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ABSTRACT

The general discrete-time single-input single-output

(SISO) mixedH2/l1 control problem is considered in this

paper. It is found that the existing results of duality theory

cannot directly be applied to this infinite dimensional optimi-

sation problem. By means of two finite dimensional approx-

imate problems to which the duality theory can be applied,

the dual of this mixedH2/l1 control problem is verified to be

the limit of the duals of these two approximate problems.

Keywords: Optimal control, mixedH2/l1 control, duality

theory.

I. I NTRODUCTION

Most controller synthesis problems can be formulated as

follows: Given a plantP̂ , design a controller̂C such that

the closed-loop system is stable and satisfies some given

(optimal) performance criteria. When the optimal perfor-

mance criterion is theH∞-norm (H2-norm or l1-norm re-

spectively) of the closed-loop transfer function based on the

Youla parameterisation [3] — a parameterisation of the class

of controllers which stabilise the plant, the controller synthe-

sis problem can be changed into theH∞-norm (H2-norm or

l1-norm respectively) model matching problem — the prob-

lem of finding the optimal stable free parameter which min-

imises theH∞-norm (H2-norm orl1-norm respectively) of a

map of the free parameter. Consequently,H∞ control design

[16], H2 control design [15] andl1 control design [10] have

been introduced respectively. Mixed performance controls,

such as mixedH2/H∞ control [4], mixedl1/H∞ control

[9], mixed l1/H2 control [6] and mixedH2/l1 control [11],

have been the pole of attraction for many researchers lately.

Mixed performance control can directly accommodate real-

istic situations where a system must satisfy several different

performance constraints. Based on the Youla parameterisa-

tion, a mixed performance control problem can be changed

into a special optimisation problem with two kinds of norms.

The topic of this paper is mixedH2/l1 control. A discrete-

time SISO mixedH2/l1 control problem was addressed by

Voulgaris [11], [12] through minimising theH2-norm of

the closed-loop map while maintaining itsl1-norm at a pre-

scribed level. Based on the duality theory, a finite step

method was presented to solve for exactly this mixedH2/l1

optimisation problem. A more general class of discrete-

time SISO mixedH2/l1 control problems, in which Voul-

garis’ problem [11], [12] is a special case, was addressed in

[13]. This class of problems consider minimising theH2-

norm of the closed-loop map while maintaining thel1-norm

of another closed-loop map at a prescribed level. A method-

ology using finite-dimensional quadratic programming was

presented in [14] to obtain converging lower and upper

bounds to this class of mixedH2/l1 control problems. This

methodology was also developed to approximately solve for

a multi-input multi-output (MIMO) square mixedH2/l1 con-

trol problem [8]. It was shown in [8] that this methodology

without zero interpolation avoids some problems presented

in methods which employ zero interpolation techniques. Us-

ing zero interpolation techniques, a definition of the MIMO
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multi-block mixedH2/l1 control problem was given by Elia

& Dahleh [2], and the dual of this MIMO multi-block mixed

H2/l1 control problem was derived in [2]. An upper approxi-

mation methodology was also presented in [7] for the MIMO

multi-block mixedH2/l1 control problem in which the re-

lated approximate problem is to minimize a positive linear

combination of the squaredH2 norms and thel1 norms over

all the stabilizing controllers.

A mixed H2/l1 control problem is intrinsically an infi-

nite dimensional quadratic programming problem. For var-

ious minimisation problems, such as linear programming,

quadratic programming, convex programming and approxi-

mation theory, one comes across a remarkable phenomenon,

which is very useful in concrete applications. There exists

an associated maximisation problem called dual, involving a

different variable, which attains the same optimal value as

the original problem called primal. Moreover, the value of

the variable for which the maximum is attained in the dual

problem can be interpreted as the so-called “shadow price”

[1]. Abstractly speaking, there is a duality correspondence

between the primal problem in the vector space and a dual

problem in the normed dual of the constraint space [1], [5].

The constraint space is the space where the image of the con-

straint operator lies. An obvious observation on duality prin-

ciple is that the minimum distance from a point to a convex

set is equal to the maximum of the distances from the point

to the hyperplanes separating the point and the convex set.

