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Abstract

This contribution proposes a minimum bit error rate (MBER) decision feedback equaliser (DFE) designed
for single-input multiple-output (SIMO) systems employing a quadrature phase shift keying (QPSK) modulation
scheme. It is shown that this MBER design is superior over the standard minimum mean square error DFE in
the SIMO scenario considered, in terms of the achievable system bit error rate. A sample-by-sample adaptive
implementation of this MBER DFE is derived, which is referred to as the least bit error rate (LBER) algorithm.
It is shown that for SIMO systems using a QPSK scheme, the LBER algorithm has a similar computational
complexity as the simple least mean square (LMS) algorithm. Simulation results demonstrate that the proposed
adaptive LBER-based DFE outperforms the adaptive LMS-based DFE, in both stationary and fading cases.

Index Terms

Single-input multiple-output, multiple antennas, space-time processing, decision feedback equaliser, min-
imum mean square error, minimum bit error rate

I. INTRODUCTION

Smart antenna aided space-time (ST) processing plays an increasingly important role in wireless

communications [1]-[8]. With the aid of smart antenna arrays and by exploiting both the space and time

dimensions, ST processing is capable of effectively improving the achievable system capacity, coverage

and quality of service by suppressing both intersymbol interference and co-channel interference. The

family of single-input multiple-output (SIMO) systems has enjoyed popularity owing to its simplicity.

A SIMO system consists of a single-antenna transmitter and a receiver equipped with multiple antennas.

A ST equaliser [9]-[12] based on this SIMO structure is capable of mitigating the channel impairments

arising from hostile multipath propagation. The standard ST equalisation design is based on the well-

understood minimum mean square error (MMSE) criterion, which has been successfully employed in

a range of detection problems, such as classic channel equalisers, multiuser detectors, beamformers,

space-time equalisers, etc.
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However, for a communication system it is the system’s achievable bit error rate (BER), not the mean

square error (MSE) value, that really matters and minimising the MSE does not guarantee minimising

the BER. Hence the introduction of the novel minimum BER (MBER) criterion opened a new chapter

in the optimisation of communications receivers and its design trade-offs have to be documented in

contrast to those of the classic but actually still unexhausted MMSE and other often-used optimisation

criteria. We will demonstrate that in many respects the MBER optimisation criterion is significantly

more powerful, than the MMSE criterion, but naturally, it requires more design attention. For single-

input single-output (SISO) equalisation (time-only processing) [13]-[20] and adaptive beamforming

(space-only processing) [21]-[24], it has been demonstrated that the receiver design based on the

MBER criterion outperforms that based on the MMSE criterion in terms of the achievable BER. In

this paper, we develop these ideas further to a combined ST equaliser and invoke the MBER design

for ST decision feedback equalisers (ST-DFE) employed in SIMO systems.

In order to keep our notations and the associated concepts relatively simple, we have used a

quadrature phase shift keying (QPSK) modulation scheme. However, the proposed approach may

be extended to higher order multi-level modulation schemes, as it was demonstrated in the context

of SISO equalisation [19],[20]. In simple conceptual terms the underlying detection approach exploits

the following ideas. When communicating over a channel inflicting additive Gaussian noise, if the

probability density function (PDF) of the received signal is known, closed-form formulae may be

derived for the BER as a function of the ST-DFE weights. Given an explicit BER formula, we may

set its derivatives to zero with respect to the ST-DFE weights, in order to find the MBER solution.

However, when the PDF of the channel’s output is unknown and hence no explicit BER formula is

available, then it is possible to initialise the ST-DFE’s weights for example to the MMSE solution and

invoke a gradient-type adaptive algorithm for arriving at a near-MBER solution.

Therefore a novel contribution of this paper is that an efficient adaptive implementation of this

MBER ST-DFE is investigated. More specifically, by adopting the classic Parzen window estimation

technique for modelling the PDF [25]-[27] and using a stochastic approximation strategy [20],[23],

a sample-by-sample adaptive algorithm, referred to as the least bit error rate (LBER) technique, is

developed for training the ST-DFE. It is then shown that this LBER ST-DFE has a similarly low

computational complexity to the least mean square (LMS) ST-DFE. Moreover, it is demonstrated

in our simulation study that the LBER ST-DFE outperforms the classical LMS ST-DFE in fading

environments, as it does not aim for minimising the system’s MSE and therefore does not suffer from

numerical ill-conditioning problems. By contrast, it is well-known that the performance of the LMS

ST-DFE degrades considerably in hostile propagation environments.



