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ABSTRACT been introduced respectively. Mixed performance controls,
such as mixedd,/H., control [4], mixedl,/H., control
) . ) . ) [9], mixed !, /H> control [6] and mixedH /I, control [11],
The general discrete-time single-input smgle—outpt# .
_ ) . i . have been the pole of attraction for many researchers lately.
(SISO) mixedH,/l; control problem is considered in this .
. o . Mixed performance control can directly accommodate real-
paper. It is found that the existing results of duality theoriy L . .
) . T ) ) . Istic situations where a system must satisfy several different
cannot directly be applied to this infinite dimensional optimi- . )
, L , performance constraints. Based on the Youla parameterisa-
sation problem. By means of two finite dimensional approx- .
) _ ) . tion, a mixed performance control problem can be changed
imate problems to which the duality theory can be applied, . L . .
. _ » Into a special optimisation problem with two kinds of norms.
the dual of this mixed{, /I, control problem is verified to be
the limit of the duals of these two approximate problems. The topic of this paper is mixeH> /l; control. A discrete-
time SISO mixedH,/l; control problem was addressed by
Voulgaris [11], [12] through minimising th&d;-norm of
the closed-loop map while maintaining ftsnorm at a pre-
scribed level. Based on the duality theory, a finite step
method was presented to solve for exactly this mikkg,
|. INTRODUCTION optimisation problem. A more general class of discrete-
time SISO mixedH,/!; control problems, in which Voul-
Most controller synthesis problems can be formulated @aris’ problem [11], [12] is a special case, was addressed in
follows: Given a plantP, design a controlleC’ such that [13]. This class of problems consider minimising the-
the closed-loop system is stable and satisfies some giv@§im of the closed-loop map while maintaining thenorm
(optimal) performance criteria. When the optimal perfolof another closed-loop map at a prescribed level. A method-
mance criterion is thei,.-norm (H>-norm orl;-norm re- ology using finite-dimensional quadratic programming was
spectively) of the closed-loop transfer function based on theesented in [14] to obtain converging lower and upper
Youla parameterisation [3] — a parameterisation of the claggunds to this class of mixeH,/I; control problems. This
of controllers which stabilise the plant, the controller Synthﬁmethodomgy was also developed to approximately solve for
sis problem can be changed into tHe,-norm (H>-norm or - a multi-input multi-output (MIMO) square mixeH> /I, con-
l1-norm respectively) model matching problem — the profrol problem [8]. It was shown in [8] that this methodology
lem of finding the optimal stable free parameter which miwithout zero interpolation avoids some problems presented
imises theH ..-norm (H-norm orl;-norm respectively) of a in methods which employ zero interpolation techniques. Us-

map of the free parameter. Consequertly, control design ing zero interpolation techniques, a definition of the MIMO
[16], H control design [15] and; control design [10] have
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multi-block mixedH- /1; control problem was given by Elia termining the optimal controller still remains, even if the op-
& Dahleh [2], and the dual of this MIMO multi-block mixed timal closed-loop map has been determined [8]. The closed-
H, /1, control problem was derived in [2]. An upper approxitoop map needs to satisfy the zero interpolation conditions
mation methodology was also presented in [7] for the MIM@xactly to guarantee that the correct cancellations take place
multi-block mixed H»/1; control problem in which the re- while solving for the controller. Therefore, an extremely high
lated approximate problem is to minimize a positive lineaccurate closed-loop map is required in order to determine
combination of the squarell;, norms and thé, norms over correct pole and zero cancellation. However, numerical er-
all the stabilizing controllers. rors are always present which may result in a controller struc-