This observation is of course completely trivial. However,

it turns out to be surprisingly useful in concrete applications

where the primal problem has nonlinear constraints or infinite

dimension while the dual problem has linear constraints or fi-

nite dimension. This often leads to a simpler indirect method

of solving the primal problem, in which the dual problem is

solved for first.

The duality relationship between a mixedH2/l1 control

problem and its dual uncovers finite-dimensional structures in

the optimal solution, when such finite-dimensional structures

exist, and provides finite-dimensional approximations when

the problem does not appear to have a finite-dimensional

structure [12], [2]. Consequently, the duality theory plays

an important role in the research onH2/l1 problems. Elia

& Dahleh [2] developed the dual of the MIMO multi-block

mixed H2/l1 control problem based on zero interpolation

techniques. Nevertheless, for a mixedH2/l1 control prob-

lem defined by zero interpolation techniques, the task of de-

termining the optimal controller still remains, even if the op-

timal closed-loop map has been determined [8]. The closed-

loop map needs to satisfy the zero interpolation conditions

exactly to guarantee that the correct cancellations take place

while solving for the controller. Therefore, an extremely high

accurate closed-loop map is required in order to determine

correct pole and zero cancellation. However, numerical er-

rors are always present which may result in a controller struc-

ture different from the optimal one. All of these difficulties

motivates us to develop the dual of a mixedH2/l1 control

problem without zero interpolation.

The general discrete-time SISO mixedH2/l1 control prob-

lem is addressed in this paper, which minimises theH2-norm

of the closed-loop map while maintaining thel1-norm of an-

other closed-loop map at a prescribed level. It is found that

the existing results of duality theory cannot directly be ap-

plied to this infinite dimensional optimisation problem. Two

finite dimensional approximate problems are constructed to

which the duality theory can be applied. These two approx-

imate optimisation problems converge to the original infi-

nite dimensional optimisation problem from lower and up-

per sides, respectively. The dual of the general discrete-time

SISO mixedH2/l1 control problem is then shown to be the

limit of the duals of the two constructed approximate prob-

lems.

II. N OTATION AND MATHEMATICAL PRELIMINARIES

Let R denote the field of real numbers,Rm denote the

space ofm-dimensional real vectors, andZ+ the nonnegative

integers. A causal SISO linear-time-invariant (LTI) transfer

functionĜ can be described as

Ĝ = G(0) + G(1)λ + G(2)λ2 + · · · ,

G(k) ∈ R, ∀k ∈ Z+. (1)

As Ĝ can be represented uniquely by its impulse response

sequence[G(0) G(1) G(2) · · · ]T , Ĝ and its impulse re-

sponse sequence are not differentiated in notation throughout

this paper. Define

le =
{

Ĝ
∣∣∣Ĝ = G(0) + G(1)λ + G(2)λ2 + · · · ,

G(k) ∈ R, ∀k ∈ Z+} , (2)

l∞ =
{

Ĝ ∈ le

∣∣∣∣sup
k
|G(k)| < ∞

}
, (3)

l2 =

{
Ĝ ∈ le

∣∣∣∣∣
∞∑

k=0

(G(k))2 < ∞

}
, (4)
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and

l1 =

{
Ĝ ∈ le

∣∣∣∣∣
∞∑

k=0

|G(k)| < ∞

}
. (5)

For anyĜ ∈ l∞, thel∞-norm ofĜ is given by

‖Ĝ‖∞ = sup
k
|G(k)| . (6)

For anyĜ ∈ l2, thel2-norm ofĜ is

‖Ĝ‖2 =

√√√√ ∞∑
k=0

(G(k))2. (7)

‖Ĝ‖2 is also theH2-norm ofĜ. For anyĜ ∈ l1, thel1-norm

of Ĝ is

‖Ĝ‖1 =
∞∑

k=0

|G(k)| . (8)

It is easily seen thatl1 ⊂ l2 ⊂ l∞, and that∀Ĝ1, Ĝ2 ∈ l1,

Ĝ1Ĝ2 ∈ l1.

