time systems; and better numerial properties in FWLimplementations [2℄. For signal proessing appliations, it is well known that the digital�lter realized with the Æ operator has lower round-o� noise, lower oeÆient error andlower output error variane than the shift operator realization [15℄,[16℄. The use of the Æoperator as opposed to the shift operator in ontrol appliations has also been promoted[17℄,[18℄. However, no study to date addresses the losed-loop stability issues of FWLontroller strutures using the Æ operator formulation.This paper analyzes the losed-loop stability of sampled-data ontrol systems in the Ædomain with FWL onsiderations. We derive a new measure quantifying FWL e�ets onthe losed-loop stability. For the omputational purpose, a tratable stability related mea-sure is given. The optimal digital ontroller realization in the Æ domain an be obtained bymaximizing this measure. As the optimization riterion is non-smooth and non-onvex,an eÆient non-gradient based global optimization method, known as the ASA [19℄{[23℄,is employed to searh for the true optimal ontroller realization. It turns out that theapproah of analyzing FWL digital ontrollers in the z domain [3℄,[5℄,[6℄ an be extendedto study Æ-based FWL digital ontrollers, and the Æ-based ontroller realization has betterlosed-loop stability robustness to FWL e�ets over the z-domain approah.The paper is organized as follows. Setion 2 summarizes the de�nition of Æ operatorand the equivalent relationship between representing a disrete-time system in the z andÆ domains. Setion 3 formulates the problem and establishes neessary notations andde�nitions. A losed-loop stability related measure that an be omputed easily for a givenontroller realization is given in Setion 4. The optimal ontroller realization problem isalso de�ned in this setion, whih is to �nd a realization that maximizes the proposedmeasure. Setion 5 presents the optimization framework for obtaining the general optimalFWL ontroller realization. The problem is formulated as a onstrained optimizationproblem. Setion 6 spei�ally studies the optimal FWL PID ontroller realization. It isshown that the onstrained optimization problem an be deoupled into two unonstrainedones. In Setion 7, the e�etiveness of the proposed optimization strategy is illustratedby two numerial examples. The paper onludes in Setion 8.3



2 The Æ operatorFrom a ontinuous-time transfer funtion G(s), as the result of disretization proedurewith a sampling period h, a disrete-time transfer funtion Gz(z) based on the shiftoperator z an be obtained. De�ne the Æ operator as [14℄:Æ = z � 1h : (1)The transfer funtion Gz(z) an be re-expressed in Æ form: GÆ(Æ) = Gz(z). ObviouslyGz(z) and GÆ(Æ) are two di�erent but equivalent parameterizations representing the sameinput-output relationship. The state-spae models in the z and Æ domains are [24℄,[25℄z xz(k) = Azxz(k) +Bzu(k)y(k) = Czxz(k) +Dzu(k) ) (2)and Æ xÆ(k) = AÆxÆ(k) +BÆu(k)y(k) = CÆxÆ(k) +DÆu(k) ) (3)respetively, where the various vetors and matries are understood to have appropriatedimensions, andGz(z) = Cz(z I�Az)�1Bz +Dz = GÆ(Æ) = CÆ(Æ I�AÆ)�1BÆ +DÆ : (4)It follows from (4) that the relationships relate the two state-spae representations areAz = hAÆ + I; Bz = hBÆ; Cz = CÆ; Dz = DÆ : (5)It is well known that the state-spae realization of an input-output transfer funtion isnot unique. De�ne a generalized operator �, where � = z or Æ, andS� 4= f(A�;B�;C�;D�) : G�(�) = C�(� I�A�)�1B� +D�g : (6)Then if (A�;B�;C�;D�) 2 S�, (T�1A�T;T�1B�;C�T;D�) 2 S� for any nonsingular T.Let f��;ig be the eigenvalues of A�. The following lemma relates f�Æ;ig to f�z;ig.Lemma 1 �z;i = 1 + h �Æ;i; 8i.The proof of lemma 1 is straightforward based on the de�nition of eigenvalue and therelationshipAz = hAÆ+I. It is well known that the disrete-time system (Az;Bz;Cz;Dz)is stable if and only if all the eigenvalues j�z;ij < 1. From lemma 1, we have the onditionof the stability for the disrete-time system desribed with the Æ operator.4



