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Elastic-Net Prefiltering for Two-Class Classification
Xia Hong, Sheng Chen, Fellow, IEEE, and Chris J. Harris

Abstract—A two-stage linear-in-the-parameter model construc-
tion algorithm is proposed aimed at noisy two-class classification
problems. The purpose of the first stage is to produce a prefiltered
signal that is used as the desired output for the second stage
which constructs a sparse linear-in-the-parameter classifier. The
prefiltering stage is a two-level process aimed at maximizing a
model’s generalization capability, in which a new elastic-net model
identification algorithm using singular value decomposition is em-
ployed at the lower level, and then, two regularization parameters
are optimized using a particle-swarm-optimization algorithm at
the upper level by minimizing the leave-one-out (LOO) misclassi-
fication rate. It is shown that the LOO misclassification rate based
on the resultant prefiltered signal can be analytically computed
without splitting the data set, and the associated computational
cost is minimal due to orthogonality. The second stage of sparse
classifier construction is based on orthogonal forward regression
with the D-optimality algorithm. Extensive simulations of this
approach for noisy data sets illustrate the competitiveness of this
approach to classification of noisy data problems.

Index Terms—Cross-validation (CV), elastic net (EN), forward
regression, leave-one-out (LOO) errors, linear-in-the-parameter
model, regularization.

I. INTRODUCTION

IN most supervised learning algorithms using input/output
data sets, system input/output mappings are constructed

using parametric models, such as neural networks, kernel re-
gression, and classification models. The two-class classification
problem can be configured into a regression framework that
solves a separating hyperplane for the two classes, with the
known class labels being used as the system output examples
for model training. Models are identified according to some
objective criteria; parsimonious models are preferable in engi-
neering applications since a models’ computational complexity
scales with its model complexity. Moreover, a parsimonious
model is easier to interpret from the viewpoint of knowledge ex-
traction. Consequently, a practical nonlinear modeling principle
is to find the smallest model that generalizes well, i.e., having
the capability to accurately approximate the system output for
unseen input data. Fundamental to the evaluation of model
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generalization capability is the concept of cross-validation (CV)
[1], which can be used either in parameter estimation (e.g.,
tuning regularization parameter [2], [3] and forming new pa-
rameter estimates [4]) or to derive model selection criteria
based on information theoretic principles [5], which regularizes
model structure. Note that information-based criteria of model
generalization, such as the Akaike information criterion [6],
often include a penalty term to avoid an oversized model which
may tend to overfit to the training data set.

Modeling techniques using model construction/selection
ideas have been widely studied, e.g., support vector machine
(SVM), relevance vector machine, and orthogonal forward
regression (OFR) [7]–[10]. The highly utilized orthogonal least
squares algorithm [11] was developed as a practical linear-in-
the-parameter model construction algorithm. A large class of
nonlinear representations, e.g., radial basis function (RBF) net-
works and SVM, can be classified as the linear-in-the-parameter
models. The orthogonal forward selection (OFS) procedure can
be applied to construct parsimonious two-class classifiers incre-
mentally by maximizing the Fisher ratio of class separability
measure [12], [13] or by minimizing misclassification rate [14].

The regularization-assisted OLS approaches have been pro-
posed based on minimizing the leave-one-out (LOO) criteria
for regression, classification, and probability density estima-
tion [15]. In particular, each RBF unit has a tunable center
vector as well as an adjustable diagonal covariance matrix
[15]. Specifically, at each forward-regression stage of the model
construction procedure, one RBF unit’s center vector and diag-
onal covariance matrix are optimized using a particle-swarm-
optimization (PSO) algorithm. The PSO [16], [17] constitutes
a population-based stochastic optimization technique, which
was inspired by the social behavior of bird flocks or fish
schools. The algorithm commences with random initialization
of a swarm of individuals, referred to as particles, within the
specific problem’s search space. It then endeavors to find a
globally optimum solution by gradually adjusting the trajectory
of each particle toward its own best location and toward the best
position of the entire swarm at each optimization step. The PSO
method is popular, owing to its simplicity in implementation
and ability to rapidly converge to a “reasonably good” solution
and to “steer clear” of local minima. The PSO has been success-
fully applied to wide-ranging optimization problems [18]–[22].

Regularization methods are developed to carry out parameter
estimation and model structure selection simultaneously [23],
[24]. It has been shown [25], [26] that l2 norm parameter
regularization is equivalent to a maximized a posteriori prob-
ability estimate of parameters from Bayesian viewpoint by
adopting a Gaussian prior for parameters. The regularization
[2], [3] uses a penalty function on l2 norms of the parameters.
From the powerful Bayesian learning viewpoint, the l2 norm
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regularization parameter is equivalent to the ratio of the related
hyperparameter to the noise parameter, lending to an iterative
evidence procedure for solving the optimal regularization pa-
rameters [23], [26].

Alternatively, the model sparsity can be achieved by min-
imizing the l1 norm of the parameters. The l1 norm mini-
mization is fundamental to the basis pursuit or least absolute
shrinkage and selection operator (LASSO) [27], [28]. The
least angle regression (LAR) procedure [29] is developed for
solving the problem efficiently. The Bayesian interpretation for
LASSO is simply by adopting a Laplacian prior for parameters.
The advantage of LASSO is that it can achieve much sparser
models by forcing more parameters to zero than models derived
from the minimization of the lp norm (as most lp norms will
produce small, but nonzero, parameter values). Unfortunately,
introducing the nondifferentiable l1 norm in the cost function
introduces difficulties of model parameter estimation and find-
ing an appropriate l1 regularizer. Another disadvantage of using
l1 optimization is that a group of correlated terms cannot be se-
lected together, which is not desirable if model interpretability
is important. Alternatively, the use of l2 will improve model
generalization but cannot be used for model selection by itself.
Combining a locally regularized orthogonal least squares model
selection [30] with D-optimality experimental design enhances
model robustness [25].

