
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [University of Southampton]
On: 13 September 2010
Access details: Access Details: [subscription number 908420906]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Robust stabilisation control for discrete-time networked control systems
Dongxiao Wua; Jun Wua; Sheng Chenb

a State Key Lab of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang
University, Hangzhou 310027, China b School of Electronics and Computer Science, University of
Southampton, Southampton SO17 1BJ, UK

First published on: 18 August 2010

To cite this Article Wu, Dongxiao , Wu, Jun and Chen, Sheng(2010) 'Robust stabilisation control for discrete-time
networked control systems', International Journal of Control, 83: 9, 1885 — 1894, First published on: 18 August 2010
(iFirst)
To link to this Article: DOI: 10.1080/00207179.2010.500333
URL: http://dx.doi.org/10.1080/00207179.2010.500333

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207179.2010.500333
http://www.informaworld.com/terms-and-conditions-of-access.pdf


International Journal of Control
Vol. 83, No. 9, September 2010, 1885–1894

Robust stabilisation control for discrete-time networked control systems

Dongxiao Wua, Jun Wua and Sheng Chenb*

aState Key Lab of Industrial Control Technology, Institute of Cyber-Systems and Control,
Zhejiang University, Hangzhou 310027, China; bSchool of Electronics and Computer Science,

University of Southampton, Southampton SO17 1BJ, UK

(Received 3 September 2008; final version received 8 June 2010)

We consider the analysis and synthesis of discrete-time networked control systems (NCSs), where the plant has
additive uncertainty and the controller is updated with the sensor information at stochastic time intervals. It is
shown that the problem is linked to H1-control of linear discrete-time stochastic systems and a new small gain
theorem is established. Based on this result, sufficient conditions are given for ensuring mean square stability of
the NCS, and the genetic algorithm is utilised to design the controller of the NCS based on a linear matrix
inequality technique. An illustrative example is given to demonstrate the effectiveness of our proposed method.

Keywords: networked control systems; robust control; H1-norm; mean square stability; stochastic systems

1. Introduction

Networked control systems (NCSs) are systems in
which a control loop is closed via a shared commu-

nication network. The use of a shared network in the

feedback path has several advantages, including low
installation cost, reducing system wiring, simple system

diagnosis and easy maintenance. However, some

inherent shortcomings, such as bandwidth constraints,
packet delays and packet dropout, will degrade

performance of NCSs or even cause instability. NCSs

have received much attention during the past decade;
see, for example, Tipsuwan and Chow (2003),

Antsaklis and Baillieul (2004), Matveev and Savkin

(2005), Antsaklis and Baillieul (2007), Hespanha,

Naghshtabrizi, and Xu (2007), Moyne and Tilbury
(2007), Schenato, Sinopoli, Franceschetti, Poolla, and

Sastry (2007), Zhang and Yu (2007), Ishii (2008) and

Yu, Wang, Chu, and Xie (2008) and the references
therein. Stability analysis of NCSs is investigated in

Walsh, Ye, and Bushnell (1999), Beldiman, Walsh,

and Bushnell (2000), Zhang, Branicky, and Phillips
(2001), Montestruque and Antsaklis (2003, 2004) and

Zhivoglyadov and Middleton (2003), and stabilising

controllers are designed in Nilsson, Bernhardsson, and
Wittenmark (1998) and Zhang, Shi, Chen, and Huang

(2005). In the literature, stochastic approaches are

typically adopted to deal with network packet dropout
and to establish the stability of the NCS in the sense

of mean square statistics (Ji, Chizeck, Feng, and

Loparo 1991; Costa and Fragoso 1993; Costa and do
Val 1996; Xiao, Hassibi, and How 2000; Seiler and
Sengupta 2005; Wu and Chen 2007). The works of
Seiler and Sengupta (2005), Elia (2005), Yue, Han, and
Lam (2005) and Hu and Yan (2007) adopt robust
control theory for the analysis and design of NCSs.

Most of the works in the NCS research utilise fixed
controllers. Some exceptions are Montestruque and

Antsaklis (2003, 2004) and Zhivoglyadov and

Middleton (2003), which utilise more flexible control-

lers for NCSs where a network is located between the

sensor and the controller. For NCSs, time periods

frequently appear during which the controller cannot

access sensor data due to network induced random

delay and packet dropout. During these periods

without sensor data, the underlying idea of

Montestruque and Antsaklis (2003, 2004) and

Zhivoglyadov and Middleton (2003) is that a nominal

plant model is employed at the controller side to

estimate the plant behaviour, and the estimated result

is provided to the controller to replace the real plant

behaviour information so that the computation of

control signal can be executed in time. During time

periods when the controller can access sensor data, the

networked controllers in Montestruque and Antsaklis

(2003, 2004) and Zhivoglyadov and Middleton (2003)

perform the same feedback control as standard closed-

loop control systems without network. This kind of

control scheme for NCSs is referred to as model-based
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networked control by Montestruque and Antsaklis