Lemma 2 The disrete-time system (AÆ;BÆ;CÆ;DÆ) is stable if and only if�����Æ;i + 1h ���� < 1h; 8i : (7)3 FWL stability issue in the Æ domainConsider the sampled-data system depited in Fig. 1, where P (s) is stritly proper. Thedisrete-time plant P (Æ) = ShP (s)Hh has a state-spae realization (Ap;Bp;Cp; 0) in theÆ domain, where Ap 2 Rm�m, Bp 2 Rm�l and Cp 2 Rq�m. The ontroller C(Æ) hasa state-spae realization (A;B;C;D) with A 2 Rn�n, B 2 Rn�q, C 2 Rl�n andD 2 Rl�q. The orresponding realization ( �A; �B; �C; �D) of the losed-loop system is:�A = " Ap +BpDCp BpCBCp A # = " Ap 00 0 # + " Bp 00 In # " D CB A # " Cp 00 In #=M0 +M1XÆM2 = �A(XÆ) ; (8)�B = " Bp0 # ; �C = [Cp 0℄; �D = 0 ; (9)where all 0's are zero matries of proper dimensions, In is the n� n identity matrix, andXÆ = " D CB A # = 266664 p1 p2 � � � pq+npq+n+1 pq+n+2 � � � p2(q+n)... ... � � � ...p(l+n�1)(q+n)+1 p(l+n�1)(q+n)+2 � � � p(l+n)(q+n) 377775 (10)is the ontroller matrix. Let C(Æ) be hosen to make the feedbak system stable. Thenall the eigenvalues of �A(XÆ), denoted by f�i; 1 � i � m + ng, satisfy ����i + 1h ��� < 1h , 8i.When the realization (A;B;C;D) is implemented with a �xed-point digital ontrolproessor, XÆ is perturbed into XÆ +�XÆ due to the FWL e�ets, where�XÆ = 266664 �p1 �p2 � � � �pq+n�pq+n+1 �pq+n+2 � � � �p2(q+n)... ... � � � ...�p(l+n�1)(q+n)+1 �p(l+n�1)(q+n)+2 � � � �pN 377775 (11)and N = (l + n)(q + n). Eah element of �XÆ is bounded by �2 , that is,�(�XÆ) 4= max1�i�N j�pij � �2 : (12)5



For a �xed-point proessor of Bs bits� = 2�(Bs�BX) ; (13)where 2BX is a normalization fator suh that the absolute value of eah element of 2�BXXÆis not larger than 1. With the perturbation �XÆ, �i is moved to ~�i. The sampled-datasystem will be unstable if and only if there exists i 2 f1; � � � ; m+ng suh that ���~�i + 1h ��� � 1h .To see when the round o� error will ause the losed-loop system to beome unstable,let us introdue the following stability measure:�Æ0(XÆ) 4= inff�(�XÆ) : �A(XÆ +�XÆ) is unstableg : (14)From this de�nition, it is obvious that:Proposition 1 �A(XÆ +�XÆ) is stable if �(�XÆ) < �Æ0(XÆ).The larger �Æ0(XÆ) is, the bigger FWL error the losed-loop stability an tolerate. LetBmins be the smallest word length that, when used to implement XÆ, an guarantee thelosed-loop stability. It would be highly desirable to know Bmins . However, exept insimulation, it is impossible to test the losed-loop system by reduing Bs until it beomesunstable. Assuming that h is realized exatly, an estimate of Bmins an be provided byB̂mins0 = Int[� log2(�Æ0(XÆ))℄� 1 +BX ; (15)where Int[x℄ rounds x to the nearest integer and Int[x℄ � x. From (12) to (15), it anbe seen that the losed-loop system is stable when XÆ is implemented with a �xed-pointproessor of at least B̂mins0 bits.It is worth emphasizing an often overlooked onstraint on the FWL implementation ofÆ-based ontrollers. The state-spae equation of the Æ-based ontroller, Æ x(k) = Ax(k)+Bu(k), is realized using: x(k+1) = x(k)+h (Ax(k) +Bu(k)). The sampling period hshould be realized exatly without FWL errors. Otherwise, analysis based on XÆ may notbe valid. Spei�ally, assume that h an be realized exatly by Bh bits with the integerpart of h requiring BhI bits and the frational part of h requiring BhF bits. A modi�edestimate of the minimum bit length that an guarantee the losed-loop stability isB̂mins0h = maxfBhI; BXg+maxfBhF ; B̂mins0 �BXg : (16)6