Recently, a promising concept, the elastic net (EN), has been
proposed by minimizing both the l1 and l2 norms of the model
parameters [24]. The EN retains the model sparsity of LASSO,
while strongly correlated terms tend to be in or out of the model
together. It is shown [24] that the EN problem can be trans-
formed into an equivalent LASSO problem on augmented data,
based on which the LAR procedure is applicable [24]. Now, as
there are two regularization parameters in the EN, the CV has to
be performed over a 2-D space. The tenfold CV was used [24]
in choosing two regularization parameters by searching over a
grid of l2 norm regularization parameter values. Specifically for
each fixed l2 norm regularization parameter, the algorithm LAR
produces the entire solution path of the EN, which is used to
select l1 norm regularization parameter by tenfold CV. Clearly,
this may not yield the optimal parameters if the grid search is
set at a coarse level, but increasing the grid search at a very
fine level would inevitably increase the computational cost. It
would be desirable that the two regularization parameters can
be optimized simultaneously based on CV as well as in an
efficient manner.

In this paper, we propose a novel two-stage linear-in-the-
parameter classifier construction algorithm for a two-class
noisy classification problem in order to avoid training data
overfitting. The fundamental idea is that a sparse classifier is
constructed using a prefiltered signal, rather than the original
class label vector, as the desired output. The EN regularization
is applied to produce the prefiltered signal in the first stage.
A two-level algorithm is introduced, aimed at maximizing a
model’s generalization capability. At the lower level, a new EN
model identification algorithm is employed based on significant
eigenvectors using the regression matrix, and the two regular-
ization parameters are optimized using a PSO algorithm at the
upper level by minimizing the LOO misclassification rate using

the prefiltered signal. It is shown that the LOO misclassification
rate can be analytically computed without actually splitting the
data set, and the associate computation cost is minimal due to
the orthogonality. The second stage of sparse classifier con-
struction is based on OFR with D-optimality algorithm [10].

This paper is organized as follows. Section II formulates the
proposed two-stage two-class classifier construction algorithm.
In Section III, we introduced the LOO misclassification rate
formula based on the resultant prefiltered signal, which is
used as the metric for optimizing the two EN regularization
parameters using PSO. This completes the derivation of the
proposed two-level learning algorithm for the first stage of
classifier construction. In Section IV, the simulation results
have been employed to demonstrate the effectiveness of pro-
posed approaches, leading to a discussion on the merits of this
algorithm. Finally, some conclusions are given in Section V.

II. TWO-STAGE CLASSIFIER USING EN PREFILTERING

In this section, we initially outline the concept of linear-
in-the-parameter classifier and then introduce the proposed
construction algorithm for a two-stage classifier, as shown in
Fig. 1. The proposed model construction algorithm includes
stage one of initial generation of the prefiltered signal using EN
regularization based on singular value decomposition (SVD),
followed by stage two of a two-class classifier construction
using the OFR with D-optimality algorithm [10].

A. Linear-in-the-Parameter Classifier

Consider an approximately balanced two-class noisy train-
ing data set DN = {x(k), y(k)}Nk=1, in which y(k) ∈ {1,−1}
denotes the class type for each data sample x(k) ∈ �n. Let
a linear-in-the-parameter classifier f(x) : �n → {1,−1} be
formed using the data set, given by

ŷ(k) = sgn (f(k)) , with f(k) =

L∑
i=1

θiφi (x(k)) (1)

with

sgn(s) =

{
1, if s ≥ 0
−1, if s < 0

(2)

where φi(•) denotes the classifier kernels with a known nonlin-
ear basis function, such as RBF. θi denotes the model param-
eters, and L is the number of regressors (kernels). We initially
consider an overparameterized model where L classifier kernels
may be constructed using all or part of the training data set
as centers for RBF kernels. ŷ(k) is the model-predicted class
label for x(k). By letting φi = [φi(x(1)), . . . , φi(x(N))]T, for
1 ≤ i ≤ L, and defining

y =

⎡
⎢⎣

y(1)
...

y(N)

⎤
⎥⎦ Φ = [φ1, . . . ,φL ]

θ =

⎡
⎣ θ1

...
θL

⎤
⎦ e =

⎡
⎢⎣

e(1)
...

e(N)

⎤
⎥⎦



288 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 43, NO. 1, FEBRUARY 2013

Fig. 1. Schematic diagram of two-stage classifier using EN prefiltering.

the regression model (1) can be written in the matrix form

y = Φθ + e. (3)

Geometrically, the hyperplane defined by

L∑
i=1

θiφi(x) = 0 (4)

divides the data into two classes.

B. Prefiltering Using SVD-Based EN Regularization

The aim of prefiltering is to define a robust classifica-
tion boundary over the training data set which can be used
for classifier construction as target. Consider the SVD Φ =
UΣVT, where Σ = diag[s1, . . . , sns

, 0, . . . , 0] ∈ �L×L, s1 ≥
s2 > · · · ≥ sns

> 0, are the resultant ns nonzero singular
values. U = [u1, . . . ,uL] ∈ �N×L, and V = [v1, . . . ,vL] ∈
�L×L, satisfying UTU = IL and VTV = IL, in which Ip de-
notes the p-dimensional identity matrix. The regression model
(3) can alternatively be expressed as

y = Urg + e (5)

where Ur = [u1, . . . ,uns
] ∈ �N×ns and g = [g1, . . . , gns

]T.
Denote the row vectors of Ur as ur(k), k = 1, . . . , N . Clearly
UT

r Ur = Ins
. The SVD maps the original L-dimensional

space spanned by Φ to a low-dimensional space spanned by
Ur which represents the true dimension in the sense that Φ =∑ns

i=1 siuiv
T
i .

We note that solving (4) by minimizing ‖y −Φθ‖2 is an ill-
posed problem; thus, some structural regularization is needed

to emphasize the smoothness of the decision boundary in order
to avoid overfitting to the noise. For example, for any fixed pos-
itive λ1 and λ2, the naive EN (NEN) criterion is defined as [24]

L(λ1, λ2,θ) = ‖y −Φθ‖2 + λ2‖θ‖2 + λ1‖θ‖1 (6)

where ‖ • ‖ denotes the Euclidean norm and ‖θ‖1 =
∑L

i=1 |θi|.
The NEN estimator is the minimizer of

θ̂NEN = argmin
θ

{L(λ1, λ2,θ)} . (7)

This can be transformed into an equivalent LASSO problem
on augmented data, based on which the LAR procedure is
applicable, referred to as LAR-EN [24]. The EN has some
desirable properties, as it maintains the model sparsity of
LASSO, but is not as aggressive as LASSO in excluding
correlated terms in the model. This is because these terms tend
to be in or out of the model together as a result of the l2 norm
regularization [24]. Note that there is no analytical solution to
(6) unless the model terms are orthogonal.