Let X be a normed linear space. The space of all bounded

linear functionals onX is called the normed dual ofX and

is denotedX∗. For anyx ∈ X andx∗ ∈ X∗, < x, x∗ >

denotes the value of the bounded linear functionalx∗ at the

pointx. The norm of an elementx∗ ∈ X∗ is

‖x∗‖ = sup
‖x‖≤1

< x, x∗ > . (9)

From standard functional analysis results [5], we have

(Rm)∗ = Rm, (l1)
∗ = l∞ and (l2)

∗ = l2. For any

x ∈ RN+1 andx∗ ∈ RN+1,

< x, x∗ >=
N∑

k=0

(x(k)x∗(k)) . (10)

For anyx ∈ l1 andx∗ ∈ l∞ (or for anyx ∈ l2 andx∗ ∈ l2),

< x, x∗ >=
∞∑

k=0

(x(k)x∗(k)) . (11)

Given a convex coneP in X, it is possible to define

an ordering relation onX as follows: x1 ≥ x2 if and

only if x1 − x2 ∈ P . The coneP defining this rela-

tion on X is called positive. Then it is natural to de-

fine a positive coneP⊕ inside X∗ in the following way:

P⊕ = {x∗ ∈ X∗ |< x, x∗ >≥ 0, ∀x ∈ P }, this in turn de-

fines an ordering relation onX∗. For any vector space in this

paper, the positive cone which defines an ordering relation

is the set consisting of elements with nonnegative point-wise

components. LetW be a vector space with positive cone. A

mappingF : X → W is convex ifF (tx1 + (1 − t)x2) ≤

tF (x1) + (1 − t)F (x2) for all x1, x2 in X and0 ≤ t ≤ 1.

The following result of duality theory can be found in [5].

Lemma 1:Let f be a real-valued convex functional de-

fined on a convex subsetΩ of a vector spaceX, G be a convex

mapping ofX into a normed spaceW , andH(x) = Ax− b

is a map ofX into the finite dimensional normed space

Y . Suppose thatA is linear, 0 ∈ Y is an interior point

of {y ∈ Y |H(x) = y for somex ∈ Ω} and there exists an

x1 ∈ Ω such thatG(x1) < 0 (i.e. G(x1) is an interior point

of the positive cone ofW ) andH(x1) = 0. Define the min-

imisation problem:

µ = inf
x∈Ω

G(x)≤0
H(x)=0

f(x). (12)

Assume thatµ is finite. Then the dual problem is

µ = max
w∗∈W∗

w∗≥0
y∗∈Y ∗

inf
x∈Ω

[f(x)+ < G(x), w∗ > + < H(x), y∗ >] .

(13)

III. M IXED H2/l1 OPTIMISATION PROBLEM

The general discrete-time SISO mixedH2/l1 optimisa-

tion problem [14] can be stated as: Given̂T1 ∈ l1, T̂2 ∈
l2, V̂1 = [V1(0) · · · V1(m− 1) 1]T ∈ Rm+1, V̂2 =
[V2(0) · · · V2(n− 1) 1]T ∈ Rn+1, and a constantγ, find

Q̂ ∈ l1 such that‖T̂2 − Q̂V̂2‖2 is minimised and‖T̂1 −
Q̂V̂1‖1 ≤ γ.

This description ofH2/l1 problem is without zero interpo-

lation conditions. Once thisH2/l1 problem has been solved

for, the optimal controller can be determined directly from

the optimalQ̂. It should be pointed out that the notation̂Q

does not appear in anyH2/l1 problem defined with zero in-

terpolation techniques, and there may exist some problems in

determining the optimal controller by aH2/l1 problem de-

fined with zero interpolation techniques, as mentioned in the

introduction section.