Notie that the Æ-domain stability measure �Æ0, de�ned in (14), is similar to thestability measure �0 for z-operator based ontroller realizations given in [3℄. Like �0, howto ompute expliitly the value of �Æ0 for a given realization XÆ is also an unsolved openproblem. Thus, the stability measure �Æ0(XÆ) has very limited pratial value. Alternativemeasure that an not only quantify the FWL e�ets on stability robustness but also beomputed easily must be sought.4 FWL stability related measure in the Æ domainRoughly speaking, how easily the FWL error �XÆ an ause a stable ontrol system tobeome unstable is strongly determined by how lose �i are to the unstable boundaryand how sensitive they are to the ontroller parameter perturbations. We propose thefollowing stability related measure:�Æ1(XÆ) 4= min1�i�m+n 1h � ����i + 1h ���PNj=1 ���� ��i�pj ���XÆ ���� : (17)Let �l and ~�l be the lth eigenvalues of �A(XÆ) and �A(XÆ +�XÆ), respetively, and de�neP(XÆ) 4= 8<:�XÆ : ����~�l + 1h ����� �����l + 1h ���� � �(�XÆ) NXj=1 ������ ��l�pj �����XÆ ������ ; 8l9=; : (18)We have the following proposition:Proposition 2 �A(XÆ +�XÆ) is stable if �XÆ 2 P(XÆ) and �Æ1(XÆ) > �(�XÆ).Proof: For �XÆ 2 P(XÆ),����~�l + 1h ����� �����l + 1h ���� � �(�XÆ) NXj=1 ������ ��l�pj �����XÆ ������ ; 8l : (19)It follows from �Æ1(XÆ) > �(�XÆ) that����~�l + 1h ���� � �����l + 1h ����+ �(�XÆ) NXj=1 ������ ��l�pj �����XÆ ������< �����l + 1h ����+ 1h � ����l + 1h ���PNj=1 ���� ��l�pj ���XÆ ���� NXj=1 ������ ��l�pj �����XÆ ������ = 1h; 8l ; (20)7



whih means that �A(XÆ +�XÆ) is stable.Remarks: The requirement �XÆ 2 P(XÆ) is not over restrited. In pratie, we are onlyinterested in those �XÆ whih lie in a bounded region inluding �XÆ = 0. More plainly,we are only interested for those �XÆ lying in (see proposition 1):Q(XÆ) 4= f�XÆ : �(�XÆ) < �Æ0(XÆ)g : (21)Sine ��l�pj is ontinuous,~�l+ 1h = �l+ 1h+ NXj=1 ZC ��l�pj dpj = �l+ 1h+ NXj=10�Re 24 ��l�pj �����aj35+ i Im24 ��l�pj �����bj351A�pj ; (22)where C is the oriented segment from XÆ to XÆ +�XÆ, aj and bj are some points on C,Re[x℄ and Im[x℄ are the real and imaginary parts of the omplex number x, respetively,and i = p�1. Hene����~�l + 1h ����� �����l + 1h ���� � ������ NXj=10�Re 24 ��l�pj �����aj35+ i Im24 ��l�pj �����bj351A�pj������ : (23)Now let us ompare ������ NXj=10�Re 24 ��l�pj �����aj35 + i Im24 ��l�pj �����bj351A�pj������ (24)with NXj=1 ������ ��l�pj �����XÆ �������(�XÆ) : (25)Notie that all the N real-valued items ���� ��l�pj ���XÆ ���� are in alignment; while the N omplex-valued items �Re � ��l�pj ���aj�+ i Im � ��l�pj ���bj�� are generally out of alignment. Moreover,j�pjj � �(�XÆ), Re h ��l�pj i and Im h ��l�pj i are di�erentiable. Thus, there exists a ratherlarge � suh that 8�XÆ 2 f�XÆ : �(�XÆ) � �g,������ NXj=10�Re 24 ��l�pj �����aj35 + i Im24 ��l�pj �����bj351A�pj������ � NXj=1 ������ ��l�pj �����XÆ �������(�XÆ) : (26)The above analysis shows that P(XÆ) exists and a rather large part of Q(XÆ) an beovered by P(XÆ), that is, the ondition �XÆ 2 P(XÆ) is not too restrited.Notie that, although �Æ1(XÆ) an be used to desribe the FWL stability harateris-tis, it is not generally true that \ �A(XÆ+�XÆ) is stable if �(�XÆ) < �Æ1(XÆ)". This is in8