In this paper, we propose to apply the following SVD-based
EN criterion based on (5)

Le(λ1, λ2,g) = ‖y −Urg‖2 + λ2‖g‖2 + λ1‖g‖1. (8)

It makes sense to find a robust classification boundary in the
lower dimensional latent space via SVD to divide the noisy two-
class data sets. There is also a clear computational advantage
in that the NEN solution for g can be obtained by setting the
subderivative ∂Le/∂g = 0, i.e.,

UT
r y − λ1

2
sign(g) = (1 + λ2)g (9)
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where sign(g) = [sign(g1), . . . , sign(gns
)]T, with

sign(s)

⎧⎨
⎩

= 1, if s > 0
= −1, if s < 0
∈ [−1, 1], if s = 0.

(10)

The solution of (9) is given by

g
(NEN)
i =

(
1

1+λ2

∣∣∣g(LS)
i

∣∣∣− λ1

2

1+λ2

)
+

sign
(
g
(LS)
i

)
(11)

with g
(LS)
i = uT

i y, i = 1, . . . , ns, and

z+ =

{
z, if z > 0
0, if z ≤ 0.

(12)

Note that the cost function (8) contains sparsity inducing l1

norm so that some parameters g(NEN)
i will be zeros, producing

a sparse model containing nm(� ns) significant singular vec-
tors. Let g(NEN) = [g̃

(NEN)
1 , . . . , g̃

(NEN)
nm ] ∈ �nm , consisting of

all nonzero parameters, and let the submatrix of Ur consisting
of columns corresponding to nonzero parameters be denoted by
Us = [ũ1, . . . , ũnm

] ∈ �N×nm . We construct a prefiltered sig-
nal using ypre = [ypre(1), . . . , ypre(N)]T = Usg

(NEN). This
means that dimension is further reduced in latent space by
eliminating any term with |g(LS)

i | less than threshold λ1/2.

Since |g(LS)
i |, which is subject to noise in estimation, directly

measures the correlation between each singular vector and the
noisy system output, this means that, if λ1 is appropriately
chosen to noise level, we can significantly reduce error propa-
gation from the noisy system output via model parameters, thus
producing smoother decision boundary.

Instead of thresholding by λ1, the effect of λ2 scales down
parameters by multiplication, which offers another degree of
freedom in controlling the parameter variance. In the original
EN procedure [24], a double-shrinkage problem has been noted
empirically, so a rescaling step was applied to the solutions
obtained by (7). Clearly in the case of minimizing (6) where
the model bases are correlated, the resultant sparse model terms
are dependent on the value of λ2; hence, the effect of λ2 lies in
the terms selected into the model as well as model parameters.
However, as our proposed criterion (8) is based on orthogonal
space, this means that the rescaling step, if applied, would be
equivalent to setting λ2 = 0. In order to have more flexibility
in regularization control, we opt to use the so-called NEN
solution, which includes λ1 = 0 or λ2 = 0 as special case. An
efficient procedure aimed at optimizing the two regularization
parameters based on CV is introduced in Section III that is
different from any existent approaches.

C. Sparse Classifier Construction Using OFR With
D-Optimality

The aim of sparse classifier construction stage is to identify a
linear-in-the-parameter classifier as described in Section II-A,
yet with good approximation and, simultaneously, a sparse
representation containing only a small number of kernels. The
advantages of parsimonious models are that they are computa-

tionally more efficient and easier to interpret in physical appli-
cations. We note that, although ypre obtained previously defines
a classification boundary in the latent space via SVD and can
be used to generate predicted labels over the training data set, it
cannot be directly used as a classifier for unseen data samples
nor does it lead to a sparse kernel classifier, because each singu-
lar vector ui is a linear combination of all the kernels φi(x(k)).

In order to construct a kernel classifier f(k) with a minimum
number of classifier kernels, the prefiltered signal ypre(k), k =
1, . . . , N , is used as the desired output. This section outlines the
OFR (OFS) with D-optimality algorithm [10], via which the
classifier kernels are selected into the classifier via a forward-
regression manner. The OFR, often based on the modified
Gram–Schmidt (MGS) procedure, is an efficient method in-
corporating structure selection and parameter estimation simul-
taneously. The D-optimality is a model structure robustness
criterion in experimental design to tackle ill conditioning in
model structure.

Specifically, we can write a regression equation linking
ypre(k) and f(k) as

ypre(k) = f(k) + ε (x(k))

=
L∑

i=1

θiφi (x(k)) + ε (x(k)) (13)

where ε(x(k)) is the modeling error at x(k) between the
proposed two-class kernel classifier and the prefiltered sig-
nal. Because the target ypre(k) is smooth and free of noise,
E[ε2(x(k))] should be just the approximation error which
should be much smaller than E[y2pre(x(k))]. It can then be
assumed that the classification performance of the final optimal
sparse model classifier f(k) is close to that of the prefiltered
signal ypre(k). For example, unless

|ε (x(k))| > |f(k)| sgn [ε (x(k))] 	= sgn [f(k)] (14)

which is unlikely, the predicted class label based on the sparse
classifier f(k) should be the same as that of ypre(k).

Letting ε = [ε(x(1)), . . . , ε(x(N))]T, the regression model
(13) can be written in the matrix form

ypre = Φθ + ε. (15)

The orthogonal decomposition of the matrix Φ is

Φ = WA (16)

where

A =

⎡
⎢⎢⎢⎣
1 a1,2 · · · a1,L

0 1
. . .

...
...