(2003, 2004), where a model-based networked state-

feedback control method and a model-based net-

worked observed-state-feedback control method are

presented. The so-called smart control of NCSs

addressed in Zhivoglyadov and Middleton (2003) is

another model-based networked observed-state-feed-

back control method. In the networked control

schemes of Montestruque and Antsaklis (2003, 2004),

the observer is included at the actuator side of the plant

to be controlled, while for the networked control

scheme of Zhivoglyadov and Middleton (2003) the

observer is located at the controller side.
We notice that all the parameters of the plant are

assumed to be known in the works of Montestruque
and Antsaklis (2003, 2004) while the plant is assumed
to be uncertainty free in Zhivoglyadov and Middleton
(2003). But these assumptions on the plant are not met
in most control practice. It is of great practical

significance to remove these strict assumptions on the
plant and to study model-based networked control
with robustness considerations. We also notice that the
study by Zhivoglyadov and Middleton (2003) on smart
control does not consider the networks of random
transmission with known probability, which belong to
a most important class of networks in NCSs. The novel

contribution of this article is that we study smart
control for NCSs where discrete-time plants have
additive perturbations and networks induce random
delay and packet dropout. To our best knowledge, our
key result, Theorem 4.4 which establishes a small gain
theorem for linear discrete-time stochastic systems, was
not seen previously in the literature. The remainder of

this article is organised as follows. Section 2 gives
notations and preliminary results, while the NCS
problem is formulated in Section 3. Section 4 provides
sufficient conditions for the NCS design solution based
on linear stochastic system theory, and addresses the
control synthesis method. A numerical design example
is included in Section 5, and our conclusions are
offered in Section 6.

2. Notations and preliminary results

We adopt the standard notation of R for real numbers
and N for non-negative integers. In denotes the n� n

identity matrix, while I and 0 represent the identity and
zero matrices of appropriate dimensions, respectively.
For M2R

m�n and positive integer p�m, denote

HpðMÞ ¼

M 2 R
p�n, p ¼ m,

M

0

� �
2 R

p�n, p4m:

8<: ð1Þ

Similarly, for M2R
m�n and positive integer q� n,

denote

WqðMÞ ¼
M 2 R

m�q, q ¼ n,

M 0
� �

2 R
m�q, q4 n:

(
ð2Þ

For square matrix S2R
m�m, S4 0 (S� 0) indicates

that S is a positive definite (semidefinite) matrix. For

symmetric matrices S12R
m�m and S22R

m�m, S14S2

means that S1�S24 0.
For a discrete-time signal r¼ {r(t)}t2N with

r(t)2R
r, define

krk2¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
t¼0

rTðtÞrðtÞ

s
: ð3Þ

Let ‘r2 be the set of rs with krk251. A finite-

dimensional linear time-invariant discrete-time system

Ĝ can be written as

xgðtþ 1Þ ¼ AgxgðtÞ þ BgugðtÞ,

ygðtÞ ¼ CgxgðtÞ þDgugðtÞ,

(
t 2 N, ð4Þ

where xg(t)2R
b, ug(t)2R

r and yg(t)2R
d are state,

input and output, respectively; Ag, Bg, Cg and Dg

are constant real matrices of appropriate dimen-

sions. The system Ĝ given by (4) with ug(t)� 0 is

said to be stable if 8xg(0)2R
b, lim

t!1
xTg ðtÞxgðtÞ ¼ 0.

Define

kĜk1 ¼
4

sup
ug2‘r

2
kugk2 6¼0

xg ð0Þ¼0

kygk2

kugk2
ð5Þ

as the H1-norm of Ĝ which is stable with ug(t)� 0. For

05 �2R, denote D
d�r
� as the set of Ĝs which are stable

with ug(t)� 0 and kĜk15 1/�.

Lemma 2.1 (Zhou, Doyle, and Glover 1995): The

system Ĝ 2 D
d�r
� if and only if there exists a

05P2R
b�b such that

P 0

0
1

�2
Ir

24 35� Ag Bg

Cg Dg

" #T
P 0

0 Id

" #
Ag Bg

Cg Dg

" #
4 0:

ð6Þ

For a discrete-time stochastic signal r ¼ frðtÞgt2N
with rðtÞ a R

r-valued random variable, define

krk2s¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX1
t¼0

EðrTðtÞrðtÞÞ

s
, ð7Þ

where E(�) denotes the expectation. Let ‘r2s be the set of
rs with krk2s 51. For positive integer M, denote

1886 D. Wu et al.
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M¼ {1, . . . ,M}. Consider the following stochastic
system, denoted as F̂:

xf ðtþ 1Þ ¼ Af ð�tÞxf ðtÞ þ Bf ð�tÞuf ðtÞ,

yf ðtÞ ¼ Cf ð�tÞxf ðtÞ þDf ð�tÞuf ðtÞ,

(
t 2 N, ð8Þ

where �ts are independently identically distributed
(i.i.d.) M-valued random variables; Af, Bf, Cf and Df

are mappings fromM to R
b�b, R

b�r, R
d�b and R

d�r,
respectively. The probability mass function of �t is given
by qj¼Pr(�t¼ j) with j2M. Clearly, �t can be regarded
as a special Markov chain (Karlin and Taylor 1975).
The following results from Ji et al. (1991) and Seiler
and Sengupta (2005) define the stochastic stability of F̂.

Definition 1: The system F̂ given by (8) with uf (t)� 0

is said to be stochastically stable if 8xf (0)2R
b,

kxf k
2
2s 51.

Lemma 2.2: The system F̂ with uf (t)� 0 is stochasti-
cally stable if and only if 8xf (0)2R

b,
lim
t!1

EðxTf ðtÞxf ðtÞÞ ¼ 0.

