
This article was downloaded by:[University of Southampton]
On: 5 September 2007
Access Details: [subscription number 769892610]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713393989

Orthogonal least squares methods and their application
to non-linear system identification
S. Chen a; S. A. Billings a; W. Luo a
a Department of Control Engineering, University of Sheffield, Sheffield, England, U.K

Online Publication Date: 01 November 1989
To cite this Article: Chen, S., Billings, S. A. and Luo, W. (1989) 'Orthogonal least
squares methods and their application to non-linear system identification',
International Journal of Control, 50:5, 1873 - 1896
To link to this article: DOI: 10.1080/00207178908953472
URL: http://dx.doi.org/10.1080/00207178908953472

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

© Taylor and Francis 2007

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207178908953472
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:2

8 
5 

S
ep

te
m

be
r 2

00
7 

INT. J. CONTROL, 1989, VOL. 50, No.5, 1873-1896

Orthogonal least squares methods and their application to non-linear
system identification

s. CHENt, s. A. BILLINGSt and W. LUOt

Identification algorithms based on the well-known linear least squares methods of
gaussian elimination, Cholesky decomposition, classical Gram-Schmidt, modified
Gram-Schmidt, Householder transformation, Givens method, and singular value
decomposition are reviewed. The classical Gram-Schmidt, modified Gram
Schmidt,and Householder transformation algorithms are then extended to combine
structure determination, or which terms to include in the model, and parameter
estimation in a very simple and efficient manner for a class of multivariable
discrete-time non-linear stochastic systems which are linear in the parameters.

I. Introduction
Most systems encountered in the real world are non-linear and since linear models

cannot capture the rich dynamic behaviour of limit cycles, bifurcations etc. associated
with non-linear systems, it is important to investigate the development of identifi
cation procedures for non-linear models. The NARMAX (Non-linear AutoRegressive
Moving Average with eXogenous inputs) model which was introduced by Leontaritis
and Billings (1985) provides a basis for such a development. When a polynomial
expansion of the NARMAX model is selected the model becomes linear-in-the
parameters. Providing the model structure, or which terms to include in the model,
has been determined, only the values of the parameters are unknown and the
identification can thus be formulated as a standard least squares problem which can
be solved using various well-developed numerical techniques. Unfortunately the
model structure of real systems is rarely known a priori and methods of model
structure determination must therefore be developed and included as a vital part of
the identification procedure. Because the number of all possible candidate terms can
easily run into several thousands even for 'moderately' non-linear systems optimal
multiple selection methods (Leontaritis and Billings 1987) are difficult to use and
suboptimal methods of structure determination such as stepwise regression (Draper
and Smith 1981) become very complicated and time consuming.

An orthogonal algorithm which efficiently combines structure selection and
parameter estimation has been derived (Korenberg 1985) and extended to the
identification of single-input single-output non-linear stochastic systems (Korenberg
et al. 1988). A more reliable version of the algorithm has been developed by Billings
er al. (1988 b) and applied to multi-input.multi-output non-linear stochastic systems
(Billings et al. 1989 b). Various simulation studies and practical applications have
shown that this algorithm provides a simple and powerful means of fitting parsimoni
ous models to real systems. A similar structure selection algorithm incorporating
some statistical tests for non-linear models without noise modelling has been reported
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1874 S. Chen et al.

by Kortmann and Unbehauen (1988). A slightly different structure determination
algorithm using projection matrices (symmetric and idempotent matrices) has been
given by Desrochers and Mohseni (1984).

Starting with a review of methods for solving least squares problems, the present
study develops structure selection algorithms for the polynomial NARMAX model by
modifying and augmenting some well-known techniques of orthogonal decompo
sition of the regression matrix. It is shown that the orthogonal algorithms developed
here (Desrochers and Mohseni 1984, Korenberg et al. 1988, Billings et al. 1989 b)
belong to this type. Advantages and disadvantages of using the different orthogonal
decomposition techniques are discussed and a comparison of the resulting structure
selection algorithms is given.