. . .
. . . aL−1,L

0 · · · 0 1

⎤
⎥⎥⎥⎦ (17)

W = [w1, . . . ,wL] (18)

with columns satisfying wT
i wj = 0, if i 	= j. The regression

model (15) can alternatively be expressed as

ypre = WΓ+ ε (19)
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where the orthogonal weight vector Γ = [γ1, . . . , γL]
T. The

OFS with D-optimality algorithm adopts the following least
squares criterion:

J(Γ) = εTε (20)

to estimate Γ. Aθ = Γ can then be used to determine model
parameters θ, given A and Γ.

The OFR selects model terms one at a time with the
final model consisting of Φs, a submatrix consisting of
n̄s columns selected from Φ. The D-optimality is defined
as maxdet{ΦT

s Φs}. Since det{ΦT
s Φs} = det{WT

s Ws} =∏n̄s

l=1 w
T
l wl, where Ws is the resultant orthogonal matrix from

Φs [as in (16)], the combined error reduction ratio defined as

[cerr]l =

(
wT

l wlγ
2
l + β log

(
wT

l wl

))
yT
preypre

(21)

was used for model term selection at the lth forward selec-
tion stage, and this is aimed at maximizing the reduction of
modeling error (term wT

l wlγ
2
l ) and the log D-optimality (term

log(wT
l wl)) simultaneously, where β is a fixed small positive

weighting for the D-optimality cost.
Note that, at some stage, for example, the n̄s-th stage, the

remaining unselected model terms will have [cerr]l ≤ 0 for
n̄s + 1 ≤ l ≤ L, and this terminates the model construction
process. The OFS with the D-optimality algorithm utilizing the
MGS scheme is given in Appendix A. Since the D-optimality
naturally penalizes overparameterization, the modeling pro-
cessing can automatically terminates so as to achieve a sparse
model. In this paper, we simply set β as a predetermined very
small number.

III. CHOOSING REGULARIZATION PARAMETERS

FOR PREFILTERING BY OPTIMIZING THE LOO
MISCLASSIFICATION RATE USING PSO

Following Section II-B, it is crucial that the prefiltered signal
ypre(k) is optimized with regard to the regularization parame-
ters in terms of its generalization ability. Consider the general
model selection problem from a set of K predictors ypre(k) due
to models generated using different settings of regularization
parameters of λ = [λ1, λ2]

T indexed by j = 1, 2, . . . ,K. The
misclassification rate for a given two-class classifier based on
(5) can be evaluated based on the misclassified data examples as

J(λ) =
1

N

N∑
k=1

Id [y(k)ypre(k)] (22)

where Id(•) denotes the misclassification indication function
for a data example and is defined as

Id(v) =

{
1, if v < 0
0, if v ≥ 0.

CV criteria are metric that measure a model’s generalization
capability. To optimize the model generalization capability, the
model selection criteria are often based on CV [1], [31]. One
commonly used version of CV is the so-called LOO CV. By
excluding the kth data example in the estimation data set, the
output of the model for the kth data example using a model esti-

mated by using remaining (N − 1) data examples is denoted as
y
(−k)
pre (k). The associated predicted class label is calculated by

ŷ(−k)(k) = sgn
(
y(−k)
pre (k)

)
. (23)

It is desirable to derive a classifier with good generalization
capability, i.e., to derive a classifier with a minimal misclas-
sification error rate over a new data set that has not been used
in model estimation. The LOO CV is often used to estimate
generalization error for choosing among different network ar-
chitectures [1]. The LOO misclassification rate is computed by

J (−)(λ)=
1

N

N∑
k=1

Id
[
y(k)y(−k)

pre (k)
]
=

1

N

N∑
k=1

Id [d(k)] (24)

in which d(k) denotes y(k)y(−k)
pre (k). If d(k) < 0, then the kth

data sample is misclassified, and the class label produced by
the model y(−k)

pre (k) is different from the actual class label y(k).
Direct evaluation of the predicted class labels (23) requires

extensive computational effort, so instead, it is shown in the
following that the LOO misclassification rate can be evaluated
without actually sequentially splitting the estimation data set.

From (9), the NEN parameter estimator based on a specified
λ using N data points can be represented by

g(NEN) =
1

1 + λ2

(
UT

s y − λ1

2
sign

(
g(NEN)

))
. (25)

The model residual is

e(k) = y(k)−
(
g(NEN)

)T
ũs(k)

= y(k)− 1

1 + λ2

(
yTUs −

λ1

2

[
sign

(
g(NEN)

)]T)−1

× ũs(k). (26)

If the data sample indexed at k is removed from the estimation
data set, the LOO EN parameter estimator obtained by using
only (N − 1) data points is given by

g(NEN,−k) =

{[
U(−k)

s

]T
U(−k)

s + λ2Inm

}−1

×
([

U(−k)
s

]T
y(−k) − λ1

2
sign

(
g(NEN,−k)

))

=
[
H(−k)

]−1
([

U(−k)
s

]T
y(−k)

− λ1

2
sign

(
g(NEN,−k)

))
(27)

where U
(−k)
s , y(−k), and g(NEN,−k) denote the resultant re-

gression matrix, output, and EN parameter estimate vector,
respectively. The LOO error evaluated at k is given by

e(−k)(k) = y(k)−
[
g(NEN,−k)

]T
ũs(k)

= y(k)−
([

y(−k)
]T

U(−k)
s

−λ1

2

[
sign

(
g(NEN,−k)

)]T)

×
[
H(−k)

]−1

ũs(k). (28)
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It can be easy to verify that

H(−k) =(1 + λ2)Inm
− ũs(k)ũ

T
s (k) (29)[

y(−k)
]T

U(−k)
s =yTUs − y(k)ũT

s (k). (30)

Applying the matrix inversion lemma to (29) yields[
H(−k)

]−1

=
[
(1 + λ2)Inm

− ũs(k)ũ
T
s (k)

]−1

=
1

1 + λ2

[
Inm

+
ũs(k)ũ

T
s (k)

1 + λ2 − ũT
s (k)ũs(k)

]
(31)[

H(−k)
]−1

ũs(k) =
1

1 + λ2

ũs(k)