For the above mixedH2/l1 optimisation problem, in order

to make its feasible region nonempty, it is assumed that

γ > inf
Q̂∈l1

‖T̂1 − Q̂V̂1‖1. (14)

In addition, we also assume that all the poles ofV̂1 are inside

the open unit disk in complex plane, i.e. for

m∏
i=1

(λ− λi) = λm + V1(m− 1)λm−1 + · · ·+ V1(0), (15)
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|λi| < 1, ∀i ∈ {1, · · · ,m}. Under these assumptions, we

have the following lemma [14].

Lemma 2:Suppose that‖T̂1− Q̂V̂1‖1 ≤ γ. Then‖Q̂‖1 ≤
L, where

L =
‖T̂1‖1 + γ

m∏
i=1

(1− |λi|)
. (16)

Define ξ =
{

Q̂ ∈ l1

∣∣∣‖T̂1 − Q̂V̂1‖1 ≤ γ, ‖Q̂‖1 ≤ L
}

.

From lemma 2, it is easy to see another description of the

mixedH2/l1 optimisation problem:

µ = inf
Q̂∈ξ

‖T̂2 − Q̂V̂2‖22. (17)

Notice the fact that‖Q̂‖1 ≤ L is equal to the linear con-

straints
Q̂ = Q̂+ − Q̂−,

Q̂+ ≥ 0, Q̂− ≥ 0,

Q̂+ + Q̂− ≤ L.

(18)

Therefore, by additionally setting

T̂1 − Q̂V̂1 = Ψ̂ = Ψ̂+ − Ψ̂−,

Ψ̂+ ≥ 0, Ψ̂− ≥ 0,

T̂2 − Q̂V̂2 = Φ̂,

(19)

the problem (17) can easily be transformed into

µ = inf ‖Φ̂‖22.

s.t. Φ̂ = T̂2 − Q̂+V̂2 + Q̂−V̂2

Ψ̂+ − Ψ̂− = T̂1 − Q̂+V̂1 + Q̂−V̂1 (20)

Ψ̂+ + Ψ̂− ≤ γ, Q̂+ + Q̂− ≤ L

Φ̂ ∈ l2, 0 ≤ Ψ̂+ ∈ l1, 0 ≤ Ψ̂− ∈ l1

0 ≤ Q̂+ ∈ l1, 0 ≤ Q̂− ∈ l1

To obtain the dual of the problem (17), we rewrite (20) in the

form of (12). LetX = l2 × l1 × l1 × l1 × l1, Y = l1 × l2,

W = R2,

Ω =

x =


Φ̂

Ψ̂+

Ψ̂−
Q̂+

Q̂−


∣∣∣∣∣∣∣∣∣

Φ̂ ∈ l2
0 ≤ Ψ̂+ ∈ l1
0 ≤ Ψ̂− ∈ l1
0 ≤ Q̂+ ∈ l1
0 ≤ Q̂− ∈ l1

 , (21)

f(x) = xT


I∞ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x, (22)

G(x) =
[

0 ET
∞ ET

∞ 0 0
0 0 0 ET

∞ ET
∞

]
x−

[
γ
L

]
, (23)

H(x) =
[

0 I∞ −I∞ V1,∞ −V1,∞
I∞ 0 0 V2,∞ −V2,∞

]
x−

[
T̂1

T̂2

]
= Ax− b, (24)

where

I∞ =

 1 0
1

0
...

 , (25)

E∞ = [ 1 1 · · · ]T , (26)

V1,∞ =



V1(0) 0
... V1(0)

V1(m− 1)
...

...

1 V1(m− 1)
...

...

1
...

...

0
...

...


, (27)

V2,∞ =



V2(0) 0
... V2(0)

V2(n− 1)
...

...

1 V2(n− 1)
...

...

1
...

...

0
...

...


. (28)

With these definitions, the mixedH2/l1 optimisation prob-

lem (17) becomes

µ = inf
x∈Ω

G(x)≤0
H(x)=0

f(x) (29)

which has the same form as (12). However, lemma 1 can-

not be applied to (17). This is because hereY = l1 × l2 is

infinite dimensional which does not satisfy the conditions of

lemma 1. In this paper, this difficulty in setting up the dual

of the problem (17) is overcome by first considering some

approximations of (17).