2. Non-linear system identification and linear least squares problems
Under some mild assumptions a discrete-time multivariable non-linear stochastic

control system with m outputs and r inputs can be described by the NARMAX model
(Leontaritis and Billings 1985)

y(t) = f(y(t - I), ... , y(t - ny), u(t - I), ... , u(t - nul, e(t - I), ... , e(t - ne )) + e(t) (I)

where

[

YI(t)] [U l(t)] [e l (t)]
y(t) = : , u(t) = : , e(t) = :

Ym(t) u,(t) emit)

(2)

are the system output, input, and noise, respectively; ny, nu, and ne are the maximum
lags in the output, input, and noise; {e(t)} is a zero mean independent sequence; and
f( .) is some vector-valued non-linear function. Equation (I) can be decomposed into
m scalar equations as follows:

Yj(t) =J.(YI (t - I), , YI(t - ny), , Ym(t - I), , Ym(t - ny),

UI (t - I), , U1(t - nul, , U,(t - I), , U,(t - nul,

e, (t - I), , e 1 (t - n.), , emit - I), , emit - ne )) + ej(t), i = I, ... , m (3)

A special case of the general NARMAX model (I) is the NARX (Non-linear
AutoRegressive with eXogenous inputs) model

or

y(t) = f(y(t - I), ... , y(t - ny), u(t - I), ... , u(t - nul) + e(t) (4)

Yj(t) = J.(YI (t - I), ... , Y,(t - ny), ... , Ym(t - I), , Ym(t - ny), U I (t - I), ... ,

Ul (t - nul, ... , u,(t - I), ... , u,(t - nu)) + e,(t), i = 1, , m (5)

In reality the non-linear form of J.( • ) in (5) is generally unknown. Any continuous
J.( . ), however, can be aribtrarily well approximated by polynomial models (Chen and
Billings 1989). Expanding J.( .) as a polynomial of degree I gives the representation

n n •

y,(t) = Ogl + L Ol:lX,,(t)+ L L Ol:l"X" (t)x ,, (t) + ...
il =1 ;1 =1 il=i1

• n

+ L .. , L 0::1" "X,,(t) ... Xj,(t) + e,(t), i = I, ...,m (6)
it = I ir= il- 1
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Orthogonal least squares methods 1875

(7)

XI(t)=Ydt-1), X2(t)=YI(t-2), ... , Xmxn,(t)=Ym(t-ny ) }
(8)

Xmxn,+dt)=UI(t-1), ... , xn(t)=u,(t-n.)

It is clear that each subsystem model in (6) belongs to the linear regression model

M

z(t) = L Pj(t)l.Ij + ~(t), t = 1, ... , N
i= 1

(9)

where N is the data length, the pj(t) are monomials of XI(t) to xn(t) up to degree 1
PI (t) = 1 corresponding to a constant term-~(t) is some modelling error, and the I.Ij
are unknown parameters to be estimated. In linear regression analysis, z(t) is known
as the dependent variable and the pj(t) are often referred to as regressors or predictors.
Equation (9) can be written in the matrix form

with

z=P0+:E: (10)

and

( 11)

Pj=[Pj~I)], i=I, ...,M

Pi(N)

( 12)

In reality each subsystem in (6) may involve only a few significant terms which
adequately characterize the system dynamics. If the significant terms are known a
priori and only they are used to form the regression matrix P, a linear least squares
(LS) problem can be defined as follows:

find parameter estimate (':) which minimizes liz - P0ll (LS)

where II • II is the euclidean norm. It is well-known that the solution to this problem
satisfies the normal equation

(13)

where pT P is called the information matrix. Several numerical methods of solving the
least squares problem (LS) are summarized in § 3.

Because the system structure is generally unknown at the beginning of the
identification, the experimenter is often forced to consider the full model set, that is all
possible terms in (6). The determination of the structure or which terms to include in
the final model is essential since a full model set can easily involve an excessive
number of terms, most of which may be redundant and should be removed. A
parsimonious model is highly desirable if the model is to be employed in controller
design, prediction, and other applications. Let P represent the full model set. The
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1876 S. Chen et al.

combined problem of structure selection and parameter estimation (SSPE) can then
be stated as follows:

Select a subset P, of P and find the corresponding parameter} SSPE)
estimate (3, which adequately fits the data (

One possible approach to the above problem is to use some optimal multiple selection
methods based on the theory of hypothesis testing (Leontaritis and Billings 1987).
Because the number of all the possible terms can easily become excessively large it is
very difficult to attain the optimal solution since this would involve examining all the
possible subset models. Some suboptimal methods have to be employed and § 4
considers a class of suboptimal algorithms based on the orthogonal decomposition
of P.

So far only a polynomial expansion of the NARX model (4) has been discussed. If
the same expansion is applied to the NARMAX model (I) a similar linear-in-the
parameters expression for (10) is obtained. Unlike the polynomial NARX case,
however, now not all the columns of P can be measured or formed from the
measurements directly, and (10) becomes a pseudo-linear regression model. In § 5, the
results of § 4 are extended to the polynomial NARMAX model.