1− ũT
s (k)ũs(k)/(1 + λ2)

. (32)

Substituting (30) and (32) into (28) yields

e(−k)(k)

=y(k)−
(
yTUs−y(k)ũT

s (k)−
λ1

2

[
sign(g(NEN,−k))

]T)

× 1

1+λ2

ũs(k)

1−ũT
s (k)ũs(k)/(1+λ2)

=
y(k)− 1

1+λ2

(
yTUs− λ1

2

[
sign(g(NEN,−k))

]T)
ũs(k)

1−ũT
s (k)ũs(k)/(1+λ2)

=
e(k)

1−ũT
s (k)ũs(k)/(1+λ2)

(33)

if sign(g(NEN,−k))=sign
(
g(NEN)

)
. (34)

Hence

y(k)− y(−k)
pre (k) =

y(k)− ypre(k)

1− ũT
s (k)ũs(k)/(1 + λ2)

. (35)

Multiplying both sides of (35) with y(k) and applying y2(k) =
1 ∀k yield

1− y(k)y(−k)
pre (k) =

1− ypre(k)y(k)

1− ũT
s (k)ũs(k)/(1 + λ2)

(36)

so that

d(k)=y(k)y(−k)
pre (k)=

ypre(k)y(k)− ũT
s (k)ũs(k)/(1 + λ2)

1− ũT
s (k)ũs(k)/(1 + λ2)

.

(37)

We introduce a mild assumption that (sign(g(NEN,−k)) =
sign(g(NEN))) holds for most data samples. Using different
settings of regularization parameters of λ = [λ1, λ2]

T indexed
by j = 1, 2, . . . ,K, the regularization parameter vector asso-
ciated with the minimal LOO misclassification rate J (−)(λ)
is chosen, i.e.,

λopt=arg

{
min
λ

{
J (−)(λ)≈ 1

N

N∑
k=1

Id [d(k)] ∀j
}}

(38)

and the resultant model is selected to produce ypre(k).

It is simple to evaluate J (−)(λ) because of the following
reasons.

1) First, the proposed EN cost function is based on param-
eter regularization within an orthogonal space, enabling
the analytical formula of EN parameter estimator.

2) Second, we provide the aforementioned original deriva-
tion to show that the LOO misclassification rate based on
models using EN estimator can be analytically evaluated
without actually splitting the data by making use of the
matrix inversion lemma.

3) Third, the calculation cost of evaluating d(k) is very small
without any matrix inversion involved due to the SVD
performed.

Since the cost function J (−)(λ) is nondifferentiable and
multimodal with respect to λ, the PSO algorithm as shown
in Appendix B is applied to solve (38). The algorithm has a
two-layer structure, as shown in Fig. 1. The upper level is the
PSO with population size of S (Appendix B). It learns the two
optimal regularization parameters based on the values of LOO
misclassification rate provided by the lower level of S particles.
At the lower level, each particle calculates the associated LOO
misclassification rate using (24) and (37).

The computational cost of the proposed algorithm comprises
that of SVD on the order of O(N3), PSO on the order of O(N)
(scaled by S × Imax), and OFS with D-optimality on the order
of O(N) (scaled by L). The main cost is less than twice of that
of SVD. This is because S × Imax and n̄s are much smaller
than N when N is large. L can be set the same as N or smaller
than N when N is very large.

IV. MODELING EXAMPLES

Numerical experiments were performed to demonstrate the
modeling results of the proposed algorithm in comparison to
that of several existing classifications algorithms, as published
in [32]. Eight most noisy data sets were chosen and experi-
mented: Banana, Breast Cancer, Diabetes, German, Heart, Flare
Solar, Titanic, and Waveform, which are available in [33].
For the details of alternative methods used in comparison, the
readers are referred to [32].

The results of the first six methods for all examples are
quoted from [32] and [33]. Each data set contains 100 re-
alizations of training and test data sets, respectively. Models
are constructed over 100 training data sets, and generalization
performance is evaluated using the average misclassification
rate of the corresponding models over the 100 test data sets. The
Gaussian kernel functions φi(x) = exp{−(‖x− ci‖2/2σ2)}
have been employed in the experiments. A common value
σ was predetermined to derive individual models for all 100
realizations for each data set. We used a very small β = 10−6

for all experiments, which leads to automatic determination
of model size. A larger value of β will yield smaller model
size, yet the approximation error E[ε2(x(k))] will be larger,
resulting unwanted higher discrepancies between between two
stages. For each realization of all eight data sets, the full training
data sets were used as the RBF centers to form the candidate
regressor set. The performance is summarized in Tables I–VIII,
respectively. The total running time of training and evaluation
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TABLE I
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER

100 REALIZATIONS OF THE BANANA TEST DATA SET AND MODEL SIZE

TABLE II
AVERAGE MISCLASSIFICATION RATE IN PERCENT

OVER 100 REALIZATIONS OF THE BREAST CANCER

TEST DATA SET AND MODEL SIZE

TABLE III
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER 100

REALIZATIONS OF THE DIABETES TEST DATA SET AND MODEL SIZE

TABLE IV
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER 100

REALIZATIONS OF THE GERMAN TEST DATA SET AND MODEL SIZE

TABLE V
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER 100

REALIZATIONS OF THE HEART TEST DATA SET AND MODEL SIZE

for each data set using Matlab on a single computer Intel
Core 2 CPU 6400 at 2.13 GHz for our approach was listed
in Table IX. This is extremely cheap in comparison with the
estimated two years of computing time for all the experiments
by the work of Rätsch et al. [32] if they were carried out on
a single Ultra-SPARC machine. Instead, their work had been

TABLE VI
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER 100

REALIZATIONS OF THE FLARE SOLAR DATA SET AND MODEL SIZE

TABLE VII
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER 100
REALIZATIONS OF THE TITANIC DATA SET AND MODEL SIZE

TABLE VIII
AVERAGE MISCLASSIFICATION RATE IN PERCENT OVER 100

REALIZATIONS OF THE WAVEFORM DATA SET AND MODEL SIZE

TABLE IX
TOTAL RECORDED RUNNING TIME USED IN TRAINING AND EVALUATION

carried out by 32 computers [32]. The results have shown that
the proposed approach can construct parsimonious classifiers
with competitive classification accuracy for these data sets with
little computational cost. Although our model sizes are not
generally smaller than other methods, we point out that, in the
work [32], the model size for each data set was preset using
CV based on their RBF-based model (the first method), except
SVM for which no model size is reported. In other words,
all the methods except SVM cannot perform model structure
selection automatically by the algorithms. In addition, from
our experience, SVMs are generally not very sparse and are
expected to have larger model sizes than ours.