Definition 2: The matrix Af (�t) in (8) is said to be
stochastically stable if there exists a 05P2R

b�b such
that P�

PM
j¼1 qjA

T
f ð j ÞPAf ð j Þ4 0.

Lemma 2.3: The system F̂ with uf (t)� 0 is stochasti-
cally stable if and only if Af (�t) is stochastically stable.

Definition 3: (Cf (�t), Af (�t)) is said to be stochasti-
cally detectable if there exists an Hf (�t) mapping from
M to R

b�d such that Af (�t)�Hf (�t)Cf (�t) is stochas-
tically stable.

From Theorem 4.8 in Dragan and Morozan (2006),
we have the following lemma.

Lemma 2.4: Suppose that (Cf (�t), Af (�t)) is stochasti-
cally detectable. Then the following are equivalent:

(1) Af (�t) is stochastically stable.
(2) The discrete-time backward difference equations

Xtð j Þ ¼ AT
f ð j Þ

XM
l¼1

qlXtþ1ðl ÞAf ð j Þ þ CT
f ð j ÞCf ð j Þ, ð9Þ

where t2N and j2M, have a bounded solution
f½X

T

t ð1Þ � � � X
T

t ðMÞ�
T
gt2N such that 8t2N,

8j2M,

0 � Xtð j Þ 2 R
b�b: ð10Þ

Replacing the backward difference equations with
algebraic equations and further applying Theorem 3.5
in Dragan and Morozan (2006) lead to Corollary 2.5.

Corollary 2.5: Suppose that (Cf (�t), Af (�t)) is stochas-
tically detectable. Then the following are equivalent:

(1) Af (�t) is stochastically stable.

(2) There exist 0�X( j)2R
b�b, j2M, satisfying

Xð j Þ ¼ AT
f ð j Þ

XM
l¼1

qlXðl ÞAf ð j Þ þ CT
f ð j ÞCf ð j Þ: ð11Þ

Define

kF̂k1s¼
4

sup
uf2‘

r
2s

kuf k2s 6¼0

xf ð0Þ¼0

�02M

kyf k2s

kuf k2s ð12Þ

as the H1-norm of F̂ which is stochastically stable with

uf (t)� 0. For 05 �2R, denote D
d�r
�s as the set of F̂s

which are stochastically stable with uf (t)� 0 and

kF̂k1s 5 1=�.

Lemma 2.6 (Seiler and Sengupta 2005): The system

F̂ 2 D
d�r
�s if there exists a 05P2R

b�b such that

P 0

0
1

�2
Ir

24 35�XM
j¼1

qj
Af ð j Þ Bf ð j Þ

Cf ð j Þ Df ð j Þ

� �T

�
P 0

0 Id

� �
Af ð j Þ Bf ð j Þ

Cf ð j Þ Df ð j Þ

� �
4 0: ð13Þ

Consider a special case of F̂ described by

xf ðtþ 1Þ ¼ Af ð�tÞxf ðtÞ þ Bf 1ð�tÞuf 1ðtÞ

þBf 2ð�tÞuf 2ðtÞ,

yf ðtÞ ¼ Cf ð�tÞxf ðtÞ þDf 1ð�tÞuf 1ðtÞ,

8><>: t 2 N,

ð14Þ

where Bf1, Bf2 and Df1 are mappings fromM to R
b�r1,

R
b�r2 and R

d�r1, respectively. Set

uf 1ðtÞ ¼ �Kf 1ð�tÞxf ðtÞ, ð15Þ

where Kf1 is a mapping from M to R
r1�b. A closed-

loop stochastic system F̂c is formed as

xf ðtþ 1Þ ¼ ðAf ð�tÞ � Bf 1ð�tÞKf 1ð�tÞÞxf ðtÞ

þBf 2ð�tÞuf 2ðtÞ,

yf ðtÞ ¼ ðCf ð�tÞ �Df 1ð�tÞKf 1ð�tÞÞxf ðtÞ,

8><>: t 2 N:

ð16Þ

The following result for F̂c is due to the main

theorem in Costa and do Val (1996).

Lemma 2.7: Assume that there exist feedback gains

Kf1(�t) such that the corresponding closed-loop system

F̂c lies in D
d�r2
�s , (Cf (�t),Af (�t)) is stochastically

detectable and

CT
f ð j ÞDf 1ð j Þ ¼ 0,

DT
f 1ð j ÞDf 1ð j Þ ¼ I,

(
j 2 M: ð17Þ

International Journal of Control 1887
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Then there exist 0�Xj2R
b�b with j2M, which satisfy,

8j2M,

(1) I� �2BT
f 2ð j Þ

PM
l¼1 qlXlBf 2ð j Þ4 0;

(2) Xj ¼ CT
f ð j ÞCf ð j Þ þ RT

f4ð j Þ
PM

l¼1 qlXlRf4ð j Þ þ

RT
f 2ð j ÞRf 2ð j Þ � RT

f 3ð j ÞRf 3ð j Þ and

(3) Rf4(�t) is stochastically stable

where

Rf 1ð j Þ ¼ I� �2Bf 2ð j ÞB
T
f 2ð j Þ

XM
l¼1

qlXl,

Rf 2ð j Þ ¼ Iþ BT
f 1ð j Þ

XM
l¼1

qlXlR
�1
f 1 ð j ÞBf 1ð j Þ

 !�1

� BT
f 1ð j Þ

XM
l¼1

qlXlR
�1
f 1 ð j ÞAf ð j Þ,

Rf 3ð j Þ ¼ I� �2BT
f 2ð j Þ

XM
l¼1

qlXlBf 2ð j Þ

 !�1

� �BT
f 2ð j Þ

XM
l¼1

qlXl ðAf ð j Þ � Bf 1ð j ÞRf 2ð j ÞÞ,

Rf4ð j Þ ¼ Af ð j Þ � Bf 1ð j ÞRf 2ð j Þ þ �Bf 2ð j ÞRf 3ð j Þ:

Finally, consider F̂ 2 D
d�r
�s with Df (�t)� 0, which is

obviously equivalent to the system

xf ðtþ 1Þ ¼ Af ð�tÞxf ðtÞ þ Bf ð�tÞuf ðtÞ,

yf ðtÞ

0xf ðtÞ

� �
¼

Cf ð�tÞ

0Ib

� �
xf ðtÞ,

8><>: t 2 N: ð18Þ

The latter system belongs to D
ðdþbÞ�r
�s , as it can be

viewed as

xf ðtþ1Þ ¼Af ð�tÞxf ðtÞþ0Ibwf ðtÞþBf ð�tÞuf ðtÞ,

yf ðtÞ

wf ðtÞ

� �
¼

Cf ð�tÞ

0Ib

� �
xf ðtÞþ

0Cf ð�tÞ

Ib

� �
wf ðtÞ,

8><>: t2N,

ð19Þ

by connecting wf (t)¼�Kf (�t)xf (t) with Kf (�t)� 0Ib. It

is easy to check

Cf ð�tÞ

0Ib

� �T 0Cf ð�tÞ

Ib

� �
¼ 0, ð20Þ

0Cf ð�tÞ

Ib

� �T 0Cf ð�tÞ

Ib

� �
¼ Ib: ð21Þ

Moreover, F̂ 2 D
d�r
�s implies Af (�t) is stochastically

stable and hence ð½CT
f ð�tÞ 0Ib�

T,Af ð�tÞÞ is stochastically
detectable. Thus, applying Lemma 2.7 to (18) leads to

the following corollary.

Corollary 2.8: Suppose that F̂ 2 D
d�r
�s with Df (�t)� 0.

Then there exists 0�Xj2R
b�b with j2M, which

satisfy, 8j2M,

(1) I� �2BT
f ð j Þ

PM
l¼1 qlXlBf ð j Þ4 0;

(2) Xj ¼ CT
f ð j ÞCf ð j Þ þ ST

f ð j Þ
PM

l¼1 qlXlSf ð j Þ �
RT

f ð j ÞRf ð j Þ and
(3) Sf (�t) is stochastically stable

where

Rf ð j Þ ¼ I� �2BT
f ð j Þ

XM
l¼1

qlXlBf ð j Þ

 !�1

� �BT
f ð j Þ

XM
l¼1

qlXlAf ð j Þ, ð22Þ

Sf ð j Þ ¼ Af ð j Þ þ �Bf ð j ÞRf ð j Þ: ð23Þ

3. Problem formulation

The NCS P̂K of Figure 1 contains a linear time-
invariant discrete-time plant P̂ and a discrete-time
controller K̂. The plant P̂ consists of a nominal plant
model P̂0 and an additive perturbation D̂, as shown in
Figure 1. P̂0 is described by

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ,

y0ðtÞ ¼ CxðtÞ þDuðtÞ,

�
t 2 N, ð24Þ

where A2R
n�n, B2R

n�m, C2R
p�n and D2R

p�m are
given matrices. D̂ 2 D

p�m
� with a given 05 � 2R. D̂ and

P̂0 have the same input u(t) which is also the input of P̂.
The output of D̂ is w(t) which is added with y0(t) to
form the output of P̂

yðtÞ ¼ y0ðtÞ þ wðtÞ: ð25Þ

The plant P̂ and the controller K̂ are connected via a
shared communication network through which the
sensor transmits data to the controller. The controller
is collocated with the actuator. At each instant t2N,
the sensor tries to transmit y(t) to K̂. After the attempt,
y(t) is discarded by the sensor. Each transmission has

P̂0

K̂

Network

w
y

u

Δ̂P̂

y0

K Estimator
xe

hk

Figure 1. Networked control system P̂K.
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two alternative outcomes: one is that the transmission

succeeds and K̂ receives y(t) at t; the other is that the

transmission fails due to packet dropout by the

network and thus K̂ misses y(t). A successful packet

transmission time through the network is assumed to

be negligible. Note that a packet arriving late due to

network induced random delay has the same effect as

packet dropout and is treated as a transmission failure.