3. Review of methods for solving least squares problems
This section reviews numerical methods of solving the least squares problem (LS)

defined in § 2. There are three approaches which may be considered competitive for
computing (3 as follows:

(a) solve the normal equation by gaussian elimination or by forming the Cholesky
decomposition of pTp;

(b) form an orthogonal decomposition of P;

(e) form a singular value decomposition of P.

Each of these approaches has advantages. If p T P can be formed accurately, (a) offers
the most economical way of computing (3 at about half the cost of the second
approach (b), and one-quarter to one-eighth of the cost of the third approach (e). The
second approach is generally the most accurate. It avoids possible ill-conditioning
from the formation of pTp. The orthogonal decomposition may be carried out via
(modified) Gram-Schmidt orthogonalization, a Householder transformation, or
Givens method. Method (e) is particularly useful when the rank of P is unknown or
when P is of full rank but is ill-conditioned in an unpredictable way. This method is
computationally more expensive. Throughout the discussion in this section it is
assumed that P has the dimension N x M with M ~ N.

3.I. Methods based on the normal equation

Assume that P is of full rank, then

B=PTp (14)

is positive definite. Gaussian elimination reduces B to an upper triangular matrix with
positive diagonal elements. The reduction is achieved by a series of non-singular
elementary row transformations in which multiples of each row of B are successively
subtracted from the rows below to give zeros below the diagonal. Performing these
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Orthogonal least squares methods

transformations on the augmented matrix [B: pTz] gives rise to [V: d] where

o
, d=

o 0 0 VMM dM

The elements of €) can readily be found by backward substitution

11
M

= _dM

VMM

-----=---'--'-=-----, i = M - 1, ... , 1

1877

(15)

(16)

If elementary row transformations are processed further, B can be reduced to the
identity matrix I and the same transformations performed on [I: PTZ] will lead to
[B - 1:0]. This is known as Jordan elimination.

The Cholesky decomposition method expresses B uniquely in the form

(17)

(18)

where U is an upper triangular matrix with positive diagonal elements; €) can then be
found by solving two triangular systems

UTq = PTZ }

U0=q

using the forward and backward substitution algorithms. To avoid square root
calculations in forming U, the information matrix B can alternatively be decomposed
into

(19)

where A is an upper triangular matrix with unity diagonal elements and 0 is a
positive diagonal matrix (Seber 1977). Denote L= AT and V = DA then

B=LV (20)

The elements of L and V may be determined in M successive steps, and in each step a
row of V and a column of L are computed

v\j=b 1j, ': ,M}

]-2, ,M

i-I

Vij=bij- L Ijkvkj, j=i,i+ 1, ... ,M
k=\

j-l

bjj- L Ijkvki
I
j i

= k=\ , j=i+1, ... ,M

i=2, ... , M

(21)
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1878 S. Chen et al.

If pTp can be formed accurately, the methods based on pTp are computationally
the cheapest to implement. Forming pT P however introduces round-off errors; and if
p is ill-conditioned, that is a small change in the elements of P can cause large changes
in (PTp) -I and hence Q = (PTp) -I pTZ,any errors in theformation of pTp may have
a serious effect on the stability of the least squares solution. Furthermore, round-off
error's accumulate in the process of solving Q and this makes the situation even worse.
The problem of ill-conditioning frequently occurs in polynomial non-linear models
where the columns of P can often be highly correlated. As an illustration, consider the
example of a polynomial model with a single variable up to kth-degree (Seber 1977,
p.214)

k

z(t) = L O;xi(t) + e(t), t = I, ... , N
i=O

(22)

Assume that X(I) is distributed approximately uniformly on [0, I]; then for large N it
can be shown that pr p is approximately equal to the (k + I) x (k + I) principal minor
of the so-called Hilbert matrix

1 1
2 3

1 t 1

H= 2 4

t 1 t4

(23)

multiplied by N. It is well-known that H is very ill-conditioned. For example, let k = 9
and Hl o be the 10 x 10 principal minor of H, then the inverse of HIO has elements of
magnitude 3 x 1010

. Thus a smaJJ error of 10- 10 in one element of pTz will lead to an
error of about 3 in an element of Q.