3

The outline of the paper is as follows. Section II introduces the SIMO system model considered and

defines the ST-DFE structure, while Section III derives the MBER design for the ST-DFE employed

in SIMO systems. Adaptive implementation of the MBER ST-DFE is considered in Section IV, where

both a block-based and a stochastic adaptive algorithms are portrayed. Finally, Section V describes

our simulation studies and Section VI offers our conclusions.

II. SYSTEM MODEL

Consider the SIMO system employing a single transmit antenna and L (> 1) receive antennas, as

depicted in Fig. 1, where s(t) is the transmitted signal, xl(t) denotes the lth receive antenna’s output

signal and nl(t) the lth channel’s noise. The received signals are sampled at the symbol rate in order

to obtain the L antennas’ output samples xl(k), 1 ≤ l ≤ L, which are passed to a ST-DFE, as shown

in Fig. 2. The received signal sample xl(k) for the lth antenna can be expressed as

xl(k) =
nc−1∑

i=0

ci,ls(k − i) + nl(k) = x̄l(k) + nl(k), (1)

where nl(k) is a complex-valued Gaussian white noise with E[|nl(k)|2] = 2σ2
n, x̄l(k) denotes the

noise-free part of the lth channel’s output, the transmitted symbol sequence s(k) = sR(k) + jsI(k)

takes values from the QPSK symbol set {±1 ± j}, and ci,l are the complex-valued taps of the lth

channel impulse response (CIR) having a length of nc. For notational simplicity, we have assumed

that each of the L channels has the same length of nc. The soft output of the ST-DFE is given by

y(k) =
L∑

l=1

(
m−1∑

i=0

w∗
i,lxl(k − i) +

nb∑

i=1

b∗i,lŝ(k − d− i)

)
, (2)

where ŝ(k− d) is the estimate of s(k− d), d is the decision delay, m and nb are the feedforward and

feedback filter orders, respectively, while wi,l and bi,l are the coefficients of the lth feedforward and

feedback filters, respectively. Let

wl = [w0,l w1,l · · ·wm−1,l]
T ,

xl(k) = [xl(k) xl(k − 1) · · · xl(k −m + 1)]T ,

bl = [b1,l b2,l · · · bnb,l]
T ,

ŝb(k) = [ŝ(k − d− 1) ŝ(k − d− 2) · · · ŝ(k − d− nb)]
T ,

(3)

and let us define furthermore

w = [wT
1 wT

2 · · ·wT
L ]T ,

x(k) = [xT
1 (k) xT

2 (k) · · ·xT
L(k)]T , (4)

b =
L∑

l=1

bl.
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Then the ST-DFE output can be expressed as

y(k) =
L∑

l=1

(
wH

l xl(k) + bH
l ŝb(k)

)
= wHx(k) + bH ŝb(k). (5)

We will choose the ST-DFE structure’s parameters as follows: d = nc−1, m = nc and nb = nc−1.

For the SISO case, this particular choice of the DFE structure’s parameters is sufficient for guaranteeing

that the subsets of noise-free signal states are always linearly separable and therefore they guarantee

an adequate performance [14],[15]. Using m = nc and d = nb = nc − 1, the received signal vector of

the lth channel can be expressed as

xl(k) = x̄l(k) + nl(k) = CFl
sf (k) + CBl

sb(k) + nl(k), (6)

where

sf (k) = [s(k) s(k − 1) · · · s(k − d)]T ,

sb(k) = [s(k − d− 1)s(k − d− 2) · · · s(k − d− nb)]
T , (7)

nl(k) = [nl(k) nl(k − 1) · · ·nl(k −m + 1)]T ,

and the m× (d + 1) and m× nb dimensional CIR matrices CFl
and CBl

are given by

CFl
=




c0,l c1,l · · · cnc−1,l

0 c0,l
. . . ...

... . . . . . . c1,l

0 · · · 0 c0,l




(8)

and

CBl
=




0 · · · 0

cnc−1,l
. . . ...