] o _ ture different from the optimal one. All of these difficulties

_A n.1|xed Hz/ll control. problem is !ntnnsmally an infi- . ivates us to develop the dual of a mix&t //, control
nite dimensional quadratic programming problem. For Va[:r)_roblem without zero interpolation.
ious minimisation problems, such as linear programming,
quadratic programming, convex programming and approxi- The general discrete-time SISO mix&d/!; control prob-
mation theory, one comes across a remarkable phenomenem is addressed in this paper, which minimisesihenorm
which is very useful in concrete applications. There existd the closed-loop map while maintaining thenorm of an-
an associated maximisation problem called dual, involvingadher closed-loop map at a prescribed level. It is found that
different variable, which attains the same optimal value #ise existing results of duality theory cannot directly be ap-
the original problem called primal. Moreover, the value gblied to this infinite dimensional optimisation problem. Two
the variable for which the maximum is attained in the dudihite dimensional approximate problems are constructed to
problem can be interpreted as the so-called “shadow prioghich the duality theory can be applied. These two approx-
[1]. Abstractly speaking, there is a duality correspondengmate optimisation problems converge to the original infi-
between the primal problem in the vector space and a dudte dimensional optimisation problem from lower and up-
problem in the normed dual of the constraint space [1], [Sber sides, respectively. The dual of the general discrete-time
The constraint space is the space where the image of the c8I80 mixedH,/l; control problem is then shown to be the
straint operator lies. An obvious observation on duality pririimit of the duals of the two constructed approximate prob-
ciple is that the minimum distance from a point to a convdems.
set is equal to the maximum of the distances from the point
to the hyperplanes separating the point and the convex set|. NOTATION AND MATHEMATICAL PRELIMINARIES
This observation is of course completely trivial. However,
it turns out to be surprisingly useful in concrete applications Let R denote the field of real number&™ denote the
where the primal problem has nonlinear constraints or infinigpace ofn-dimensional real vectors, atifl. the nonnegative
dimension while the dual problem has linear constraints or fittegers. A causal SISO linear-time-invariant (LTI) transfer
nite dimension. This often leads to a simpler indirect methdtdnction G can be described as
of solving the primal problem, in which the dual problem is G- G(0) + G(DA + GRN2 + -,
solved for first.
G(k) e R, Vke Z,. 1)

The duality relationship between a mixéfh/l; control ) ) o
problem and its dual uncovers finite-dimensional structures%rﬂs G can be represented unlqueTIy Py Its fmp_)ulse response
the optimal solution, when such finite-dimensional structurS§aUence(0) G(1) G2) o } ’ ¢ a.nd Its |rT1puIse re-
. . L : o ghonse sequence are not differentiated in notation throughout
exist, and provides finite-dimensional approximations wher i
the problem does not appear to have a finite-dimensiorgglllS paper. Define

structure [12], [2]. Consequently, the duality theory plays [, = {G G=G0)+GMA+G2)N + -,

an important role in the research éf/l; problems. Elia G(k) € R, Vk € Z.}, )

& Dahleh [2] developed the dual of the MIMO multi-block

mixed H,/l; control problem based on zero interpolation lo = {G €le sup |G(k)| < OO} ; (3

techniques. Nevertheless, for a mix&d/l; control prob- ~

lem defined by zero interpolation techniques, the task of de- ly = {é cl, Z (G(k))? < OO} 7 )
k=0




and
llz{éele Z|G(k)|<oo}. (5)
k=0
For any@ € o, thel,o-norm of G is given by
|Glloc = sup [G(k)] (6)
For anyG € l», thel,-norm of G is
G2 = (| D (GR))% (7)

k=0
|G- is also theH,-norm of G. For anyG € [y, thel;-norm
of Gis

IGIh =Y IG(K)|. (8)
k=0

It is easily seen thaly C I C I, and thatvGy, G € 1,
Glég cly.

Let X be a normed linear space. The space of all bounded

linear functionals onX is called the normed dual of and
is denotedX*. For anyx € X andz* € X*, < z,z* >
denotes the value of the bounded linear functiartaht the
pointz. The norm of an element* € X* is

9)

||| = sup <z,z">.
llzll<1

tF(z1) + (1 — t)F(a2) forall 1, 22 in X and0 < ¢t < 1.
The following result of duality theory can be found in [5].

Lemma 1:Let f be a real-valued convex functional de-
fined on a convex subs@tof a vector spac&’, G be a convex
mapping ofX into a normed spac®’, andH (z) = Ax — b
is a map of X into the finite dimensional normed space
Y. Suppose thatd is linear,0 € Y is an interior point
of {y e Y |H(x) =y forsomexr € Q} and there exists an
x1 € Q) such thatG(z1) < 0 (i.e. G(x1) is an interior point
of the positive cone oW) and H (z;) = 0. Define the min-
imisation problem:
inf f(x).