A measure of the ill-conditioning of P is its condition number K[P] which is
defined as

K[P] = ratio of the largest to smaJJest non-zero singular value of P (24)

The singular values of P are the non-negative square roots of the eigenvalues of pT P.
Other definitions can also be used. Because

(25)

and K> I, pTp is more ill-conditioned than P. Equation (25) indicates that, using k
digit binary arithmetic, we will not be able to obtain even an approximate solution to
the normal equation (13) unless K[P] ~ 2k/2 (Bjorck 1967). This is clearly an
unsatisfactory feature of the methods based on the normal equation. Therefore unless
K[P] is of moderate magnitude and pT P can be formed accurately it is better not to
form pT P at all, and methods based on the orthogonal decomposition of P are better
alternatives. Although some authors (Golub 1969, Wilkinson 1974) have pointed out
that the effect of K 2 [P] cannot be avoided entirely, solving least squares problems by
forming an orthogonal decomposition of P is generally safer and more accurate than
utilizing pTp.

3.2. Methods based on orthogonal decomposition of the regression matrix

As shown in § 3.1 actually forming and solving the normal equation (13)
numerically has serious drawbacks because pT P is often so ill-conditioned that the
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Orthogonal least squares methods 1879

answer obtained is quite inaccurate. Now let F = PS where S is an M x M non
singular matrix. From (13) it follows that

(26)

This equation can be used instead of the normal equation for solving for E') and F can
be chosen in such a way that

Indeed, since P is of full rank, it can be factorized as

p=aR

(27)

(28)

whered a is an N x M orthogonal matrix rcrc = I), that is the columns of a are
orthonormal, and R is an M x M upper triangular matrix. Choosing F = PR -I = a,
the matrix FT P = aTOR = R is triangular and (26) can easily be solved by backward
substitution. Moreover, the condition (27) is satisfied since

K[F T P] = K[R] = K[aR] = K[P] (29)

and RT R is in fact the Cholesky decomposition of p T P (17). The factorization of (28)
can be obtained in several ways and these are summarized in the following.

Classical Gram-Schmidt

In the actual computation it is preferable to use a different factorization of P
rather than (28) in order to avoid computing square roots. The factorization that
corresponds to the Cholesky decomposition of (19) is

P=WA

where

A=

is an M x M unit upper triangular matrix and

is an N x M matrix with orthogonal columns that satisfy

(30)

(31)

(32)

(33)

and 0 is the positive diagonal matrix in (19).
The classical Gram-Schmidt (CGS) procedure computes A one column at a time

and orthogonalizes P as follows: at the kth stage make the kth column orthogonal to
each of the k - I previously orthogonaliazed columns and repeat the operations for
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1880 S. Chen et al.

k = 2, .. " M. The computational procedure is represented as

_(Wi,Pk) l,('<k}exile - ,""-0:: I

, (W"Wi ) k=2 M
Ie-I , ... ,

W k = p, - ;~I rJ. ikWi

where ( " . ) denotes the inner product, that is,

N

(Wi,Pk)=wTpk= L Wi(t)Pk(t)
i= 1

Define

or

(Wi,z)
gi = , i = I, ... , M

(W" w;)

Then the parameter estimate 0 is readily computed from

A0=g

using backward substitution.

(34)

(35)

(36)

(37)

(38)

Modified Gram-Schmidt

If is well-known that the CGS procedure is very sensitive to round-off errors. The
experimental results (Rice, 1966) and the theoretical analysis (Bjorck 1967) indicate
that if P is ill-conditioned, using the CGS procedure, the computed columns ofW will
soon lose their orthogonality and reorthogonalization will be needed. On the other
hand, the modified Gram-Schmidt (MGS) procedure is numerically superior.

The MGS procedure calculates A one row at a time and orthogonalizes P as
follows: at the kth stage make the columns subscripted k + I, ... , M orthogonal to the
kth column and repeat the operations for k = I, ... , M - 1 (e.g., Bjorck 1967).
Specifically, denoting plO)= P;, i = I, ... , M, then

W k = p~k-l)

(wb plk-I»
Cl.kj = ,

(Wk,Wk)

p!k) = p!k-I) - rJ.kiWb

WM=P~-I'

i =_k + I, , M } k = 1,2, ... , M - 1

l-k+I, ,M

(39)

(40)

The elements of 9 are computed by transforming z(O) = z in a similar way

(Wk,Z(k-I) }s,»
. (wk, W,k) k = 1,2, ... , M

Z(k) = Z(k-I) - gkwk

The CGS and MGS algorithms have distinct differences in computational behaviour.
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Orthogonal least squares methods 1881

The MGS procedure is more accurate and more stable than the CGS procedure. This
is particularly remarkable since both methods perform basically the same operations,
only in a different sequence. Indeed, if there were not computer round-off errors they
would produce the same set of vv, with the same number of operations.