We also point out that the proposed algorithm is very robust
in terms of that a common value σ was used for all 100 real-
izations for each data set, and the performances are good and
insensitive to σ within a wide range. Hence, for practitioners
who are looking for building classifiers with robust and superior
classification performance from noisy data sets, without too
much computational costs and tuning efforts, the proposed
method will be a very good choice.
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V. CONCLUSION

This paper has proposed an efficient two-stage construction
algorithm for linear-in-the-parameter classifiers aimed at noisy
two-class classification data sets. The first stage constructs a
prefiltered signal that is then used as the desired output for
the second stage, the construction of a sparse linear-in-the-
parameter classifier. The prefiltering stage is a two-level algo-
rithm aimed at maximizing a model’s generalization capability.
Using SVD, a new EN model identification algorithm is em-
ployed at the lower level, and the two regularization parameters
are found by minimizing the LOO misclassification rate, using a
PSO algorithm at the upper level. The original contributions are
first to define an EN cost function based on parameters in latent
space via SVD, which facilitates the automatic model structure
selection process with no need of using a predetermined error
tolerance to terminate the forward selection process. Second,
we derived the LOO misclassification formula based on the pre-
filtered signal and show that its computational cost is small. As
a result, a fully automated procedure is achieved without resort
to any other validation data set for iterative model evaluation.
The second stage of sparse classifier construction is based on
OFR with D-optimality algorithm. Eight benchmark examples
are included to demonstrate the competitiveness of the new
approaches.

APPENDIX A
THE OFR WITH D-OPTIMALITY USING THE

MGS ORTHOGONALIZATION PROCEDURE

The MGS orthogonalization procedure calculates the A ma-
trix row by row and orthogonalizes Φ as follows: At the lth
stage, make the columns φj , l + 1 ≤ j ≤ L, orthogonal to
the lth column, and repeat the operation for 1 ≤ l ≤ L− 1.
Specifically, denoting φ

(0)
j = φj , 1 ≤ j ≤ L, then

wl = φ
(l−1)
l

al,j =
wT

l
φ

(l−1)
j

(wT
l
wl)

, l + 1 ≤ j ≤ L

φ
(l)
j = φ

(l−1)
j − al,jwl, l + 1 ≤ j ≤ L

⎫⎪⎪⎬
⎪⎪⎭

l = 1, 2, . . . , L− 1. (39)

The last stage of the procedure is simply wL = φ
(L−1)
L . The

elements of Γ are computed by transforming y
(0)
pre = ypre in a

similar way

γl =
wT

l
y(l−1)

(wT
l
wl)

y
(l)
pre = y

(l−1)
pre − γlwl

}
1 ≤ l ≤ L. (40)

This orthogonalization scheme can be used to derive a simple
and efficient algorithm for selecting subset models in a forward-
regression manner. First, define

Φ(l−1) =
[
w1 · · ·wl−1φ

(l−1)
l · · ·φ(l−1)

L

]
. (41)

If some of the columns φ
(l−1)
l , . . . ,φ

(l−1)
L in Φ(l−1) have

been interchanged, this will still be referred to as Φ(l−1) for

notational convenience. The lth stage of the selection procedure
is given as follows.

Step 1) For l ≤ j ≤ L, compute

γ
(j)
l =

(
φ

(l−1)
j

)T
y(l−1)((

φ
(l−1)
j

)T
φ

(l−1)
j

)
[crerr]

(j)
l =

((
γ
(j)
l

)2((
φ

(l−1)
j

)T
φ

(l−1)
j

)

+ β log

((
φ

(l−1)
j

)T
φ

(l−1)
j

))
/
(
yT
preypre

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Step 2) Find

[crerr]l = [crerr]
(jl)
l = max

{
[crerr]

(j)
l , l ≤ j ≤ L

}
.

Then, the jlth column of Φ(l−1) is interchanged with
the lth column of Φ(l−1), and the jlth column of A is
interchanged with the lth column of A up to the (l −
1)th row. This effectively selects the jlth candidate
as the lth regressor in the subset model.

Step 3) Perform the orthogonalization as indicated in (39) to
derive the lth row of A and to transform Φ(l−1) into
Φ(l). Calculate γl, and update y(l−1)

pre into y
(l)
pre in the

way shown in (40).

The selection is terminated at the n̄s stage, as discussed in
Section II-B and, this produces a subset model containing n̄s

significant regressors. The algorithm described here is in its
standard form; a fast implementation can however be adopted
to reduce computational cost [34].

APPENDIX B
PSO FOR CHOOSING REGULARIZATION PARAMETERS

In the following, we propose to apply the PSO algorithm
[16], [17] and aim to solve

λopt = arg min
λ∈
∏2

j=1
Λj

J (−)(λ) (42)

where
2∏

j=1

Λj =
2∏

j=1

[0,Λj,max] (43)

defines the search space. A swarm of particles {λ(m)
i }

S

i=1 that
represent potential solutions are “flying” in the search space∏2

j=1 Λj , where S is the swarm size and index m denotes the
iteration step. The algorithm is summarized as follows.

1) Swarm initialization. Set the iteration index m = 0,

and randomly generate {λ(m)
i }

S

i=1 in the search space∏2
j=1 Λj .