... . . . 0
c1,l · · · cnc−1,l




, (9)

respectively. Under the assumption that the past decisions are correct, we have ŝb(k) = sb(k) and

the lth received signal vector may be expressed as xl(k) = CFl
sf (k) + CBl

ŝb(k) + nl(k). Thus, the

decision feedback may be viewed as a translation of the original observation space xl(k) into a new

space rl(k):

rl(k)
4
= xl(k)−CBl

ŝb(k) = CFl
sf (k) + nl(k) = r̄l(k) + nl(k). (10)

Let us now define
r(k) = [rT

1 (k) rT
2 (k) · · · rT

L(k)]T ,

n(k) = [nT
1 (k) nT

2 (k) · · ·nT
L(k)]T .

(11)

In the translated observation space r(k), the original ST-DFE (5) is “translated” into a ST “linear

equaliser” described as:

y(k) = wHr(k) = wH(r̄(k) + n(k)) = ȳ(k) + e(k), (12)
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where e(k) is Gaussian distributed, having a zero mean and E[|e(k)|2] = 2wHwσ2
n. The elements of

r(k) can be computed recursively according to [14],[15]:

rl(k − i) = z−1rl(k − i + 1)− cnc−i,lŝ(k − d− 1),

for i = m− 1,m− 2, · · · , 1
rl(k) = xl(k)





, (13)

where z−1 is interpreted as the unit delay operator. Thus, in an adaptive implementation, one has to

estimate the coefficients of the CIRs, rather than estimating the coefficients of the feedback filters,

when adopting the equaliser structure of (12) and (13). This equivalent ST-DFE is illustrated in Fig. 3.

We define the overall signal to noise ratio (SNR) of the SIMO system under consideration as

SNR =
1

Lσ2
n

L∑

l=1

nc−1∑

i=0

|ci,l|2. (14)

The following decision rule is used for providing an estimate of s(k − d):

ŝ(k − d) = sgn(yR(k)) + jsgn(yI(k)), (15)

where yR(k) = <[y(k)] and yI(k) = =[y(k)] are the real and imaginary parts of y(k), respectively,

and sgn(•) is the sign function. Let us now define the following (Lm)× (d + 1) dimensional overall

CIR matrix

CF =




CF1

...
CFL


 = [cF,0 cF,1 · · · cF,d] . (16)

Note that the last column of CF is simply given by:

cF,d = [cnc−1,1 · · · c1,1 c0,1 · · · cnc−1,L · · · c1,L c0,L]T . (17)

Let us also define the combined impulse response of the channels and the equaliser as f , which is

given by

fT = [f0 f1 · · · fd] = wHCF =
[
wHcF,0 wHcF,1 · · ·wHcF,d

]
. (18)

The ST-DFE output can then be expressed as

y(k) = fds(k − d) +
d−1∑

i=0

fis(k − i) + e(k). (19)

The first term in (19) is the desired signal, while the second term represents the residual ISI. Provided

that fd is real and positive, the decision rule (15) is optimal. We point out that in general fd is

complex-valued, and the rotation operation of

wnew =
f old

d

|f old
d |w

old (20)

may be applied to the weight vector w for the sake of rendering fd real and positive. This rotation

is a linear transformation and does not alter the BER, but it allows the simple optimal decision rule

(15) to be adopted.
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III. MINIMUM BIT ERROR RATE DESIGN

Classically, the equaliser weight vector w is determined by minimising the MSE E[|s(k−d)−y(k)|2],
which leads to the following MMSE solution

wMMSE =
(
CFCH

F + σ2
nILm

)−1
cF,d, (21)

with ILm being an Lm×Lm dimensional identity matrix. An adaptive implementation of the MMSE

solution may be realised for example using the LMS algorithm. The main contribution of this paper

is to derive the MBER solution for the weight vector of the ST-DFE and develop an adaptive MBER

ST-DFE for the SIMO systems. Let us denote the Ns = 4d+1 number of possible transmitted symbol

sequences of sf (k) as s(q), 1 ≤ q ≤ Ns. Denote furthermore the last element of s(q), corresponding to

the symbol s(k − d), as s
(q)
d . The noise-free part of the equaliser input signal, namely r̄(k), assumes

values from the finite signal set defined as:

R 4
= {r̄(q) = CF s(q), 1 ≤ q ≤ Ns}. (22)

This set can be partitioned into four subsets, depending on the specific value of s(k− d), as follows:

R±,±
4
= {r̄(q) ∈ R : s(k − d) = ±1± j}. (23)