Householder transformation

An equivalent decomposition to (28) can be obtained by augmenting a with
N - M further orthonormal columns to make up a full set of N orthonormal vectors
for an N-dimensional euclidean space thus

(41)

(42)

Then

P=OA=O[:J

where R is the M x M upper triangular matrix in (28), and OT can be used to
triangularize P. If OTZ is partitioned into

we have

[
ZlJ}MOTZ -

Z2 }N - M

Ilz- P011 = IIOT(z- P0)11 = II z , - R011 + II z211

(43)

(44)

The least squares estimates can therefore be obtained by solving the triangular system

R0=zl (45)

and the sum of the squares of the residuals is given by Ilz2112.
The Householder method triangularizes the N x (M + I) augmented matrix

s., PIM PllM+I)

P=[P:z] =
P2l P2M P2(M+l)

PNI PNM PNlM+I)

(46)

to give

(47)

using a series of Householder transformations

Hlkl = 1- Plk)vlkJ(vlk))T, k = 1,..., M (48)

Here the V1k) are N-vectors with certain properties, the Hlk) are N x N symmetric and
orthogonal matrices, that is, (H(k))T = Hlk) and (Hlk))TH(k) = I. Furthermore,

(49)
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Denoting

S. Chen et al.

(50)

the kth Householder transformation is explcitly defined as (e.g., Golub 1965, Bierman
1977, Chap. IV)

(51)

and

Givens method

A Givens transformation rotates two row vectors

0, ,0, rj> r i + l' , r., ... }
0, , 0, {3;, Pi+ l' , Pk''''

resulting in two new row vectors

0, , 0, ri> ri + l' , r., }
0, , 0, 0, iJi+ l' , P'P .

where

r. = cr. + sP.
II. = - sr. + cP.
ri = (rf + Prl 1/2

ri
c=-rj

(52)

(53)

(54)

(55)

There are two ways of applying a sequence of Givens transformations to triangularize
P of (46).

For j = I, ... , M, the first method rotates the jth row successively with the
(j + I)th, ... , Nth row so that the last N - j elements in thejth column are reduced to
zeros. This leads to the triangular system, of (47). Here Z2 can be transformed further
to (<5,0, ... , O)T, then the sum of the squares of the residuals is simply <5 2

•

The second method processes one row of P at a time as follows:
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[

R(·-l) Z(I-1j] [R(l) Z~)]

<5(1-1) -+ <5(1)

PII, ... ,PIM P,(M+I) 0, ... ,0 0

1883

(56)

for t = I, ... , N. The initial R(OI, z\O), and <5(0) can be taken as zeros. It is readily seen
that this way of implementing the Givens method leads to on-line identification
algorithms (e.g., Goodwin and Payne 1977, Result 7.2.2). Similar to the Gram
Schmidt procedure, the computation of square roots in (55) can be avoided
(Gentleman 1973).

Comparisons

MGS and Householder algorithms are highly competitive. The MGS algorithm is
easier to program but requires slightly more computation. It seems that the MGS
algorithm is slightly more accurate than the Householder algorithm (Jordan 1968,
Wampler 1970).

The reduction of P to the upper triangular form requires approximately N M 2 

M3/2 multiplications and M square roots for the Householder method; and about
2N M 2 multiplications and NM square roots for the Givens method if transformations
are carried out in the form of (55)-see the work by Seber (1977). However, the
modified Givens method (Gentleman 1973) requires no square roots and reduces
multiplications to only three quarters of 2N M 2

• Furthermore, the Givens method
processes one row at a time and has important on-line implementations.

3.3. Singular value decomposition of the regression matrix

If the rank of P is less than M the least squares problem no longer has a unique
solution. Many of the methods discussed in §§ 3.1 and 3.2 can be adapted to handle
this. The singular value decomposition, however, offers a general solution to the least
squares problem.

Assume that the rank or P is '1 (.;;; M). According to the singular value
decomposition theorem (e.g., Golub and Reinsch 1970) P can be factorized as

P= OS\lT (57)

where 0 is an N x M orthogonal matrix consisting of M orthonormalized eigenvec
tors associated with the M largest eigenvalues of ppT, \I is an M x M orthogonal
matrix consisting of the orthonormalized eigenvectors of pT P, and

(58)

has the singular values of P as its diagonal elements. The diagonal elements of S are in
the order

(59)

If '1 < M, s.+ 1= ... = SM = O. There are alternative representations to (57)-e.g., as
given by Hanson and Lawson (1969)-however, (57) is convenient for compu
tational purposes.