2) Swarm evaluation. The cost of each particle λ
(m)
i is ob-

tained as J (−)(λ
(m)
i ). Each particle λ

(m)
i remembers its

best position visited so far, denoted as pb(m)
i , which pro-

vides the cognitive information. Every particle also knows
the best position visited so far among the entire swarm,
denoted as gb(m), which provides the social information.
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The cognitive information {pb(m)
i }

S

i=1 and the social
information gb(m) are updated at each iteration:

For (i = 1; i ≤ S; i++)
If (J (−)(λ

(m)
i )<J (−)(pb

(m)
i )) pb

(m)
i =λ

(m)
i ;

End for;
i∗ = arg min

1≤i≤S
J (−)(pb

(m)
i );

If (J (−)(pb
(m)
i∗ )<J (−)(gb(m)))gb(m)=pb

(m)
i∗ ;

3) Swarm update. Each particle λ(m)
i has a velocity, denoted

as γ(m)
i , to direct its “flying.” The velocity and position of

the ith particle are updated in each iteration according to

γ
(m+1)
i =μ0 ∗ γ(m)

i + rand() ∗ μ1 ∗
(
pb

(m)
i − λ

(m)
i

)
+ rand() ∗ μ2 ∗

(
gb(m) − λ

(m)
i

)
(44)

λ
(m+1)
i =λ

(m)
i + γ

(m+1)
i (45)

where μ0 is the inertia weight and μ1 and μ2 are the two
acceleration coefficients. rand() denotes the uniform
random number between zero and one. In order to avoid
excessive roaming of particles beyond the search space
[21], a velocity space

2∏
j=1

Υj =

2∏
j=1

[−Υj,max,Υj,max] (46)

is imposed on γ
(m+1)
i so that

If
(
γ
(m+1)
i |j > Υj,max

)
, γ

(m+1)
i |j = Υj,max

If
(
γ
(m+1)
i |j < −Υj,max

)
, γ

(m+1)
i |j = −Υj,max

where γ|j denotes the jth element of γ. Moreover,
if the velocity as given in (44) approaches zero, it is
reinitialized proportional to Υj,max with a small factor ν

If
(
γ
(m+1)
i |j == 0

)
, γ

(m+1)
i |j = ±rand() ∗ ν ∗Υj,max.

(47)

4) Termination condition check. If the maximum number of
iterations Imax is reached, terminate the algorithm with
the solution gb(Imax); otherwise, set m = m+ 1, and go
to Step 2).

Ratnaweera and coauthors [19] reported that using a time-
varying acceleration coefficient (TVAC) enhances the perfor-
mance of PSO. We adopt this mechanism, in which μ1 is
reduced from 2.5 to 0.5 and μ2 varies from 0.5 to 2.5 during
the iterative procedure

μ1 =(0.5− 2.5) ∗m/Imax + 2.5
μ2 =(2.5− 0.5) ∗m/Imax + 0.5. (48)

The reason for good performance of this TVAC mechanism can
be explained as follows. At the initial stages, a large cognitive
component and a small social component help particles to
wander around or better exploit the search space, avoiding local
minima. In the later stages, a small cognitive component and a
large social component help particles to converge quickly to a
global minimum. We use μ0 = rand() at each iteration.

The search space as given in (43) is defined by the specific
problem to be solved, and the velocity limit Υj,max is empir-
ically set. An appropriate value of the small control factor ν
in (47) for avoiding zero velocity is empirically found to be
ν = 0.1 for our application.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments.

REFERENCES

[1] M. Stone, “Cross validatory choice and assessment of statistical predic-
tions,” J. Roy. Statist. Soc. Ser. B, vol. 36, no. 2, pp. 117–147, 1974.

[2] S. Chen, Y. Wu, and B. L. Luk, “Combined genetic algorithm optimization
and regularized orthogonal least squares learning for radial basis function
networks,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1239–1243,
Sep. 1999.

[3] M. J. L. Orr, “Regularization in the selection of radial basis function
centers,” Neural Comput., vol. 7, no. 3, pp. 606–623, May 1995.

[4] X. Hong and S. A. Billings, “Parameter estimation based on stacked
regression and evolutionary algorithms,” Proc. Inst. Elect. Eng.—Control
Theory Appl., vol. 146, no. 5, pp. 406–414, Sep. 1999.

[5] L. Ljung and T. Glad, Modelling of Dynamic Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1994.

[6] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

[7] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[8] M. E. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, pp. 211–244, Sep. 2001.

[9] B. Scholkopf and A. J. Smola, Learning With Kernels: Support Vector
Machine, Regularization, Optimization and Beyond. Cambridge, MA:
MIT Press, 2002.

[10] X. Hong and C. J. Harris, “Nonlinear model structure design and con-
struction using orthogonal least squares and D-optimality design,” IEEE
Trans. Neural Netw., vol. 13, no. 5, pp. 1245–1250, Sep. 2002.

[11] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their applications to non-linear system identification,” Int. J. Control,
vol. 50, no. 5, pp. 1873–1896, 1989.

[12] K. Z. Mao, “RBF neural network center selection based on Fisher ratio
class separability measure,” IEEE Trans. Neural Netw., vol. 13, no. 5,
pp. 1211–1217, Sep. 2002.

[13] S. Chen, X. X. Wang, X. Hong, and C. J. Harris, “Kernel classifier
construction using orthogonal forward selection and boosting with Fisher
ratio class separability,” IEEE Trans. Neural Netw., vol. 17, no. 6,
pp. 1652–1656, Nov. 2004.

[14] X. Hong, S. Chen, and C. J. Harris, “A fast kernel classifier construction
algorithm using orthogonal forward selection to minimize leave-one-out
misclassification rate,” Int. J. Syst. Sci., vol. 39, no. 2, pp. 119–125, 2008.

[15] S. Chen, X. Hong, and C. J. Harris, “Particle swarm optimization aided
orthogonal forward regression for unified data modelling,” IEEE Trans.
Evol. Comput., vol. 14, no. 4, pp. 477–499, Aug. 2010.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw., Perth, Australia, Nov. 27–Dec. 1, 1995, vol. 4,
pp. 1942–1948.

[17] J. Kennedy and R. C. Eberhart, Swarm Intelligence. Waltham, MA:
Morgan Kaufmann, 2001.