Similarly, the noise-free part of the equaliser’s output, namely ȳ(k), assumes values from the scalar

set

Y 4
= {ȳ(q) = wH r̄(q), 1 ≤ q ≤ Ns} (24)

and Y can be divided into the four subsets conditioned on the value of s(k − d):

Y±,±
4
= {ȳ(q) ∈ Y : s(k − d) = ±1± j}. (25)

It is readily seen that the conditional PDF of y(k) given s(k − d) = (+1 + j) is:

p(y|+ 1 + j) =
1

Nsb

∑

ȳ(q)∈Y+,+

1

2πσ2
nw

Hw
exp


−

∣∣∣y − ȳ(q)
∣∣∣
2

2σ2
nw

Hw


 , (26)

where Nsb = Ns/4 is the number of the constellation points in Y+,+. With the notations y = yR + jyI

and ȳ(q) = ȳ
(q)
R + jȳ

(q)
I , the two marginal conditional PDFs are given by

p(yR|+ 1 + j) =
1

Nsb

∑

ȳ(q)∈Y+,+

1√
2πσ2

nw
Hw

exp


−

(
yR − ȳ

(q)
R

)2

2σ2
nw

Hw


 (27)

and

p(yI |+ 1 + j) =
1

Nsb

∑

ȳ(q)∈Y+,+

1√
2πσ2

nw
Hw

exp


−

(
yI − ȳ

(q)
I

)2

2σ2
nw

Hw


 , (28)
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respectively. Let us define

PER
(w)

4
= Prob(<[ŝ(k − d)] 6= <[s(k − d)]) = Prob(ŝR(k − d) 6= sR(k − d)) (29)

and

PEI
(w)

4
= Prob(=[ŝ(k − d)] 6= =[s(k − d)]) = Prob(ŝI(k − d) 6= sI(k − d)). (30)

Then the BER of the ST-DFE associated with the equaliser weight vector w is given by:

PE(w) =
1

2
(PER

(w) + PEI
(w)) . (31)

Noting the decision rule (15) and the two marginal conditional PDFs given in (27) and (28), it can

readily be shown that

PER
(w) =

1

Nsb

∑

ȳ(q)∈Y+,+

Q
(
g

(q)
R (w)

)
(32)

and

PEI
(w) =

1

Nsb

∑

ȳ(q)∈Y+,+

Q
(
g

(q)
I (w)

)
, (33)

where

Q(u) =
1√
2π

∫ ∞

u
exp

(
−v2

2

)
d v, (34)

g
(q)
R (w) =

sgn(<[s
(q)
d ])ȳ

(q)
R

σn

√
wHw

=
sgn(s

(q)
R,d)<[wH r̄(q)]

σn

√
wHw

(35)

and

g
(q)
I (w) =

sgn(=[s
(q)
d ])ȳ

(q)
I

σn

√
wHw

=
sgn(s

(q)
I,d)=[wH r̄(q)]

σn

√
wHw

. (36)

Note that the BER is invariant to a positive scaling of w. Similarly, the BER may be calculated based

on anyone of the other three subsets, namely on Y+,−, Y−,+ or Y−,−.

The ST-DFE MBER solution is then defined as the weight vector, minimising the error probability,

which is formulated as:

wMBER = arg min
w

PE(w). (37)

As in any optimisation problem, the MBER solution may be found by setting the derivative of PE(w)

to zero. The gradient of PE(w) with respect to w is given by:

∇PE(w) =
1

2
(∇PER

(w) +∇PEI
(w)) , (38)

and it can be shown that

∇PER
(w) =

1

2Nsb

√
2πσn

√
wHw

∑

ȳ(q)∈Y+,+

exp


−

(
ȳ

(q)
R

)2

2σ2
nw

Hw


 sgn

(
s
(q)
R,d

)

 ȳ

(q)
R w

wHw
− r̄(q)


 (39)
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and

∇PEI
(w) =

1

2Nsb

√
2πσn

√
wHw

∑

ȳ(q)∈Y+,+

exp


−

(
ȳ

(q)
I

)2

2σ2
nw

Hw


 sgn

(
s
(q)
I,d

)

 ȳ

(q)
I w

wHw
+ jr̄(q)


 . (40)

Given the gradient expressions (38)–(40), the optimisation problem (37) can be solved iteratively by

commencing the iterations from an appropriate initialisation point, such as the MMSE solution, using

a gradient-based optimisation algorithm. Since the BER is invariant to a positive scaling of w, it is

computationally advantageous to normalise w to a unit-length after every iteration, so that the gradient

expressions (39) and (40) can be simplified to:

∇PER
(w) =

1

2Nsb

√
2πσn

∑

ȳ(q)∈Y+,+

exp


−

(
ȳ

(q)
R

)2

2σ2
n


 sgn

(
s
(q)
R,d

) (
ȳ

(q)
R w − r̄(q)

)
(41)

and

∇PEI
(w) =

1

2Nsb

√
2πσn

∑

ȳ(q)∈Y+,+

exp


−

(
ȳ

(q)
I

)2

2σ2
n


 sgn

(
s
(q)
I,d

) (
ȳ

(q)
I w + jr̄(q)

)
. (42)

The simplified conjugate gradient algorithm of [28],[29] provides an efficient means of finding a

MBER solution for the optimisation problem formulated in (37).

IV. ADAPTIVE MINIMUM BIT ERROR RATE IMPLEMENTATION

As usual, the evaluation of the error probability requires the knowledge of the PDF of the ST-DFE’s

output signal y(k). The PDF of y(k) can be expressed explicitly by:

p(y) =
1

Ns2πσ2
nw

Hw

Ns∑

q=1

exp


−

∣∣∣y − ȳ(q)
∣∣∣
2

2σ2
nw

Hw


 , (43)

and the associated BER can alternatively be calculated with the aid of two “marginal” BERs given by

PER
(w) =

1

Ns

Ns∑

q=1

Q
(
g

(q)
R (w)

)
(44)

and

PEI
(w) =

1

Ns

Ns∑

q=1

Q
(
g

(q)
I (w)

)
, (45)

where the summations are carried out over all the Ns number of elements of the set ȳ(q) ∈ Y . In

reality, the PDF of y(k) is channel dependent and hence it is unknown. Some form of PDF estimation

is required for supporting the adaptive implementation of the MBER ST-DFE.
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A. Block-Data Based Gradient Adaptive MBER ST-DFE

The key to the efficient adaptive implementation of the MBER solution is generating an up-to-date

and accurate estimate of the PDF (43). Parzen window or kernel density estimation method [25]–[27]

constitutes an efficient method of estimating a PDF. Specifically, the Parzen window method estimates

a PDF using a window or block of the ST-DFE output signal y(k) by placing a symmetric unimodal

kernel function on each y(k) sample. This kernel density estimation technique is capable of producing

reliable PDF estimates with the aid of short data records and it is particularly natural when dealing

with Gaussian mixtures, such as the one given in (43). In our particular application, it is natural to

choose a Gaussian kernel function having a kernel width of ρn

√
wHw that is similar to the noise

standard deviation of σn

√
wHw. Given a block of K training samples {r(k), s(k − d)}K

k=1, a kernel

density estimate of the PDF in (43) is readily given by:

p̂(y) =
1

K2πρ2
nw

Hw

K∑

k=1

exp

(
−|y − y(k)|2

2ρ2
nw

Hw

)
, (46)

where the radius or scaling parameter ρn is related to the standard deviation σn of the system’s noise.

The accuracy analysis of Parzen window density estimate is well documented in the literature [25]–

[27]. The PDF estimate (46) is known to possess a mean integrated square error convergence rate at

an order of K−1 [25].

Based on the estimated PDF of (46), the estimated BER is given by:

P̂E(w) =
1

2

(
P̂ER

(w) + P̂EI
(w)

)
=

1

2K

K∑

k=1

(
Q

(
ĝ

(k)
R (w)

)
+ Q

(
ĝ

(k)
I (w)

))
, (47)

with

ĝ
(k)
R (w) =

sgn(sR(k − d))yR(k)

ρn

√
wHw

(48)

and

ĝ
(k)
I (w) =

sgn(sI(k − d))yI(k)

ρn

√
wHw

. (49)

The gradient of P̂E(w) can readily be calculated with the aid of (39) and (40) as follows:

∇P̂ER
(w) =

1

2K
√

2πρn

√
wHw

K∑

k=1

exp

(
− y2

R(k)

2ρ2
nw

Hw

)
sgn(sR(k − d))

(
yR(k)w

wHw
− r(k)

)
(50)

and

∇P̂EI
(w) =

1

2K
√

2πρn

√
wHw

K∑

k=1

exp

(
− y2

I (k)

2ρ2
nw

Hw

)
sgn(sI(k − d))