Those instants at which transmissions succeed are

denoted by tk, k2N, in ascending order, and t0¼ 0 is

assumed without loss of generality. The time instant tk
is referred to as update instant. After tk, y(tk) remains

to be the newest information for K̂ until tkþ1 when

y(tkþ1) arrives.
It is clear that P̂K is in the mode of open loop when

t 6¼ tk and in the mode of closed loop when t¼ tk. A

smart control mechanism, similar to the one in

Zhivoglyadov and Middleton (2003), is adopted for

K̂ as

xeðtþ 1Þ ¼ AxeðtÞ þ BuðtÞ þ LðCxeðtÞ

þDuðtÞ � yðtÞÞ, t ¼ tk,

xeðtþ 1Þ ¼ AxeðtÞ þ BuðtÞ, t 6¼ tk,

uðtÞ ¼ KxeðtÞ, t 2 N,

8>>><>>>:
ð26Þ

where the state feedback gain matrix K2R
m�n and the

observer gain matrix L2R
n�p. Clearly, K̂ expressed by

(26) is an estimator-based controller. When y(t) is

available at t¼ tk, a standard observer law is employed

to estimate x(t) using xe(t), while when y(t) is

unavailable at t 6¼ tk, an imitation law is employed to

estimate x(t) with xe(t). Define the update interval

hk¼
4
tkþ1 � tk, k 2 N: ð27Þ

Let the maximal update interval be N, and denote

N ¼ {1, . . . ,N}. The value of N can be viewed as a

network service quality measure. When the network is

very busy, experiencing long delay and a large number

of packet dropouts, N will be very large. By contrast, a

small N shows that the network is offering good-

quality service. The update intervals hks are assumed to

be i.i.d. N -valued random variables. The probability

mass function of hk is denoted by pi¼Pr(hk¼ i) with

i2N . Let the order of D̂ be q. Then D̂ can be described

in a state-space form as

x�ðtþ 1Þ ¼ A�x�ðtÞ þ B�uðtÞ,

wðtÞ ¼ C�x�ðtÞ þD�uðtÞ,

�
t 2 N, ð28Þ

where the matrices A�2R
q�q, B�2R

q�m, C�2R
p�q and

D�2R
p�m. Define the state of P̂K as

zðtÞ ¼
4
½xTðtÞ xTe ðtÞ x

T
� ðtÞ�

T: ð29Þ

As {hk} is a sequence of random variables, z(t) is
actually a random process. For P̂K, we define the
stability in the sense of mean square statistics.

Definition 4: P̂K is mean square stable if 8z(0)2
R

2nþq, limt!1 EðzTðtÞzðtÞÞ ¼ 0.
Our NCS design problem can now be stated: given

A, B, C, D, �, N and pi 8i2N , determine K and L such
that 8D̂ 2 D

p�m
� , P̂K is mean square stable.

4. Theoretical analysis and design method

We now study the dynamic response of P̂K by
oversampling it at each update instant. Since hk is a
N -valued random variable, the dimension of the input
(output) of the oversampled system is also random. To
tackle this difficulty, we use the auxiliary systems of
P̂0, D̂ and K̂ by augmenting them up to the constant
dimension Nm. The auxiliary system P̂0s of P̂0 is
constructed as

xðkþ1Þ ¼AhkxðkÞþWNmð½A
hk�1B � � � B�ÞuðkÞ,

y0ðkÞ ¼CxðkÞþWNmðDÞuðkÞ,

(
k2N:

ð30Þ

The auxiliary system D̂s of D̂ is constructed as

x�ðkþ 1Þ ¼ A
hk
� x�ðkÞ

þWNmð½A
hk�1
� B� � � � B��ÞuðkÞ,

wðkÞ ¼ C�x�ðkÞ þWNmðD�ÞuðkÞ,

8><>: k 2 N:

ð31Þ

The auxiliary system K̂s of K̂ is constructed as

xeðkþ1Þ¼,hk�1
0 ,1xeðkÞ�,

hk�1
0 Ly0ðkÞ

�,hk�1
0 LwðkÞ,

uðkÞ ¼~1ðhkÞxeðkÞ�~2ðhkÞy0ðkÞ�~2ðhkÞwðkÞ,

8><>: k2N,

ð32Þ

where ,0¼AþBK, ,1¼AþBKþLCþLDK,

~1ðhkÞ ¼
HNmðKÞ, hk¼ 1,

HNmð½K
T ðK,1Þ

T
� � � ðK,hk�2

0 ,1Þ
T
�
T
Þ, hk41,

�
ð33Þ

~2ðhkÞ

¼
HNmð0KLÞ, hk ¼ 1,

HNmð½ð0KLÞ
T
ðKLÞT � � � ðK,hk�2

0 LÞT�TÞ, hk41:

�
ð34Þ

Combining P̂0s, D̂s and K̂s forms the auxiliary
stochastic system P̂Ks, depicted in Figure 2, of P̂K.
Define the state of P̂Ks as

zðkÞ ¼ ½xTðkÞ xTe ðkÞ x
T
� ðkÞ�

T: ð35Þ
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From (24) to (35), it is easy to see the following

relationships between P̂Ks and P̂K. Given t0¼ 0 and

zð0Þ ¼ zðt0Þ, 8k2N,

zðkÞ ¼ zðtkÞ, ð36Þ

y0ðkÞ ¼ y0ðtkÞ, ð37Þ

wðkÞ ¼ wðtkÞ, ð38Þ

uðkÞ ¼ HNmð½u
TðtkÞ � � � u

Tðtk þ hk � 1Þ�TÞ: ð39Þ

These results imply that limk!1 EðzTðkÞzðkÞÞ ¼ 0 if

limt!1 EðzTðtÞzðtÞÞ ¼ 0. On the other hand, as hk is

bounded by N, there exists a constant real scalar �
independent of k and � such that 8k2N, zT(tkþ �)�
z(tkþ �)5 �zT(tk)z(tk) for any � 2 {1, . . . , hk}.