[18] D. W. van der Merwe and A. P. Engelbrecht, “Data clustering us-
ing particle swarm optimization,” in Proc. CEC, Cabberra, Australia,
Dec. 8–12, 2003, pp. 215–220.

[19] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration co-
efficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,
Jun. 2004.

[20] M. G. H. Omran, “Particle swarm optimization methods for pattern recog-
nition and image processing,” Ph.D. dissertation, Univ. Pretoria, Pretoria,
South Africa, 2005.

[21] S. M. Guru, S. K. Halgamuge, and S. Fernando, “Particle swarm op-
timisers for cluster formation in wireless sensor networks,” in Proc.
Int. Conf. Intell. Sens., Sens. Netw. Inf. Process., Melbourne, Australia,
Dec. 5–8, 2005, pp. 319–324.



HONG et al.: ELASTIC-NET PREFILTERING FOR TWO-CLASS CLASSIFICATION 295

[22] K. K. Soo, Y. M. Siu, W. S. Chan, L. Yang, and R. S. Chen, “Particle-
swarm-optimization-based multiuser detector for CDMA communica-
tions,” IEEE Trans. Veh. Technol., vol. 56, no. 5, pp. 3006–3013,
Sep. 2007.

[23] S. Chen, X. Hong, and C. J. Harris, “Sparse kernel regression mod-
eling using combined locally regularized orthogonal least squares and
D-optimality experimental design,” IEEE Trans. Autom. Control, vol. 48,
no. 6, pp. 1029–1036, Jun. 2003.

[24] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” J. Roy. Stastist. Soc. B, vol. 67, no. 2, pp. 301–320, 2005.

[25] S. Chen, “Locally regularised orthogonal least squares algorithm for the
construction of sparse kernel regression models,” in Proc. 6th Int. Cof.
Signal Process., Beijing, China, 2002, pp. 1229–1232.

[26] D. J. C. MacKay, “Bayesian Methods for Adaptive Models,” Ph.D. thesis,
California Inst. Technol., Pasadena, CA, 1991.

[27] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 43, no. 1, pp. 129–159, 1998.

[28] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Statist. Soc. Ser. B, vol. 58, no. 1, pp. 267–288, 1996.

[29] B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani, “Least angle regres-
sion,” Ann. Statist., vol. 32, pp. 407–451, 2004.

[30] S. Chen, “Local regularization assisted orthogonal least squares regres-
sion,” Neurocomputing, vol. 69, no. 4–6, pp. 559–585, Jan. 2006.

[31] L. Ljung, System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall, 1987.

[32] G. Rätsch, T. Onoda, and K. R. Müller, “Soft margins for AdaBoost,”
Mach. Learn., vol. 42, no. 3, pp. 287–320, Mar. 2001.

[33] G. Rätsch. [Online]. Available: http://www.fml.tuebingen.mpg.de/
members/raetsch/benchmark

[34] S. Chen and J. Wigger, “Fast orthogonal least squares algorithm for
efficient subset selection,” IEEE Trans. Signal Process., vol. 43, no. 7,
pp. 1713–1715, Jul. 1995.

Xia Hong received the B.Sc. and M.Sc. degrees in
automatic control from the National University of
Defense Technology, Changsha, China, in 1984 and
1987, respectively, and the Ph.D. degree in automatic
control from the University of Sheffield, Sheffield,
U.K., in 1998.

In 1987–1993, she was a Research Assistant with
Beijing Institute of Systems Engineering, Beijing,
China. In 1997–2001, she was a Research Fellow
with the Department of Electronics and Computer
Science, University of Southampton, Southampton,

U.K. She is currently a Reader with the School of Systems Engineering, Univer-
sity of Reading, Reading, U.K. She is actively engaged in research in nonlinear
system identification, data modeling, estimation and intelligent control, neural
networks, pattern recognition, learning theory, and their applications. She has
published over 100 research papers and coauthored a research book.

Dr. Hong was a recipient of the Donald Julius Groen Prize from the
Institution of Mechanical Engineers in 1999.

Sheng Chen (M’90–SM’97–F’08) received the
B.Eng. degree in control engineering from the East
China Petroleum Institute, Dongying, China, in 1982
and the Ph.D. degree in control engineering from the
City University London, London,U.K., in 1986.

Since September 1999, he has been with the
University of Southampton, Southampton, U.K. He
is also with the Faculty of Engineering, King
Abdulaziz University, Jeddah, Saudi Arabia. He pre-
viously held research and academic appointments
at the University of Sheffield, Sheffield, U.K., The

University of Edinburgh, Edinburgh, U.K., and University of Portsmouth,
Portsmouth, U.K. He has published over 400 research papers. His recent
research works include adaptive nonlinear signal processing, modeling and
identification of nonlinear systems, neural network research, finite-precision
digital controller design, evolutionary computation methods, and optimization.

Chris J. Harris received the B.Sc. degree from
the University of Leicester, Leicester, U.K., the
M.A. degree from the University of Oxford, Oxford,
U.K., and the Ph.D. degree from the University of
Southampton, Southampton, U.K.

He is currently with the School of Electronics and
Computer Science, University of Southampton. He
previously held appointments at the University of
Hull, Hull, U.K., University of Manchester Institute
of Science and Technology, Manchester, U.K.,
University of Oxford, and Cranfield University,

Cranfield, U.K., as well as was employed by the U.K. Ministry of Defence. He
has authored or coauthored 12 books and over 400 research papers, and he was
an Associate Editor of numerous international journals, including Automatica,
Engineering Applications of Artificial Intelligence, International Journal of
General Systems Engineering, International Journal of Systems Science, and
International Journal of Mathematical Control and Information. His research
interests are in the areas of intelligent and adaptive system theory and its
application to intelligent autonomous systems, management infrastructures,
intelligent control and estimation of dynamic processes, multisensor data
fusion, and system integration.

Dr. Harris was elected to the Royal Academy of Engineering in 1996
and was a recipient of the Institution of Electrical Engineers (IEE) Senior
Achievement Medal in 1998 for his work on autonomous systems and the
highest international award in IEE, the IEE Faraday Medal in 2001 for his work
on intelligent control and neurofuzzy system.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