ontrast to �Æ0(XÆ). For this reason, we prefer to all �Æ1(XÆ) a stability related measure.Also, generally speaking, there is no rigor relationship between �Æ0(XÆ) and �Æ1(XÆ), but�Æ1(XÆ) is onneted with a lower bound of �Æ0(XÆ) in some manners, as shown in thefollowing orollary. First, de�ne� (P(XÆ)) 4= inf�XÆ2= P(XÆ)�(�XÆ) : (27)Corollary 1 �Æ1(XÆ) � �Æ0(XÆ) if � (P(XÆ)) > �Æ0(XÆ).From orollary 1, it an be seen that �Æ1(XÆ) an be onsidered as a lower bound of�Æ0(XÆ), provided that �Æ0(XÆ) is small enough. The assumption of small �Æ0(XÆ) is notover restrited, as it does not make muh sense to study the FWL e�ets on the losed-loop stability for those situations where the losed-loop systems have a very large stabilityrobustness. It should be pointed out that most of digital ontrol systems do have a smallstability robustness, whih is espeially true when fast sampling is applied.To ompute �Æ1(XÆ), f��i�pj g are needed. The following theorem shows that these eigen-value sensitivities an easily be alulated.Theorem 1 Let A = M0 + M1XM2 2 Rv�v be diagonalisable and denote f�ig itseigenvalues, where X 2 Rl�r, and M0, M1 and M2 are independent of X with properdimensions. Let xi be a right eigenvetor of A orresponding to the eigenvalue �i. De-note Mx = [x1 x2 � � � xv ℄ and My = [y1 y2 � � � yv ℄ = M�Hx , where H denotesthe transpose and onjugate operation and yi is alled the reiproal left eigenvetororresponding to �i. Then��i�X = 2666664 ��i�x11 ��i�x12 � � � ��i�x1r��i�x21 ��i�x22 � � � ��i�x2r... ... � � � ...��i�xl1 ��i�xl2 � � � ��i�xlr
3777775 =MT1 y�ixTi MT2 ; (28)where xkj is the (k; j)th element of X, and the supersript � denotes the onjugate oper-ation.Proof: Let � be a variable independent of M1 and M2. It follows from yHi xi = 1 that�yHi�� xi + yHi �xi�� = 0 : (29)9



Notie that Axi = �ixi and �i = yHi Axi. Hene��i�� = �yHi�� Axi + yHi �A�� xi + yHi A�xi�� : (30)It follows from (29) and yHi A = �iyHi that��i�� =  �yHi�� �ixi + �iyHi �xi�� !+ yHi �A�� xi = yHi �A�� xi = yHi M1�X��M2xi : (31)Let � = xkj. Then ��i�� = (yHi M1)k(M2xi)j ; (32)where (yHi M1)k and (M2xi)j are the kth and jth elements of yHi M1 and M2xi, respe-tively. This leads to (28).Sine �Æ1(XÆ) is omputationally tratable, for a given ontroller realization XÆ, wean estimate the smallest word length Bmins based on �Æ1(XÆ) using the followingB̂mins1 = Int[� log2(�Æ1(XÆ))℄� 1 +BX : (33)When the requirement for implementing h exatly is taken into aount, the estimatedsmallest bit length should be modi�ed toB̂mins1h = maxfBhI; BXg+maxfBhF ; B̂mins1 �BXg : (34)It should be pointed out that although �Æ1(XÆ) an be used to estimate Bmins , its impor-tane lies in the fat that it an be used as the optimization riterion to searh for anoptimal ontroller realization, de�ned as:XÆopt 4= arg maxXÆ2S(XÆ)�Æ1(XÆ) ; (35)where S(XÆ) 4= fXÆ : C(Æ) = C(Æ I�A)�1B +Dg : (36)is the set of all the realizations of the ontroller C(Æ). The realization XÆopt is optimal inthe sense that it has maximum stability robustness to FWL e�ets. The digital ontrollerimplemented with an optimal realization means that the stability of the losed-loop sys-tem is guaranteed with a minimum hardware requirement in terms of word length. Thedetailed design proedure for �nding an optimal ontroller realization will be disussed inthe next setion. 10