G(z)<0
H(z)=0

p= 12)

Assume thaj is finite. Then the dual problem is

pw= max inf [f(x)+ < G(x),w* >+ < H(z),y" >].
w’:’*egg* zEN
y*eEY*

(13)

[1l. MIXED Ha/l; OPTIMISATION PROBLEM

The general discrete-time SISO mixéd,/l; optimisa-
tion problem [14] can be stated as: Givéh € [, Tp €
l, i, = Vi(0) --- Viim—1)1]T € R™1 W, =
[V2(0) --- Va(n—1)1]" € R*, and a constany, find

From standard functional analysis results [5], we haw@ € I; such that||T, — QVz||, is minimised and|T, —

(R™)* = R™, (I1)" = lw and (l)* = lp. For any
r € RNt andx* € RV,
N
<zat>=) (a(k)z*(k)). (10)
k=0

For anyz € [; andx* € [, (or for anyz € I; andx* € [),

<mat>=) (x(k)z*(k)). (11)
k=0

Given a convex cone’ in X, it is possible to define

an ordering relation onX as follows: x; > x5 if and
only if z1 — 2o € P. The coneP defining this rela-
tion on X is called positive.
fine a positive cone”® inside X* in the following way:
P%® = {z* € X*|< z,z* >> 0, Vz € P}, this in turn de-

fines an ordering relation aki*. For any vector space in this
paper, the positive cone which defines an ordering relati
is the set consisting of elements with nonnegative point-wi
components. LelV be a vector space with positive cone. A

mappingF : X — W is convex if F'(tx1 + (1 — t)xs) <

QV1||1 <.

This description ofd,/I; problem is without zero interpo-
lation conditions. Once thi&l,/l; problem has been solved
for, the optimal controller can be determined directly from
the optimal@. It should be pointed out that the notatigh
does not appear in anfl3/l; problem defined with zero in-
terpolation techniques, and there may exist some problems in
determining the optimal controller by H,/l; problem de-
fined with zero interpolation techniques, as mentioned in the
introduction section.

For the above mixed,/I; optimisation problem, in order

Then it is natural to de-to make its feasible region nonempty, it is assumed that

v > inf |7y — QVill.
Qel

(14)

(I)r}]addition, we also assume that all the poIeéA/pfare inside

tskée open unit disk in complex plane, i.e. for

TIOV=X) =A™ + Vi(m — DA™ + -+ 14(0), (15)

=1



[Ail < 1,¥i € {1,---,m}. Under these assumptions, we p () _ { 0 Il —Tw Vieo —‘/100} . [Tﬂ

have the following lemma [14]. Io 0 0 Voo —Voo T
. . . = Ax — b, (24)
Lemma 2: Suppose thatT; — QVi |1 <. Then||Q|1 <
L, where where 1 0
L= 777@”1 Ll (16) I = [ 1 ] : (25)
11 (1= xd o
. L . Ex=[1 1 -], (26)
Define ¢ = {Q e b Iy - QWi <7, QI < L}. V) -
From lemma 2, it is easy to see another description of the )
mixed H,/l; optimisation problem: : V1(0)
= inf ||Ty — QVal2. 17 Loo = o
Notice the fact that|Q||; < L is equal to the linear con- :
straints o ) -0 S
Q:Q+_Q—a [ VQ(O) 07
Q++Q-<L. .
Von—1 : -
Therefore, by additionally setting Voo |7 ] (28
S 1 Va(n—1) .
Tl_QV1: :\I/Jr—\I],, 1
U, >0, U_>0, (19) S
TQ — Q‘A/Q = (i)7 L 0 " L

With these definitions, the mixeH,/l; optimisation prob-

the problem (17) can easily be transformed into lem (17) becomes

s 5112
po=infl@le. p= inf f(a) (29)
st =T, — Q+V2 + Q,‘/Q gil))ig

U, ¥ =T, —Q:Vi +Q_V, 20
* 1 Qe E-N (20) which has the same form as (12). However, lemma 1 can-