IV. T WO APPROXIMATE PROBLEMS AND THEIR DUALS

∀N ∈ Z+, define

ξ+N =
{

Q̂ ∈ RN+1
∣∣∣Q̂ ∈ ξ

}
. (30)

The variableN -truncation problem of (17) is constructed as

µ+N = inf
Q̂∈ξ+N

‖T̂2 − Q̂V̂2‖22. (31)

The mixedH2/l1 problem (17) can be approximated from

upper side by the variableN -truncation problem (31), as

stated in the following lemma [14].
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Lemma 3:µ+0 ≥ µ+1 ≥ µ+2 ≥ · · · and lim
N→∞

µ+N = µ.

∀N ∈ Z+, define theN -th truncation operatorΓN : le →
RN+1 as

ΓN Ĝ = G(0) + G(1)λ + · · ·+ G(N)λN . (32)

Similar to the processing for the problem (17) in section III,

defineX = R5N+2m+n+5, Y = RN+m+1×RN+n+1, W =
R2,

Ω =

x =


Φ̂

Ψ̂+

Ψ̂−
Q̂+

Q̂−


∣∣∣∣∣∣∣∣∣

Φ̂ ∈ RN+n+1

0 ≤ Ψ̂+ ∈ RN+m+1

0 ≤ Ψ̂− ∈ RN+m+1

0 ≤ Q̂+ ∈ RN+1

0 ≤ Q̂− ∈ RN+1

 , (33)

f(x) = xT


I 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

x + α(N), (34)

G(x) =
[

0 ET
N+m+1 ET

N+m+1 0 0
0 0 0 ET

N+1 ET
N+1

]
x

−
[

γ − β(N)
L

]
(35)

and

H(x) =
[

0 I −I V1,N+m+1 −V1,N+m+1

I 0 0 V2,N+n+1 −V2,N+n+1

]
x

−
[

ΓN+mT̂1

ΓN+nT̂2

]
= Ax− b, (36)

whereI denotes the finite identity matrix with a proper di-

mension,

α(N) =< T̂2 − ΓN+nT̂2, T̂2 − ΓN+nT̂2 >, (37)

EN+m+1 = [1 · · · 1]T ∈ RN+m+1, (38)

β(N) = ‖T̂1 − ΓN+mT̂1‖1, (39)

V1,N+m+1 =



V1(0) 0
...

...

V1(m− 1)
... V1(0)

1
...

...
... V1(m− 1)

0 1


∈ R(N+m+1)×(N+1) (40)

and

V2,N+n+1 =



V2(0) 0
...

...

V2(n− 1)
... V2(0)

1
...

...
... V2(n− 1)

0 1



∈ R(N+n+1)×(N+1). (41)

With these definitions, (31) can be expressed in the form of

(12). It is easy to see thatf(x) so constructed is a convex

functional,Ω is a convex subset,G(x) is a convex map,Y

is finite dimensional,A is linear,µ+N is finite, 0 ∈ Y is an

interior point of{y ∈ Y |H(x) = y for somex ∈ Ω}, there

existsx1 ∈ Ω with G(x1) < 0 andH(x1) = 0. Hence,

lemma 1 can directly be applied to derive the dual of the op-

timisation problem (31):

µ+N = max
y∗
1
∈RN+m+1

y∗
2
∈RN+n+1

0≤w∗
1
∈R

0≤w∗
2
∈R

inf
x∈Ω

[
< Φ̂, Φ̂ > +α(N)