(
yI(k)w

wHw
+ jr(k)

)
. (51)

Upon substituting ∇PE(w) by ∇P̂E(w) in the simplified conjugate gradient updating mechanism, for

example, a block-data based adaptive algorithm is obtained [29],[24], where the step size µ and the

radius parameter ρn are two algorithmic parameters which control the rate of convergence. The radius

parameter ρn also has an influence on the accuracy of the PDF and hence on that of the BER estimate.
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B. Stochastic Gradient Based Adaptive MBER ST-DFE

In this section our aim is to develop a sample-by-sample adaptive implementation of the MBER

ST-DFE. In the Parzen window estimate (46), the kernel width ρn

√
wHw explicitly depends on the

ST-DFE’s weight vector w, which was so arranged because the true density of (43) also depends on

the weight vector w. However, the BER is invariant to wHw, and a constant kernel width ρn may

also be adopted in the density estimate. A particular advantage of using a constant kernel width ρn,

rather than ρn

√
wHw in the density estimate is that the gradient of the resultant estimated BER has a

significantly simpler form, which leads to a considerable reduction in computational complexity. This

is particular relevant in the derivation of stochastic gradient ST-DFE weight updating mechanisms.

Adopting this approach, an alternative fixed kernel-width based Parzen window estimate of the true

PDF (43) is given by

p̃(y) =
1

K2πρ2
n

K∑

k=1

exp

(
−|y − y(k)|2

2ρ2
n

)
, (52)

and the resultant approximate BER formula becomes

P̃E(w) =
1

2

(
P̃ER

(w) + P̃EI
(w)

)
=

1

2K

K∑

k=1

(
Q

(
g̃

(k)
R (w)

)
+ Q

(
g̃

(k)
I (w)

))
, (53)

where we have:

g̃
(k)
R (w) =

sgn(sR(k − d))yR(k)

ρn

(54)

and

g̃
(k)
I (w) =

sgn(sI(k − d))yI(k)

ρn

. (55)

This approximation is an adequate one, provided that the width ρn is chosen appropriately.

In order to derive a sample-by-sample adaptive algorithm for updating the ST-DFE’s weight vector

w, consider a single-sample estimate of p(y), namely:

p̃(y, k) =
1

2πρ2
n

exp

(
−|y − y(k)|2

2ρ2
n

)
. (56)

Conceptually, from this one-sample PDF “estimate”, we have a one-sample or instantaneous BER

“estimate” P̃E(w, k). Using the instantaneous stochastic gradient formula of:

∇P̃E(w, k) =

(
−sgn(sR(k − d)) exp

(
−y2

R(k)

2ρ2
n

)
+ jsgn(sI(k − d)) exp

(
−y2

I (k)

2ρ2
n

))

4
√

2πρn

r(k) (57)

gives rise to a stochastic gradient adaptive algorithm, which we referred to as the LBER algorithm:

w(k + 1) = w(k)− µ∇P̃E(w(k), k), (58)

f̂d = wH(k + 1)ĉF,d, (59)

w(k + 1) =
f̂d

|f̂d|
w(k + 1), (60)
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where ĉF,d is the estimated CIR cF,d given in (17), and the adaptive gain µ as well as the kernel width

ρn are the two algorithmic parameters that have to be set appropriately. Specifically, they are chosen to

ensure adequate performance in terms of both the achievable convergence rate and steady-state BER

misadjustment. Note that there is no need to normalise the weight vector to a unit-length after each

update. The CIR cF,d, which is also needed for the sake of performing the space transformation of

(13), may be estimated using the standard LMS algorithm.

This LBER ST-DFE has a similar computational complexity to the LMS ST-DFE. For the sake of

a comparison, the weight updating equations of the LMS ST-DFE are reproduced here:

w(k + 1) = w(k) + µ (s(k − d)− y(k))∗ r(k), (61)

f̂d = wH(k + 1)ĉF,d, (62)

w(k + 1) =
f̂d

|f̂d|
w(k + 1). (63)

Let us assume that L number of LMS channel estimators are used for identifying the L channels,

which has a computational requirement of 8 × (Lnc) + 2 multiplications and 8 × (Lnc) additions

per channel estimator update. Table I compares the total computational complexity of the LBER ST-

DFE to that of the LMS ST-DFE. It is worth emphasising that the performance of the LMS ST-DFE

is closely related to the conditioning number of the matrix CFCH
F + σ2

nILm. In fading associated

environments with relatively low levels of noise, this matrix may not always be invertible and hence

the computationally simple LMS ST-DFE may suffer from serious performance degradation. In such

situations, in order to realize the MMSE solution the recursive least squares algorithm may have to

be used for the weight updating procedure, which has a significantly higher complexity. By contrast,

the LBER ST-DFE appears to be robust, as it does not rely on any matrix inversion. This will be

demonstrated in our simulation study.