5 Optimal realization of FWL ontroller struturesin the Æ domainTo begin with the optimal design proedure, assume that an initial ontroller realizationXÆ0 is given to be XÆ0 = " D0 C0B0 A0 # ; (37)where C(Æ) = C0(Æ I�A0)�1B0 +D0. Any realization of C(Æ) an be expressed as:XÆT 4= " Il 00 T�1 #XÆ0 " Iq 00 T # ; (38)where T 2 Rn�n and det(T) 6= 0. From (8), it an be shown that the transition matrixof the losed-loop system is�A(XÆT) = " Im 00 T�1 # �A(XÆ0) " Im 00 T # : (39)From (39), applying theorem 1 results in��i�XÆ �����XÆ=XÆT = " Il 00 TT # ��i�XÆ �����XÆ=XÆ0 " Iq 00 T�T # ; (40)where ��i�XÆ ���XÆ=XÆ0 is readily omputed using theorem 1.Let �0i be the ith eigenvalue of �A(XÆ0). Obviously, �A(XÆ0) and �A(XÆT) have theidential eigenvalues, and the optimization problem (35) an be expressed as:Topt 4= arg maxT2Rn�ndet(T)6=0 0BB� min1�i�m+n 1h � ����0i + 1h ���PNj=1 ���� ��i�pj ���XÆ=XÆT����1CCA : (41)Given Topt, the optimal ontroller realization XÆopt is readily omputed using (38). Forthe omplex-valued matrix M 2 C(l+n)�(q+n) with elements mij, de�ne the matrix normkMkF 4= l+nXi=1 q+nXj=1 jmijj: (42)The maximisation problem (41) is equivalent to the minimization problemTopt 4= arg minT2Rn�ndet(T)6=0 0B� max1�i�m+n k ��i�XÆ ���XÆ=XÆT kF1h � ����0i + 1h ��� 1CA= arg minT2Rn�ndet(T)6=0  max1�i�m+n " Il 00 TT #�i " Iq 00 T�T #F! ; (43)11



where �i = ��i�XÆ ���XÆ=XÆ01h � ����0i + 1h ��� : (44)Thus �nding an optimal ontroller realization is equivalent to obtaining a similarity trans-formation that is a solution of the following onstrained nonlinear optimization problemTopt = arg minT2Rn�ndet(T)6=0 fÆ(T) (45)with the ost funtionfÆ(T) = max1�i�m+n " Il 00 TT #�i " Iq 00 T�T #F : (46)Beause the ost funtion fÆ(T) is non-smooth and non-onvex, optimization must bebased on a diret searh without the aid of ost funtion derivatives. The onventional op-timization methods for this kind of problem, suh as Rosenbrok and Simplex algorithms[26℄{[28℄, generally an only �nd a loal minimum. Notie that, although the hoie ofinitial realization will not a�et the losed-loop eigenvalues, the eigenvalue sensitivities��i�XÆ depend on the hosen initial realization. Thus for di�erent XÆ0 the shape of the ostfuntion fÆ(T) will hange, giving rise to di�erent degree of diÆulty in the optimizationproedure. It is therefore important to use an eÆient and preferably global optimizationmethod. We adopt a global optimization strategy based on the ASA [19℄{[23℄ to searhfor a true global optimum Topt. The detailed ASA optimizer applied to optimize thestability related measure in the z domain an be found in [12℄, where it is also shown howthe onstraint det(T) 6= 0 is dealt with during the optimization iteration.6 Optimal realization of FWL PID ontrollers in theÆ domainIn this setion, we spei�ally disuss the optimal realization problem of FWL Æ-basedPID ontrollers. It is well-known that a onstrained nonlinear optimization problemis generally muh more diÆult to solve than an unonstrained one. For the FWL z-based ontroller realization problem, the previous works have shown that the onstrainedoptimization problem an be deoupled into two simpler unonstrained ones [11℄,[13℄.12



This result an readily be extended to the ase of FWL Æ-based PID ontroller strutures.A digital PID ontroller is an order n = 2 system. For notational simpliity, we willalso restrit to the single-input and single-output ontroller, that is, l = q = 1. Let aninitial realization for suh a digital PID ontroller C(Æ) be (A0 2 R2�2;B0 2 R2�1;C0 2R1�2;D0 2 R). From (43), the optimal PID ontroller realization problem is de�ned asthe optimization problem:�Æ 4= minT2R2�2det(T)6=0  max1�i�m+2 " 1 00 TT #�i " 1 00 T�T #F! : (47)The aim is to avoid handling the onstraint det(T) 6= 0 diretly in optimization. Thefollowing theorem shows that the optimization problem (47) an be solved by solving forthe two simpler unonstrained problems. First de�ne the two ost funtionsfÆ1(x; y; w) = max1�i�m+2 264 w 0 00 x 00 y 1=x 375�i 264 1=w 0 00 1=x 00 �y x 375F (48)andfÆ2(x; y; u; w) = max1�i�m+2 264 w 0 00 x u0 (xy � 1)=u y 375�i 264 1=w 0 00 y �u0 (1� xy)=u x 375F : (49)Theorem 2 Let �Æ1 = minx2(0;+1)y2(�1;+1)w2(0;+1) fÆ1(x; y; w) (50)and �Æ2 = minx2(�1;+1)y2(�1;+1)u2(0;+1)w2(0;+1) fÆ2(x; y; u; w) : (51)Then �Æ = minf�Æ1; �Æ2g : (52)Moreover, if �Æ = �Æ1 and (xopt1; yopt1; wopt1) is the optimal solution of the problem (50),the optimal solution of the problem (47) is given as:Topt = 1wopt1 " xopt1 yopt10 1=xopt1 # ; (53)13