Up+0-<y, Qp+Q-=<L not be applied to (17). This is because h¥re= [; x 5 is
Pely, 0S5V, €, 05V _€ly infinite dimensional which does not satisfy the conditions of
0<Qrel,0<Q_€el lemma 1. In this paper, this difficulty in setting up the dual

of the problem (17) is overcome by first considering some
To obtain the dual of the problem (17), we rewrite (20) in thgpproximations of (17).

form of (12) LetX =1y x 1y x 11 x 11 x11,Y =11 x g,

W = R?,
IV. TwWO APPROXIMATE PROBLEMS AND THEIR DUALS
A‘:i) (i)AG lo
Uy (|0<v, el VN € Z,, define
Q=qao=|V_[|0<V_€l ¢, (21)
Qi ||0=Qych §+N:{QERN+1}Q€§}- (30)
Q-110<Q-€h
I 00 0 0 The variableN-truncation problem of (17) is constructed as
0 00 0O . . A 1o
= inf [T — QVa|l5. 31
f(l') — .%'T 0 00 0 0 z, (22) H4+N Qér§1+N H 2 Q 2”2 ( )
0 00 0O
0 0 0 0 O The mixedH,/l; problem (17) can be approximated from
pT  ET upper side by the variabl&-truncation problem (31), as
G(x) = 0 Eo Ex 0 0 |7 (23) . .
0 0 0 ET ET Ll stated in the following lemma [14].



Lemma 3o > pig1 > plgo > -0 andz\}im UiN = [
—00

e RINAn+1)x(N+1) (41)

VN € Z,, define thelV-th truncation operatdry : . —  With these definitions, (31) can be expressed in the form of

RN+1 as

TnG = G0) + GA+ -+ G(N)AY.

(32)

(12). It is easy to see that(x) so constructed is a convex
functional, (2 is a convex subset7(x) is a convex mapYy
is finite dimensional A is linear, u, v is finite,0 € Y is an

Similar to the processing for the problem (17) in section ljnterior point of{y € Y | H (x)  y for somer ¢ 0}, there
defineX = RON+2m+n+5 y — RN+m+1y pN4n+l 17 —

R?,
o

Q:

xr =

Q+ || 0<QyeRNT
Q-1 0<Q_eRNH!
I 0 0 0 O
0 0 0 0 O
f@)y=2z"10 0 0 0 0|xz+a(N),
00 0 00
00 0 0 O
0 ET ET 0 0
(%x): { N+m+1 N+m+1
0 0 0 EL,, EL.,
7= B(N)
L
and
0 I —I Vinim+1 —ViNtm+1
H(z) = : ,
(@) [I 0 0 Vaongnst —Vonint
_ :FN44niH _ _
[FN+nT2]_Ax b,

wherel denotes the finite identity matrix with a proper di-

mension,

(i) c RN+n+1
0< W, e RN+m+1
U_[|0<U_ e RN+m+l

a(N) =< Ty = TnynTh, T2 — TninTs >,

Enymi1 =1 -

1" e RN

B(N) = Tt — CnymTi |1,

[ Vi(0)
Vl(m — 1)
1

Vi Ntm+1 =

L 0
€ RIN+mA1)x(N+1)

and
[ V2(0)

Va(n —1)
1

Vo Ntn+1 =

V1(0)

Vl(m — 1)

1

V2(0)

Va(n —1)

(33)

(34)

E

(35)

E

(36)

37)
(38)
(39)

(40)

existsz; € Q with G(z;) < 0 andH(z;) = 0. Hence,
lemma 1 can directly be applied to derive the dual of the op-
timisation problem (31):

max inf
yrerN+m+1 2€Q

ygeRN+n+1
Oﬁw’l‘ €ER
ng;ER

pyN < ®,® > +a(N)