V. SIMULATION STUDY

In all of our simulation based investigations, a perfect channel estimate was assumed in performing

the space translation (13) and in calculating fd. Hence our attention was focused on the performance

of the adaptive MBER and MMSE designs, rather than on the adaptive channel estimator.

Time-invariant system: In our simulations, the number of receiver antennas was varied from L = 1

to L = 4, and each simulated channel had the same CIR of:

Cl(z) = (0.1 + j0.1) + (−0.2− j0.2)z−1 + (0.4 + j0.4)z−2 + (−0.8− j0.8)z−3, (64)

for 1 ≤ l ≤ L. The actual simulated channel was normalised according to Cl(z)/|Cl(z)| for the

sake of maintaining unity channel gain. Since the length of the CIRs was nc = 4, the ST-DFE was
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characterised by the parameters of m = 4, d = 3 and nb = 3. The theoretical BERs of the MMSE

and MBER ST-DFEs, calculated using the expression (31), are given in Fig. 4 as a function of a

varying number of the receiver antennas, ranging from L = 1 to L = 4. In Fig. 4, the MMSE weight

solution was computed using the closed-form expression (21), while the MBER ST-DFE weights were

calculated numerically by solving the optimisation problem formulated in (37) using the simplified

conjugate gradient algorithm. It can be seen from Fig. 4 that as the number of antennas increased, the

achievable performance of the ST-DFE improved. Moreover, the MBER ST-DFE had a substantially

better performance than the MMSE ST-DFE, yielding a SNR gain in excess of 5 dB at the BER level

of 10−4.

The theoretical BERs shown in Fig. 4 represented the best-case performance, as they were obtained

assuming that correct symbols were fed back by the ST-DFE’s feedback loop. For the sake of

investigating the effects of error propagation, the BERs of the MMSE and MBER ST-DFEs were

also calculated using simulations with the error-prone detected symbol being fed back, and the

corresponding results are depicted in Fig. 5 for the case of L = 4, in comparison to the theoretical

BERs. It is interesting to see that for this example the BER performance degradation owing to error

propagation was less serious for the MBER ST-DFE, than for the MMSE ST-DFE.

The performance of the LBER ST-DFE algorithm was studied next. For the case of L = 4 receiver

antennas and for an SNR of 17 dB, Fig. 6 depicts the learning curves of the LBER algorithm in terms

of the achievable theoretical BER averaged over 20 random runs, where the initial weight vector was

chosen as w(0) = wMMSE and the algorithmic parameters are set to µ = 0.05 and ρ2
n = 20σ2

n ≈ 0.4.

The LBER ST-DFE algorithm operated in two modes, namely the training mode in which s(k−d) was

known and correct symbols were fed back, and the decision directed (DD) mode in which ŝ(k − d)

was used for replacing s(k − d) and error-prone detected symbols were fed back. For the scenario

investigated, the training-based and DD learning curves of the LBER algorithm were indistinguishable.

For the sake of comparison, the training learning curve of the LMS algorithm using µ = 0.01 is also

shown in Fig. 6. The DD learning curve of the LMS algorithm, not shown here, was observed to

diverge owing to catastrophic error propagation.

Fading system: L = 4 receiver antennas were used and each of the four CIRs had the same length of

nc = 4. The magnitudes of the complex-valued CIR tap weights ci,l for 0 ≤ i ≤ 3 and 1 ≤ l ≤ 4 were

Rayleigh processes and the associated root mean power of each ci,l were
√

0.5 + j
√

0.5. The ST-DFE

structure was therefore defined by decision delay d = 3, feedforward order m = 4 and feedback

order nb = 3. The transmission frame structure consisted of 20 training symbols followed by 200 data
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symbols. Frame fading was implemented, in which the CIR taps were faded at the beginning of each

frame at a normalised Doppler frequency of 10−2 and were then kept constant within the frame. This

provided a different fading magnitude and phase for each transmitted frame.