if �Æ = �Æ2 and (xopt2; yopt2; uopt2; wopt2) is the optimal solution of the problem (51), theoptimal solution of the problem (47) is given as:Topt = 1wopt2 " xopt2 (xopt2yopt2 � 1)=uopt2uopt2 yopt2 # : (54)The proof of theorem 2 is given in Appendix. Beause fÆ1(x; y; w) and fÆ2(x; y; u; w)are still non-smooth and non-onvex funtions, an eÆient global optimization methodis preferred and we will adopt the ASA optimizer to solve for these two unonstrainednonlinear optimization problems.7 Appliation examplesTwo numerial examples were used to show how the optimization approah presentedearlier an be used eÆiently for designing optimal FWL Æ-based ontroller strutures.For the omparison purpose, both the z and Æ based ontrollers were investigated in thesimulation. The optimal realization problem of FWL z-based ontroller strutures withthe stability related measure �z 1(Xz) was de�ned in the previous works [6℄{[13℄.Example 1: We onsider the following IFAC93 benhmark PID ontrol system [29℄. Theontinuous-time plant model isP (s) = 25(�0:4 s+ 1)(s2 + 3 s+ 25)(5 s+ 1) (55)and the designed PID ontroller isC(s) = 1:311 + 0:431s + 1:048 s1 + 12:92 s : (56)The sampled-data system with the in�nite-preision digital ontroller in z-domain is stablewhen the sampling period h � 23. The range of the sampling period tested in thesimulation was 23 to 2�12, to over the slow to very fast sampling onditions.Given a sampling rate, the disrete-time plant model P (Æ) and the digital ontrollerC(Æ) with the Æ operator were obtained using the disretizing routines in MATLAB. Thedisretization proedure was based on the bilinear (Tustin) transformations = 2h 1� z�11 + z�1 (57)14



with Æ = z�1h . The initial realization XÆ0 was hosen to be the \ontrollable" anonialform. When XÆ0 was provided, the eigenvalues f�0i g of the ideal losed-loop systemwithout FWL e�ets and the eigenvalue sensitivity matries f�ig were omputed. TheASA was then used to searh for an optimal transform matrix Topt by solving for theminimization problem (47) using theorem 2. This produed a orresponding optimalontroller realization XÆopt that maximizes the stability related measure �Æ1(XÆ). Theentire proess was repeated with the z operator parameterization to obtain the optimalz-based realization Xz opt that maximizes the stability related measure �z 1(Xz).Fig. 2 shows the values of the FWL stability related measure �Æ1 given di�erent sam-pling rates for the initial and optimal Æ-based ontroller realizations XÆ0 and XÆopt, re-spetively. It an be seen that, for this example, optimization ahieved an improvementby more than an order of magnitude on the stability related measure. Fig. 3 (a) and (b)depit the estimated minimum bit lengths, B̂mins1 , based only on the values of the stabilityrelated measure for XÆ0 and XÆopt, respetively. As mentioned previously, for the Æ op-erator parameterization, the sampling period h should be implemented exatly withoutFWL errors. Taking this into aount, the modi�ed estimate of the minimum bit lengthfor the optimal realization XÆopt is given in Fig. 3 ().Fig. 4 ompares the FWL stability related measure for XÆopt with that of the optimalz-operator ontroller realization Xz opt. It is seen that the optimal Æ-based ontroller re-alization has muh larger FWL losed-loop stability margin than its z-based ounterpart.Furthermore, as the sampling rate is inreasing, the stability related measure for XÆoptis improving slightly and eventually leveling out while the stability related measure forXz opt is dereasing exponentially. This on�rms with a well-known fat that the Æ param-eterization has signi�ant advantages over the usual z parameterization, espeially underfast sampling onditions. Fig. 5 gives the estimated minimal bit length for the optimalz-operator ontroller realization. Notie that it does not need to onsider h separatelyin the z-operator parameterization, as the e�et of h has already been inluded in theontroller realization Xz. Comparing Fig. 5 with Fig. 3 (), even taking into aount therequirement of implementing h exatly, the optimal Æ-based realization requires a smallerbit length in FWL implementation than the optimal z-based realization.15