+ < Ψ̂+ − Ψ̂− − ΓN+mT̂1

+ V1,N+m+1(Q̂+ − Q̂−), y∗1 >

+ < Φ̂− ΓN+nT̂2

+ V2,N+n+1(Q̂+ − Q̂−), y∗2 >

+ < ET
N+m+1(Ψ̂+ + Ψ̂−)− γ + β(N), w∗1 >

+ < ET
N+1(Q̂+ + Q̂−)− L,w∗2 >

]
= max

y∗
1
∈RN+m+1

y∗
2
∈RN+n+1

0≤w∗
1
∈R

0≤w∗
2
∈R

inf
x∈Ω

[
< Φ̂, Φ̂ > + < Φ̂, y∗2 >

+ < Ψ̂+, EN+m+1w
∗
1 + y∗1 >

+ < Ψ̂−, EN+m+1w
∗
1 − y∗1 >

+ < Q̂+, EN+1w
∗
2 + V T

1,N+m+1y
∗
1

+ V T
2,N+n+1y

∗
2 >

+ < Q̂−, EN+1w
∗
2 − V T

1,N+m+1y
∗
1

− V T
2,N+n+1y

∗
2 >

+α(N)− < γ − β(N), w∗1 > − < L,w∗2 >

− < ΓN+mT̂1, y
∗
1 > − < ΓN+nT̂2, y

∗
2 >

]
. (42)

In (42), we are sure that

EN+m+1w
∗
1 + y∗1 ≥ 0. (43)

The reason is that, ifEN+m+1w
∗
1 + y∗1 < 0, Ψ̂+ can be

chosen as such a large positive number thatµ+N < 0, which

contradicts the factµ+N ≥ 0. Similarly,

EN+m+1w
∗
1 − y∗1 ≥ 0, (44)

EN+1w
∗
2 + V T

1,N+m+1y
∗
1 + V T

2,N+n+1y
∗
2 ≥ 0, (45)

EN+1w
∗
2 − V T

1,N+m+1y
∗
1 − V T

2,N+n+1y
∗
2 ≥ 0. (46)
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Denote

g(x) = < Φ̂, Φ̂ > + < Φ̂, y∗2 >

+ < Ψ̂+, EN+m+1w
∗
1 + y∗1 >

+ < Ψ̂−, EN+m+1w
∗
1 − y∗1 >

+ < Q̂+, EN+1w
∗
2 + V T

1,N+m+1y
∗
1

+ V T
2,N+n+1y

∗
2 >

+ < Q̂−, EN+1w
∗
2 − V T

1,N+m+1y
∗
1

− V T
2,N+n+1y

∗
2 >

+α(N)− < γ − β(N), w∗1 > − < L,w∗2 >

− < ΓN+mT̂1, y
∗
1 >

− < ΓN+nT̂2, y
∗
2 > . (47)

Obviously, under the conditions (43)–(46), we haveΨ̂+ = 0,

Ψ̂− = 0, Q̂+ = 0 andQ̂− = 0 when inf
x∈Ω

g(x) is achieved.

Thus

inf
x∈Ω

g(x) = inf
Φ̂∈l2

[
< Φ̂, Φ̂ > + < Φ̂, y∗2 > +α(N)

− < γ − β(N), w∗1 > − < L,w∗2 >

− < ΓN+mT̂1, y
∗
1 > − < ΓN+nT̂2, y

∗
2 >

]
= inf

Φ̂∈l2

[
< Φ̂ +

y∗2
2

, Φ̂ +
y∗2
2

> − <
y∗2
2

,
y∗2
2

>

− < γ − β(N), w∗1 > +α(N)− < L,w∗2 >

− < ΓN+mT̂1, y
∗
1 > − < ΓN+nT̂2, y

∗
2 >

]
= −1

4
< y∗2 , y∗2 > +α(N)

− < γ − β(N), w∗1 > − < L,w∗2 >

− < ΓN+mT̂1, y
∗
1 >

− < ΓN+nT̂2, y
∗
2 > . (48)

Consequently, the dual of the variableN -truncation problem

(31) is

µ+N = max
[
−1

4
< y∗2 , y∗2 > − < ΓN+mT̂1, y

∗
1 >

− < γ − β(N), w∗1 > − < L,w∗2 >

+α(N)− < ΓN+nT̂2, y
∗
2 >

]
. (49)

s.t. −EN+m+1w
∗
1 ≤ y∗1 ≤ EN+m+1w

∗
1

−EN+1w
∗
2 ≤

(
V T

1,N+m+1y
∗
1

+V T
2,N+n+1y

∗
2

)
≤ EN+1w

∗
2

y∗1 ∈ RN+m+1, y∗2 ∈ RN+n+1

0 ≤ w∗1 ∈ R, 0 ≤ w∗2 ∈ R

∀N ∈ Z+, define

ξ−N =
{

Q̂ ∈ l1

∣∣∣ ‖ΓN (T̂1 − Q̂V̂1)‖1 ≤ γ, ‖Q̂‖1 ≤ L
}

.