Then (36) implies that limt!1 EðzTðtÞzðtÞÞ ¼ 0 if

limk!1 EðzTðkÞzðkÞÞ ¼ 0. Thus, we have the following

proposition.

Proposition 4.1: P̂K is mean square stable if and only if

P̂Ks is stochastically stable.

Next, we discuss the relationship between D̂ and D̂s.

Proposition 4.2: For any D̂ 2 D
p�m
� , its auxiliary

system D̂s 2 D
p�ðNmÞ
�s .

Proof: From D̂ 2 D
p�m
� and Lemma 2.1, there exist

05P�2R
q�q such that

P� 0

0
1

�2
Im

24 35� A� B�

C� D�

" #T
P� 0

0 Ip

" #
A� B�

C� D�

" #
40:

ð40Þ

Noticing (28), inequality (40) means that 8t2N and

8 ½ xT� ðtÞ uTðtÞ �T 2 R
qþm,

xT� ðtÞP�x�ðtÞ þ
1

�2
uTðtÞuðtÞ

� wTðtÞwðtÞ þ xT� ðtþ 1ÞP�x�ðtþ 1Þ: ð41Þ

Equality holds in (41) if and only if ½ xT� ðtÞ uTðtÞ �T ¼ 0.

Now 8t2N, 8i2N and 8 ½xT� ðtÞ u
TðtÞ � � �

uTðtþ i� 1Þ�T 2 R
qþim,

xT� ðtÞP�x�ðtÞ þ
1

�2

Xi�1
l¼0

uTðtþ l Þuðtþ l Þ

� wTðtÞwðtÞ þ xT� ðtþ 1ÞP�x�ðtþ 1Þ

þ
1

�2

Xi�1
l¼1

uTðtþ l Þuðtþ l Þ

�
Xi�1
l¼0

wTðtþ l Þwðtþ l Þ þ xT� ðtþ iÞP�x�ðtþ iÞ

� wTðtÞwðtÞ þ xT� ðtþ iÞP�x�ðtþ iÞ: ð42Þ

Equality holds in (42) if and only if ½xT� ðtÞ u
TðtÞ � � �

uTðtþ i� 1Þ�T ¼ 0. Since

x�ðtþ iÞ

wðtÞ

� �
¼

Ai
� Ai�1

� B� � � � B�

C� D� 0

" # x�ðtÞ

uðtÞ

..

.

uðtþ i� 1Þ

266664
377775,
ð43Þ

inequality (42) means that 8i2N ,

P� 0

0
1

�2
Iim

24 35�
ðAT

� Þ
i CT

�

BT
� ðA

T
� Þ

i�1 DT
�

..

.

BT
�

0

2666664

3777775
�

P� 0

0 Ip

� �
Ai
� Ai�1

� B� � � � B�

C� D� 0

" #
4 0: ð44Þ

Hence

P� 0

0
1

�2
INm

24 35�XN
i¼1

pi(
T
i

P� 0

0 Ip

� �
(i 4 0 ð45Þ

with

(i ¼
Ai
� WNmð½A

i�1
� B� � � �B� �Þ

C� WNmðD�Þ

" #
: ð46Þ

Applying Lemma 2.6 to (45) completes the proof. œ

From Propositions 4.1 and 4.2, it is easy to see the

following proposition.

Proposition 4.3: Suppose that 8D̂s 2 D
p�ðNmÞ
�s , P̂Ks is

stochastically stable. Then 8D̂ 2 D
p�m
� , P̂K is mean

square stable.

The above proposition shows that our NCS design

problem can be tackled by solving the corresponding

P̂0s

K̂s

w̄u

Δ̂s

¯
¯

y0

V̂

Figure 2. Auxiliary system P̂Ks for P̂K.
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problem for P̂Ks. Let P̂Ks be divided into an unknown

part D̂s and a known part V̂, as shown in Figure 2. V̂ is

the closed-loop system formed by P̂0s and K̂s, and is

described as

xðkþ 1Þ

xeðkþ 1Þ

� �
¼ AvðhkÞ

xðkÞ

xeðkÞ

� �
þ BvðhkÞwðkÞ,

uðkÞ ¼ CvðhkÞ
xðkÞ

xeðkÞ

� �
þDvðhkÞwðkÞ,

8>>><>>>: k 2 N,

ð47Þ

where

AvðhkÞ ¼
A BK

0 ,0

� �hk�1 A BK

�LC ,0 þ LC

� �
, ð48Þ

BvðhkÞ ¼
A BK

0 ,0

� �hk�1 0

�L

� �
, ð49Þ

CvðhkÞ ¼ �~2ðhkÞC ~3ðhkÞ
� �

, ð50Þ

DvðhkÞ ¼ �~2ðhkÞ, ð51Þ

with

~3ðhkÞ ¼

HNmðKÞ, hk ¼ 1,

HNmð½K
T ðKð,0 þ LCÞÞT � � �

ðK,hk�2
0 ð,0 þ LCÞÞT�TÞ, hk 4 1:

8><>:
ð52Þ

Let �¼ 1/�. Then our main result can be presented.

Theorem 4.4: Suppose that V̂ 2 D
ðNmÞ�p
�s . Then

8D̂s 2 D
p�ðNmÞ
�s , P̂Ks is stochastically stable.