+ <V, —U_ —TnymTt
FVingmi1(Qr — Q). yf >
+<d— FN+nT2
+ Vo ngnt1(Q — Q-),y5 >
+ < Ef (B +00) =y + B(N), w} >
+<ENa(Qy +Q-) - Lws >

max inf <<i>,(i>>+<<i>,y§>

yreRN+m+1 zeQ
v RN +n+1
o<w*eR
0<wier
+ < U4, Engmaw} +yi >
+ < VU_, Eximiprwi —yl >
+ < Q1 , Eny1ws + Vlj:N-&-m-t,-lyik
+ VQTN+n+1y§ >
+<Q_,Enyiwj — Vl?N+m+1yf
- V2?N+n+1y>2k >
+a(N)— <y —0B(N),w; > — < Lyws >
— < TnimT1,yf > — < TngnTa,ys >| . (42)
In (42), we are sure that
(43)

ENymiiw] +y7 > 0.

The reason is that, iy imi1wi + y7 < 0, \L can be
chosen as such a large positive number tha{ < 0, which
contradicts the fagt . x > 0. Similarly,

Enimyiw] —yi >0, (44)

Eniiws + VlTN+m+1y>1k + V2TN+n+1y; >0, (45)
* T * T *

Enyi1w; — Vl,N+m+1y1 - V2,N+n+1y2 > 0. (46)



Denote
glz) = <B,d >+ < b,y >
+ < Uy, Engpmprwi +yi >
+ < VU_, Enpmprw; —yl >
+ < Qp, Enprws + iy ¥
+ V{N+n+1y; >
+<Q_,Exyiwh — V1TN+m+1l/T
- VQZ:NJrnJrlyik >
+a(N)— <y —=B(N),w;y > - < Lywi >
— < TnymTr,yf >
— < Tnynd,ys > . (47)
Obviously, under the conditions (43)—(46), we hﬁvg =0,

U_ =0,Q, =0andQ_ = 0 when inf g(x) is achieved.
xE
Thus

inf g(z) = inf [< 3,0 >+ < d,y5 > +a(N)
zeQ dels

—<y=pB(N),w] >— < Lw; >

— < FN+mT1,yT > =< FN+nT27y§ >}
= f|l<® = o —_ > < =, = >

éngj Tty 2779

- <7y —=pB(N),w] >+a(N)- < Lw; >

- < FN—‘,—WI,TlayT > =< FN+7L7727y;k >:|

1 * *
= =1 <z > +a(N)
- <y—=B(N),wi>—<Lw; >

— < I‘N+mT1,yf >

— < TnynThys > . (48)
Consequently, the dual of the variali{etruncation problem
(Bl)is

]- * * T *
ppn = max | = <Y, Yy >~ < PnemTh,y7 >
—<v-=0B(N),w] >— < Lwy >
+a(N)— < TninT2, v >} : (49)

St —Entmt1w] S Y7 < Engmtprwy
—En 1wy < (VEN+m+1?JT
Vo Nini1s) < Engrws
yi € RNTHL g5 e RN

0<wieR, 0<w;€eR

VN € Z,, define

¢ n={Qen |IPx(T ~ QW) <7, QI <L}
(50)

Obviously,
§0D&6&1D82D- D& (51)

The constraintV-truncation problem of (17) is constructed
as

pox= inf [Cu(ls— QW) (52)
Qe-nN

The mixedH, /1, optimisation problem (17) can be approxi-
mated from lower side by this constraift-truncation prob-
lem (52), as summarized in the following lemma [14].

Lemmadip_og<p_1 <p_o<--- anleim LN = [
—00

Using the same method for constructing the dual of the
variable N-truncation problem, the dual of the constraivit
truncation problem (52) is obtained as:

1
p-N = max [—4 <Yz, Y3 > — <7,wi >

— < Lyw}>— <InTy,yf >

— <TnTo >} . (53)
st —Enyiiwi <y < Eypjwy

—Enwy < (U y oyt

+US n1195) < Enpaws

yi € RN, g5 € RN

0<wieR, 0<wieR

Here
V1(0) 0
(]1 N4l = . . : c R(N+1)><(N+1) (54)
Vi(N) - Vi(0)
and
V5(0) 0
Usni1 = : . e RINADX(N+1)
Va(N) - V(0)
(55)
V. THE DUAL OF MIXED Hy/l; PROBLEM
Define
X Yl €loo, Y3 €12
Yillo<wieR 0<wieR
D=L w=|"2|| —~Exwi <yi < Exuw} (56)
L —Eews < (VT
Wy T * , *
+V2,ooy2) < Esows
and
1 * * * *
(,O(W) = —— < Ya,Yso > =< Y, Wy > =< Lan >