(50)

Obviously,

ξ−0 ⊃ ξ−1 ⊃ ξ−2 ⊃ · · · ⊃ ξ. (51)

The constraintN -truncation problem of (17) is constructed

as

µ−N = inf
Q̂∈ξ−N

‖ΓN (T̂2 − Q̂V̂2)‖22. (52)

The mixedH2/l1 optimisation problem (17) can be approxi-

mated from lower side by this constraintN -truncation prob-

lem (52), as summarized in the following lemma [14].

Lemma 4:µ−0 ≤ µ−1 ≤ µ−2 ≤ · · · and lim
N→∞

µ−N = µ.

Using the same method for constructing the dual of the

variableN -truncation problem, the dual of the constraintN -

truncation problem (52) is obtained as:

µ−N = max
[
−1

4
< y∗2 , y∗2 > − < γ,w∗1 >

− < L,w∗2 > − < ΓN T̂1, y
∗
1 >

− < ΓN T̂2, y
∗
2 >

]
. (53)

s.t. −EN+1w
∗
1 ≤ y∗1 ≤ EN+1w

∗
1

−EN+1w
∗
2 ≤

(
UT

1,N+1y
∗
1

+UT
2,N+1y

∗
2

)
≤ EN+1w

∗
2

y∗1 ∈ RN+1, y∗2 ∈ RN+1

0 ≤ w∗1 ∈ R, 0 ≤ w∗2 ∈ R

Here

U1,N+1 =

 V1(0) · · · 0
...

...
...

V1(N) · · · V1(0)

 ∈ R(N+1)×(N+1) (54)

and

U2,N+1 =

 V2(0) · · · 0
...

...
...

V2(N) · · · V2(0)

 ∈ R(N+1)×(N+1).

(55)

V. THE DUAL OF MIXED H2/l1 PROBLEM

Define

D =

ω =


y∗1
y∗2
w∗1
w∗2


∣∣∣∣∣∣∣

y∗1 ∈ l∞, y∗2 ∈ l2
0 ≤ w∗1 ∈ R, 0 ≤ w∗2 ∈ R
−E∞w∗1 ≤ y∗1 ≤ E∞w∗1
−E∞w∗2 ≤

(
V T

1,∞y∗1
+V T

2,∞y∗2
)
≤ E∞w∗2

 (56)

and

ϕ(ω) = −1
4

< y∗2 , y∗2 > − < γ,w∗1 > − < L,w∗2 >

− < T̂1, y
∗
1 > − < T̂2, y

∗
2 > . (57)
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Construct an infinite dimensional optimisation problem as:

υ = sup
ω∈D

ϕ(ω). (58)

∀N ∈ Z+, defineD+N as

D+N =

ω

∣∣∣∣∣∣∣∣∣∣
y∗1 ∈ l∞, y∗2 ∈ l2

0 ≤ w∗1 ∈ R, 0 ≤ w∗2 ∈ R
−E∞w∗1 ≤ y∗1 ≤ E∞w∗1

−ΓN (E∞w∗2) ≤ ΓN

(
V T

1,∞y∗1
+V T

2,∞y∗2
)
≤ ΓN (E∞w∗2)

 . (59)

The constraintN -truncation problem of (58) can be con-

structed as

υ+N = sup
ω∈D+N

ϕ(ω). (60)

The following proposition is a direct consequence ofD+N ⊃
D.

Proposition 1: For the optimisation problems (58) and

(60),υ+N ≥ υ.