Proof: See the Appendix. œ

We refer to Theorem 4.4 as the small gain

theorem of discrete-time stochastic systems. This

result has not been presented previously in the

literature. Note that the small gain theorem of Zhou

et al. (1995) is valid for deterministic systems while

the small gain theorem of Dragan, Halanay, and

Stoica (1997) is derived for continuous-time stochastic

systems.
According to Proposition 4.3 and Theorem 4.4, any

pair of K and L ensuring V̂ 2 D
ðNmÞ�p
�s is a solution to

our NCS design problem. Since A, B, C, D, �, N and pi,

8i2N , are known, Av(i), Bv(i), Cv(i) and Dv(i) with

i2N in (48) to (51) are functions of K and L.

Therefore, we can denote

FiðK,LÞ ¼
AvðiÞ BvðiÞ

CvðiÞ DvðiÞ

� �
, i 2 N : ð53Þ

Further define

	ðK,LÞ ¼ inf
05Q2Rð2nÞ�ð2nÞ

	2R

f	 j 	UðQ, �Þ

4
XN
i¼1

piF
T
i ðK,LÞSðQÞFiðK,LÞg ð54Þ

with

UðQ, �Þ ¼
Q 0

0 �2Ip

� �
and SðQÞ ¼

Q 0

0 INm

� �
:

ð55Þ

For given K2R
m�n and L2R

n�p, 	(K,L) can be
computed conveniently by a combination of linear
matrix inequality (LMI) technique (Boyd, El Ghaoui,
Feron, and Balakrishan 1994) and bisection
search (Quarteroni, Sacco, and Saleri 2000). From
Proposition 4.3 and Theorem 4.4 as well as Lemma 2.6,
the following result is plain.

Corollary 4.5: A pair of K2R
m�n and L2R

n�p

guarantee that P̂K is mean square stable for any
D̂ 2 D

p�m
� , if 	(K,L)5 1.

According to Corollary 4.5, we can design K and L

by solving the nonlinear optimisation problem


 ¼ inf
K2Rm�n

L2Rn�p

	ðK,LÞ: ð56Þ

We solve this optimisation problem using the genetic
algorithm (GA) (Goldberg 1989; Man, Tang, and
Kwong 1998) to obtain a pair of K* and L* such that
	(K*,L*)5 1. Note that in some cases we may be
unable to achieve 	(K,L)5 1, even though the NCS
design problem does have solutions. This is because
Corollary 4.5 only provides a sufficient condition.
If K* and L* are not found by the GA to meet
	(K*,L*)5 1, we can rearrange some conditions of the
NCS design problem, for example by increasing the
value of �, to ease the design problem.

5. A numerical example

On the basis of the method presented in the previous
section, a MATLAB program for NCS design was
developed where the feasp and ga functions of
MATLAB were used to solve LMI and to implement
GA, respectively. We considered an unstable third-
order P̂0 of (24) with the parameters

A ¼

�1:05 0 0

�2 0:75 0

0 1:05 0:5

264
375, B ¼

0:5

0

0:5

264
375,

C ¼ 1 1 0
� �

, D ¼ 0:2:
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The value of N was set to N¼ 10 and pi¼ 0.1 were

assumed for i2N ¼
4
{1, . . . , 10}, while �¼ 0.4 was set.

Applying the MATLAB program to this NCS design

problem yielded

K	 ¼ �0:2741 0:5791 0:0260
� �

,

L	 ¼ 0:2657 0:1480 �0:1718
� �T

with 	(K*,L*)¼ 0.98725 1.
The NCS with the designed K* and L* was

simulated in the MATLAB platform for 50 times. In

the simulation, a stable first-order D̂ of (28) was

specified by A�¼ 0.5833, B�¼ 1, C�¼ 1 and D�¼ 0.1

with kD̂k1 ¼ 2:49985 1=�. The initial state was

chosen to be

xð0Þ ¼ ½x1ð0Þ x2ð0Þ x3ð0Þ�
T
¼ ½1 1 1�T,

xeð0Þ ¼ ½xe1ð0Þ xe2ð0Þ xe3ð0Þ�
T
¼ ½0 0 0�T, x�ð0Þ ¼ 1:

Figure 3(a)–(g) depicts the 50 trajectories of each state

element, respectively. These trajectories display our

NCS behaviour under the 50 different realisations of

{hk}. For any t2N, we obtained 50 observations of the

random variable zT(t)z(t). The first sample moment of

the observations, denoted by Ee(z
T(t)z(t)), was com-

puted. According to the standard statistics theory

(Devore 2000), Ee(z
T(t)z(t)) is a confident estimation of

E(zT(t)z(t)) when the observation number is large.

Figure 3(h) shows the trajectory of Ee(z
T(t)z(t)) where

it can be seen that Ee(z
T(t)z(t)) converged to zero.