4
_<T17y>1k>_<T27y§>' (57)



Construct an infinite dimensional optimisation problem as: Proposition 2: For the optimisation problems (49) and
(60), piy v = vy

v = sup p(w). (58)
weD

VN € Z,, defineD, y as

VN € Z,, define

y; € RNF1, g3 € RNH!

Yi €loc, Y3 € o < w* < wk
0<wieR 0<weR b O=wi e b osuael 63
D o —E ok < B * 59 -N = W oWy = Y1 = LooWy . ( )
N =W scwf Sy < Hoow] - (59) —Eoowy <V yi + Vil s
—In (Bsows) < Tn (Voui v Ml

+Vihoys) < T (Baow})

The constraintN-truncation problem of (58) can be con-The variable NV-truncation problem of (58) can be con-

structed as structed as
N e p(w). (60) voN = sup p(w). (64)
w -N
The following proposition is a direct consequencdufy D
D. The following proposition is the direct consequence of
D_n CD.
Proposition 1: For the optimisation problems (58) and
(60), vy n > v. Proposition 3: For the optimisation problems (58) and
(64),v_n < w.
However,

L . . In the same manner, the optimisation problem (64) can be
sup p(w) = sup [_Z <I'N+n¥3, UNtnys >

weD N weD4 N transformed into the optimisation problem (53), and we have
—<7ywi > =7 <y5 —Tninys,y5 — Dnanys > the following proposition.

—< lifvwg > = <AFN+mT1aFN+myT >

—<Ty —TnimT1, 97 —TNnemyt > Proposition 4: For the optimisation problems (53) and
- < FNJrnT727FN+ny§K > (64),,&,]\7 = VU_N-

— < Ty —TnynTo, s — Tninys >}

X ” With lemmas 3 and 4, and propositions 1-4, the main result
= Ssup [_% < 1—‘N-l-ny2 5 FN+ny2 > prop

w€D N of this paper can be summarized in the following proposition.
— <7v,wiy >—<L,w; >
= < (Y3 = Tn4ny3)/2+ (To = DninT3), Proposition 5: For the optimisation problems (17) and
(W5 = Tniny3) /2 + (T2 = TyynT2) > (58), 11 = v.

+ <15 — FN+nT2,T2 — FN+nT2 >
— < FN—‘,—mThFN—',-myT >

+wi| Ty = Tnem Tl VI. CONCLUSIONS

— < T Dngntiy >}

= sup [—3 <Tnin¥s, Dngnys > +a(N) The dual problem sheds new lights on the mixég)/[;

_ f?—Nﬂ(N),wf > < Lowi> optimisation problem. It can be seen that the existing lemma

— < TN, TNyt > 1 cannot be applied to the primal problem (17) directly. The

— < TninTs, T nanys > idea in verifying the relation between the primal problem (17)

(61) and its dual problem (58) is to utilize their corresponding ap-

and the constraint € D,y can be changed into proximation problems (31) and (52) for which lemma 1 can

 Ename1wt < Tximyt < Enpms1t?, be applied Qire?tly. It i§ interesting to notice that the vari_-
—Enpwi < {V1TN+m+1(FN+myT) able truncation in the primal problem becomes the constraint

+ VQT’”NJFHH(FNMy;)} < Eniws, (62) truncation in the dual problem, and the constraint truncation
€ RN+m+l € RN+nHL in the primal problem becomes the variable truncation in the
dual problem. The approach based on duality theory is useful
This verifies that the optimisation problem (60) is exactlin research on the mixeff,/l; optimisation problem, as it
the optimisation problem (49), which leads to the followings often that the dual problem can be solved for more easily
proposition. than the primal problem.

Cnymyi s TNn¥s
0<wieR, 0<w;eR.
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