The performance of the LMS and LBER ST-DFEs are compared in Fig. 7, where the BERs were

calculated using the actual detected symbols for feedback. From Fig. 7, it can be seen that the BER

curve of the LMS ST-DFE first became flat as the noise level decreased and eventually it increased

slightly, when the noise level became extremely low. A possible explanation of this performance

degradation was as follows. The LMS ST-DFE was sensitive to the eigenvalue spread of the matrix

CFCH
F + σ2

nILm. In a fading scenario associated with a low noise level σ2
n, the associated matrix

became ill-conditioned or even non-invertible. This inflicted a substantial performance degradation of

the LMS ST-DFE. Auspiciously, the LBER ST-DFE did not suffer from this numerical ill-conditioning

problem and hence exhibited a superior performance in comparison to the LMS ST-DFE.

VI. CONCLUSIONS

A novel MBER ST-DFE design has been proposed for employment in SIMO systems. It has been

demonstrated that this MBER ST-DFE generally outperforms the standard MMSE design in terms

of the achievable BER, and therefore this design may be expected to increase the expected system

capacity. An adaptive implementation of this MBER design has also been derived using the LBER

algorithm. It has been shown that for a QPSK modulation scheme the resultant LBER ST-DFE has a

similarly low computational complexity to the LMS ST-DFE. Our simulation results have demonstrated

that the LBER ST-DFE is robust and does not suffer from numerical ill-conditioning problems in low-

noise fading environments. Finally the advocated design outperforms the LMS ST-DFE. Our future

work includes incorporating the proposed MBER ST-DFE design with channel coding to develop an

iterative joint detection and decoding scheme for SIMO systems.
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TABLE I

COMPARISON OF COMPUTATIONAL COMPLEXITY PER UPDATE, WHERE L IS THE NUMBER OF THE CHANNELS, nc IS THE LENGTH OF

EACH CHANNEL, THE ST-DFE FEEDFORWARD AND FEEDBACK ORDERS ARE CHOSEN AS m = nc AND nb = nc − 1, RESPECTIVELY.

ST-DFE multiplications additions exp(•) evaluation square root evaluation
LBER 24× (Lnc) + 12 22× (Lnc)− 4 2 1
LMS 24× (Lnc) + 8 22× (Lnc)− 2 — 1

Σ
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R
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Fig. 1. Single-input multiple-output system employing multiple receive antennas.



16

∆

X w0,1 X w1,1

∆ ... ∆

X wm−1,1...

Σ

∆

X b1,1

∆

X b2,1

...
X bn  ,1

x (k)1

... ...

x (k)2

x (k)L

Σ
s(k−d)y(k) ^

∆

DFE

DFE (m,n  ,d)

(m,n  ,d)

* * *

* * *...
b

b

b

Fig. 2. Space-time decision feedback equalisation structure using ∆-spaced temporal filters, where ∆ = Ts and Ts denotes the symbol
period, m is the feedforward filter order, nb the feedback filter order, and d the decision delay.
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Fig. 3. Equivalent translated space-time decision feedback equaliser structure, where z−1 denotes the unit delay operator, nc is the
length of CIRs, and the DFE structure parameters are chosen as decision delay d = nc − 1, feedforward order m = nc and feedback
order nb = nc − 1.
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Fig. 4. Theoretical BER comparison of the MMSE and MBER ST-DFEs for the time-invariant system with varying number of antennas
L = 1 to L = 4.
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Fig. 5. Effects of error propagation on BER for the MMSE and MBER ST-DFE of the time-invariant system with number of antennas
L = 4, where “DSF” denotes simulated BER with detected symbols being fed back, while “CSF” denotes theoretical BER with correct
symbols being fed back.
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Fig. 6. Learning curves of the LBER algorithm in terms of the theoretical BER averaged over 20 runs for the time-invariant system
with 4 receiver antennas and a SNR of 17 dB, given w(0) = wMMSE, µ = 0.05 and ρ2

n = 20σ2
n ≈ 0.4. DD denotes decision directed

adaptation with ŝ(k − d) substituting s(k − d) and detected symbols being fed back. Note that for the LBER algorithm in this case
the DD learning curve is indistinguishable from the training learning curve. For a comparison, the training learning curve for the LMS
algorithm with µ = 0.01 is also shown.
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by simulation with actual detected symbols being fed back.