6. Conclusions

We have studied discrete-time NCSs where the plant
has additive uncertainty and a smart controller is
updated with the sensor information at stochastic time
intervals. We have shown that the issue is linked to
H1-control of linear stochastic systems. Under the
condition that update intervals are i.i.d. N -valued
random variables, a new small gain theorem has been
derived for discrete-time stochastic systems. Based on
this result, sufficient conditions have been established
for guaranteeing the mean square stability of NCSs
and a design method for smart controller has been
provided. A numerical example has been used to
illustrate the proposed design method.
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Figure 3. (a)–(g): State trajectories of the plant P̂k for 50 simulations, and (h): Ee(z
T(t)z(t)) calculated by averaging z

T(t)z(t)
over these 50 simulations.
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Appendix. Proof of Theorem 4.4

Based on V̂ and D̂s, construct a stochastic system Ŵ as

xwðkþ 1Þ ¼ AhkxwðkÞ þ BhkuwðkÞ,

ywðkÞ ¼ ChkxwðkÞ þDhkuwðkÞ,

�
k 2 N, ðA1Þ

where

Ahk ¼
A

hk
� WNmð½A

hk�1
� B� � � � B��ÞCvðhkÞ

0 AvðhkÞ

" #
, ðA2Þ

Bhk ¼
WNmð½A

hk�1
� B� � � � B��ÞDvðhkÞ

BvðhkÞ

" #
, ðA3Þ

Chk ¼ C� WNmðD�ÞCvðhkÞ½ �, ðA4Þ

Dhk ¼ WNmðD�ÞDvðhkÞ: ðA5Þ

Since V̂ and D̂s are stochastically stable, from Definition 2
and Lemma 2.3, there exist 05Pv2R

(2n)�(2n) and
05Ps2R

q�q satisfying 8i2N ,

Pv �
XN
i¼1

piA
T
v ðiÞPvAvðiÞ4 0, ðA6Þ

Ps �
XN
i¼1

piðA
i
�Þ
TPsA

i
�4 0: ðA7Þ

It can be seen easily that for sufficiently large 05 �2R

Ps 0

0 �Pv

� �
�
XN
i¼1

piA
T
i

Ps 0

0 �Pv

� �
Ai 4 0, 8i 2 N : ðA8Þ

This implies that Ŵ is stochastically stable. Denoting

vwðkÞ ¼ ½ 0 CvðhkÞ �xwðkÞ þDvðhkÞuwðkÞ, ðA9Þ

it can be seen that Ŵ is the tandem connection of V̂ and D̂s,
i.e. vw ¼ V̂uw, yw ¼ D̂svw. Therefore

kŴk1s ¼ sup
uw2‘

p
2s

kuwk2s 6¼0

xw ð0Þ¼0
h02N

kywk2s

kuwk2s
� sup

vw2‘
Nm
2s

kvwk2s 6¼0

xw ð0Þ¼0
h02N

kywk2s

kvwk2s
sup
uw2‘

p
2s

kuwk2s 6¼0

xw ð0Þ¼0
h02N

kvwk2s

kuwk2s

¼ kD̂sk1skV̂k1s 5
1

�

� 	
1

�

� 	
¼ 1: ðA10Þ

In addition, from (1), (2), (34), (51) and (A5), Dhk
� 0.

Thus, applying Corollary 2.8 to Ŵ, there exist

0�Yi2R
(2nþq)�(2nþq) with i2N , which satisfy 8i2N ,

I� BT
i

XN
l¼1

plYlBi 4 0, ðA11Þ

Yi ¼ CT
i Ci þ ðAi þ BiRiÞ

T
XN
l¼1

plYl ðAi þ BiRiÞ � RT
i Ri,

ðA12Þ

Ri ¼ I� BT
i

XN
l¼1

plYlBi

 !�1
BT
i

XN
l¼1

plYlAi, ðA13Þ

and Ahk
þBhk

Rhk
is stochastically stable.

Substituting (A13) into (A12), we get 8i2N ,

Yi ¼ CT
i Ci þ AT

i

XN
l¼1

plYlAi þ AT
i

XN
l¼1

plYlBi

� I� BT
i

XN
l¼1

plYlBi

 !�1
BT
i

XN
l¼1

plYlAi

¼ eCT
i
eCi þeAT

i

XN
l¼1

plYl
eAi ðA14Þ

with eAi ¼ Ai þ BiCi, ðA15Þ

eCi ¼ I� BT
i

XN
l¼1

plYlBi

 !�1=2
BT
i

XN
l¼1

plYl
eAi � Ci

 !
: ðA16Þ

Let

eHi ¼ �Bi I� BT
i

XN
l¼1

plYlBi

 !�1=2
, i 2 N : ðA17Þ

Then,

eAhk �
eHhk

eChk ¼
eAhk þ Bhk I� BT

hk

XN
l¼1

plYlBhk

 !�1

� BT
hk

XN
l¼1

plYl
eAhk � Chk

 !

¼ Ahk þ Bhk I� BT
hk

XN
l¼1

plYlBhk

 !�1

� BT
hk

XN
l¼1

plYlAhk

¼ Ahk þ BhkRhk ðA18Þ

is stochastically stable. Thus, ðeChk ,
eAhk Þ is stochastically

detectable. Using Corollary 2.5, we conclude that eAhk is
stochastically stable.

Since P̂Ks is the closed-loop system of V̂ and D̂s, P̂Ks can
be viewed as the unity-feedback control system of Ŵ which is
the tandem connection of V̂ and D̂s. In other words, P̂Ks can
be written as (A1) with

uwðtÞ ¼ ywðtÞ: ðA19Þ

Combining (A1) and (A19) with Dhk
� 0, the system P̂Ks,

which can be written as

xwðkþ 1Þ ¼ ðAhk þ BhkChk ÞxwðkÞ ¼
eAhkxwðkÞ, k 2 N,

ðA20Þ

is a stochastically stable system.

1894 D. Wu et al.
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