However,

sup
ω∈D+N

ϕ(ω) = sup
ω∈D+N

[
− 1

4 < ΓN+ny∗2 ,ΓN+ny∗2 >

− < γ,w∗1 > − 1
4 < y∗2 − ΓN+ny∗2 , y∗2 − ΓN+ny∗2 >

− < L,w∗2 > − < ΓN+mT̂1,ΓN+my∗1 >

− < T̂1 − ΓN+mT̂1, y
∗
1 − ΓN+my∗1 >

− < ΓN+nT̂2,ΓN+ny∗2 >

− < T̂2 − ΓN+nT̂2, y
∗
2 − ΓN+ny∗2 >

]
= sup

ω∈D+N

[
− 1

4 < ΓN+ny∗2 ,ΓN+ny∗2 >

− < γ,w∗1 > − < L, w∗2 >

− < (y∗2 − ΓN+ny∗2)/2 + (T̂2 − ΓN+nT̂2),
(y∗2 − ΓN+ny∗2)/2 + (T̂2 − ΓN+nT̂2) >

+ < T̂2 − ΓN+nT̂2, T̂2 − ΓN+nT̂2 >

− < ΓN+mT̂1,ΓN+my∗1 >

+w∗1‖T̂1 − ΓN+mT̂1‖1
− < ΓN+nT̂2,ΓN+ny∗2 >

]
= sup

ω∈D+N

[
− 1

4 < ΓN+ny∗2 ,ΓN+ny∗2 > +α(N)

− < γ − β(N), w∗1 > − < L, w∗2 >

− < ΓN+mT̂1,ΓN+my∗1 >

− < ΓN+nT̂2,ΓN+ny∗2 >
]

(61)

and the constraintω ∈ D+N can be changed into

−EN+m+1w
∗
1 ≤ ΓN+my∗1 ≤ EN+m+1w

∗
1 ,

−EN+1w
∗
2 ≤

{
V T

1,N+m+1(ΓN+my∗1)
+ V T

2,N+n+1(ΓN+ny∗2)
}
≤ EN+1w

∗
2 ,

ΓN+my∗1 ∈ RN+m+1, ΓN+ny∗2 ∈ RN+n+1,
0 ≤ w∗1 ∈ R, 0 ≤ w∗2 ∈ R.

(62)

This verifies that the optimisation problem (60) is exactly

the optimisation problem (49), which leads to the following

proposition.

Proposition 2: For the optimisation problems (49) and

(60),µ+N = υ+N .

∀N ∈ Z+, define

D−N =

ω

∣∣∣∣∣∣∣∣∣
y∗1 ∈ RN+1, y∗2 ∈ RN+1

0 ≤ w∗1 ∈ R, 0 ≤ w∗2 ∈ R
−E∞w∗1 ≤ y∗1 ≤ E∞w∗1

−E∞w∗2 ≤ V T
1,∞y∗1 + V T

2,∞y∗2
≤ E∞w∗2

 . (63)

The variableN -truncation problem of (58) can be con-

structed as

υ−N = sup
ω∈D−N

ϕ(ω). (64)

The following proposition is the direct consequence of

D−N ⊂ D.

Proposition 3: For the optimisation problems (58) and

(64),υ−N ≤ υ.

In the same manner, the optimisation problem (64) can be

transformed into the optimisation problem (53), and we have

the following proposition.

Proposition 4: For the optimisation problems (53) and

(64),µ−N = υ−N .

With lemmas 3 and 4, and propositions 1–4, the main result

of this paper can be summarized in the following proposition.

Proposition 5: For the optimisation problems (17) and

(58),µ = υ.

VI. CONCLUSIONS

The dual problem sheds new lights on the mixedH2/l1

optimisation problem. It can be seen that the existing lemma

1 cannot be applied to the primal problem (17) directly. The

idea in verifying the relation between the primal problem (17)

and its dual problem (58) is to utilize their corresponding ap-

proximation problems (31) and (52) for which lemma 1 can

be applied directly. It is interesting to notice that the vari-

able truncation in the primal problem becomes the constraint

truncation in the dual problem, and the constraint truncation

in the primal problem becomes the variable truncation in the

dual problem. The approach based on duality theory is useful

in research on the mixedH2/l1 optimisation problem, as it

is often that the dual problem can be solved for more easily

than the primal problem.
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