Example 2: This example is the linearized model of a CH-47 tandem-rotor heliopter inhorizontal motion about a nominal airspeed [30℄. The ontinuous-time plant model P (s)given by [30℄ is in the state-spae form (As;Bs;Cs;Ds) withAs = 26664 �0:02 0:05 2:4 �32�0:14 0:44 �1:3 �300 0:018 �1:6 1:20 0 1 0 37775 ; Bs = 26664 0:14 �0:120:36 �8:60:35 0:0090 0 37775 ;Cs = " 0 1 0 00 0 0 57:3 # ; Ds = " 0 00 0 # : (58)A stabilizing ontinuous-time ontroller C(s) was designed using the LQG method [6℄ andthe ontroller C(s) is given in the state-spae form (At;Bt;Ct;Dt) withAt = 26664 �0:0175 �0:1436 0:3852 �26:35180:0084 �17:6863 �4:0536 �13:90650:001 0:0018 �6:7274 �33:25840 0:0031 1 �5:1191 37775 ; Bt = 26664 0:0158 �0:24059:0660 �0:17610:0091 0:2289�0:0031 0:0893 37775 ;Ct = " 0:0033 �0:0472 �14:6421 �60:8894�0:0171 1:0515 �0:2927 �3:2469 # ; Dt = " 0 00 0 # : (59)The range of sampling rate used in the simulation was 22 to 214.Using the generalized operator � to represent Æ or z, depending on whih operator is a-tually employed, the disrete-time plant model P (�) and the disrete-time ontroller C(�)were obtained for eah given sampling rate using the disretizing routines in MATLAB.Beause the version of MATLAB, whih we have, does not have the disretizing routinethat an provide the anonial state-spae model for multi-input multi-output transferfuntions, the initial ontroller realization X� 0 was hosen to be the non-anonial formas the result of a diret disretizing the state-spae model of C(s) given in (59). TheASA was used to �nd the optimal Topt and hene the optimal X� opt that maximizes thestability related measure �� 1(X�) for both � = Æ and � = z.Fig. 6 plots the FWL stability related measures as funtion of sampling rate for theinitial and optimal Æ-operator ontroller realizations XÆ0 and XÆopt, where it an be seenthat the optimization very e�etively improves the FWL losed-loop stability robustness.Fig. 7 ompares the FWL stability related measure for the Æ-based optimal realizationXÆopt with that of the z-based optimal realization Xz opt. Again, as the sampling rate in-reases, the stability related measure for Xz opt dereases exponentially while the stability16



related measure for XÆopt does not redue, and the optimal Æ-based ontroller realiza-tion has muh better FWL losed-loop stability robustness than its z-based ounterpart.Fig. 8 depits the estimated minimum bit length, B̂mins1 , based only on the value of �Æ1for the optimal Æ-operator realization XÆopt and the modi�ed estimate of the minimumbit length, B̂mins1h , taking into aount the sampling period h. The estimated minimumbit length for the z-operator realization Xz opt is given in Fig. 9. Again, XÆopt requires asmaller bit length to implement than Xz opt.8 ConlusionsThe paper addresses the problem of digital ontroller strutures realized using the Æ op-erator and the relevant issues of losed-loop stability subjet to FWL implementation. Atratable stability related measure, quantifying the robustness of losed-loop stability tothe FWL e�ets in the Æ domain, has been derived. It has been shown that the optimalrealization problem of �nite-preision Æ-based digital ontrollers an be interpreted asa onstrained nonlinear optimization problem. In partiular, for Æ-based PID ontrollerrealizations, the optimization an be deoupled into two unonstrained optimization prob-lems. An eÆient global optimization strategy based on the ASA has been adopted tosolve for this FWL optimal ontroller realization problem in the Æ domain.Two numerial examples have been used to illustrate the optimal design proedure.The results obtained also demonstrate that the digital ontrollers desribed with the Æoperator has muh better FWL losed-loop stability robustness in fast sampling ondi-tions, ompared with the digital ontrollers desribed with the usual shift operator. Inthis work, the main emphasis has been foused on the important FWL losed-loop sta-bility issues of sampled-data ontrol systems. Ongoing work will explore the integrationof the proposed optimization proedure with the losed-loop ontroller performane andthe sparseness onsideration of optimal ontroller realizations. This will provide a multi-objetive framework to develop the optimal �nite-preision ontroller realization thatpossesses the optimal trade o� between minimum omputational requirements, improvedperformane and stability robustness. 17
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Lemma 3 8M 2 Cm�n, U1 2 Udiag(m) and U2 2 Udiag(n),kU1MkF = kMkF and kMU2kF = kMkF :De�ne the setsT0 4= (T = " t1 t2t3 t4 # : t1 2 R; t2 2 R; t3 2 R; t4 2 R; t1t4 � t2t3 6= 0) ;T1 4= (T = " t1 t20 t4 # : t1 2 R; t2 2 R; t4 2 R; t1t4 6= 0) ; (60)T2 4= (T = " t1 t2t3 t4 # : t1 2 R; t2 2 R; t3 2 R; t4 2 R; t3 6= 0; t1t4 � t2t3 6= 0) :Construt the optimization problems�Æ1 4= minT2T1 max1�i�m+2 " 1 00 TT #�i " 1 00 T�T #F (61)and �Æ2 4= minT2T2 max1�i�m+2 " 1 00 TT #�i " 1 00 T�T #F : (62)Obviously T0 = T1 [ T2 and, therefore, �Æ = minf�Æ1; �Æ2g. De�ne the funtionsgn(x) = ( 1; x � 0 ;0; x < 0 : (63)Consider the optimization problem (61). 8T 2 T1 and 8i 2 f1; � � � ; m + 2g, utilizinglemma 3, we have:" 1 00 TT #�i " 1 00 T�T #F = 264 1 0 00 t1 00 t2 t4 375�i 264 1 0 00 1=t1 00 �t2=(t1t4) 1=t4 375F =26664 1=qjt1t4j 0 00 qjt1=t4j 00 sgn(t4)t2=qjt1t4j qjt4=t1j 37775�i 26664 qjt1t4j 0 00 qjt4=t1j 00 �sgn(t4)t2=qjt1t4j qjt1=t4j 37775F :(64)De�ne x = vuut jt1jjt4j 2 (0;+1) ;y = sgn(t4) t2qjt1t4j 2 (�1;+1) ; (65)w = 1qjt1t4j 2 (0;+1) :21



Then fÆ1(x; y; w) 4= max1�i�m+2 264 w 0 00 x 00 y 1=x 375�i 264 1=w 0 00 1=x 00 �y x 375F= max1�i�m+2 " 1 00 TT #�i " 1 00 T�T #F ; (66)and �Æ1 4= minT2T1 max1�i�m+2 " 1 00 TT #�i " 1 00 T�T #F = minx2(0;+1)y2(�1;+1)w2(0;+1) fÆ1(x; y; w) : (67)If �Æ = �Æ1 and (xopt1; yopt1; wopt1) is the solution of the optimization problem (67),�Æ = �Æ1 = max1�i�m+2 264 wopt1 0 00 xopt1 00 yopt1 1=xopt1 375�i 264 1=wopt1 0 00 1=xopt1 00 �yopt1 xopt1 375F= max1�i�m+2  1wopt1 264 wopt1 0 00 xopt1 00 yopt1 1=xopt1 375�i 264 1=wopt1 0 00 1=xopt1 00 �yopt1 xopt1 375wopt1F ;(68)whih means that Topt = 1wopt1 " xopt1 yopt10 1=xopt1 # (69)is the optimal solution of the problem (47).By onsidering (62) in a similar way, we an prove the rest of theorem 2.
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Figure 1: Sampled-data system with digital ontroller realization.
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Figure 2: FWL stability related measure �Æ1 as a funtion of sampling rate for two di�erentÆ-based ontroller realizations. IFAC93 benhmark PID ontrol system.23
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Figure 5: Estimated minimum bit length as a funtion of sampling rate for the optimalz-based ontroller realization. IFAC93 benhmark PID ontrol system.25
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Figure 6: FWL stability related measure �Æ1 as a funtion of sampling rate for two di�erentÆ-based ontroller realizations. Heliopter ontrol system example.
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Figure 7: Comparison of FWL stability related measures for the optimal z-based andÆ-based ontroller realizations. Heliopter ontrol system example.26
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