The pseudo-inverse of P is defined as

p+ =\lS+OT (60)
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where

and

Then

S. Chen et al.

S+ =diag[si, ... ,s.i{J

{
.!. for s,> 0

+ ' ,s, = s,

0, for s, = 0

(61)

(62)

(63)

is a solution of the least squares problem. Details of an algorithm for computing ~
using singular value decomposition can be found in work by Golub (1969), and Golub
and Reinsch (1970).

4. Selection of subset methods using orthogonal algorithms
When identifying non-linear systems with an unknown structure, it is important to

avoid losing significant terms which must be included in the final model, and
consequently the experimenter is forced to start with large values of ny and n., and a
high polynomial degree i in (4). The number of columns in P is therefore often very
large, even thousands, perhaps. For example, even in the single-input single-output
(SISO) case, if ny = n. = 10 and 1=3, P has 1771 columns. Previous experience has
shown that provided the significant terms in the model can be detected models with
about 10 terms are usually sufficient to capture the dynamics of highly non-linear
SISO processes (Billings 1986, Billings and Fadzi11985, Billings et al. 1988 a, Billings
et al. 1989 a). Throughout the rest of the discussion, P will be used to represent the
full model set of a (sub)system so that M ~ N becomes unnecessary. This section
considers the combined problem of structure selection and parameter estimation
(SSPE) defined in § 2. It is shown that by augmenting the orthogonal decomposition
techniques of§ 3.2, simple and efficient algorithms can be derived that determine P" a
subset of P, in a forward-regression manner by choosing one column of P for which
the sum of squares of residuals is maximally reduced at a time.

4.1. Using the CGS procedure

Assume that P, has M, (M, < M and M, ~ N) columns. Factorize P, into W,A, as
in (30) where W, is an N x M, matrix consisting of M, orthogonal columns and A, is
an M, x M, unit upper triangular matrix. The residuals are defined by

S~ [:(~J ~ ,- p,&, ~,- IPA ')(A,0,1~'- W.O. (64)

Equation (64) can be rewritten as

z = W,g, + ~

The sum of squares of the dependent variable z is therefore

M.
(z, z) = L gf<w i , Wi> + <~, ~>

j= 1

(65)

(66)
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(67)

The error reduction ratio due to Wi is thus defined as the proportion of the dependent
variable variance explained by Wi

[ ] g::..:f---,(_W--,-,i'-,-W---,i-'..-)err L =
, (z,z)

Equation (67) suggests a way of computing W, (and hence P,) from P by the CGS
procedure. At the ith stage, by interchanging the i to M columns of P we can select a Pi
which gives the largest [err], when orthogonalized into Wi' The detailed procedure is
as follows.

At this stage, for i = 1, ... , M, denote wV = Pi and compute

( (i ) (i)2( li wli)
(i _ W 1> Z [](i _ g 1 W 1, I

gi - (wV,wV)' err 1- (z,z) (68)

Assume that [err]V = max {[err]V, 1~j ~ M}. Then WI = wy (= Pj) is selected as
the first column of W, together with the first element of 9" gl =gy, and [err], =
[errJV.

At the second stage, for i = I, ... , M and i # j, compute

(i _ (WI' Pi) (i (i }0(12- , W2=Pi-0(12 WI
(WI' WI)

(69)
(i _ (w~, z) . (gli)2(Wli W(i)

g2 - (wli w li)' [err]~ = 2 2' 2
2'2 (z,z)

Assume that [err]~ = max {[err]~, I ~ i ~ M and i # j}. Then w 2 = W~k (= Pk
O(l2Wd is selected as the second column ofW, together with the second column of A"
0( 12 = 0(\\, the second element of 9" g2 = g~k, and [err}, = [err]~k.

The selection procedure is continued until the M,th stage when

M.

I - L [err], < P
t» 1

(70)

where P (0 < P ~ I) is a desired tolerance. Other criteria can also be used to stop the
selection procedure, for example,

[err]M.+ I X 100< a tolerance or g~~+ I (WM!I+ l' W M . + 1>
M.

(z,z)- L gf(Wi,Wi)
i= 1

x 100 < a tolerance

The subset model parameter estimate €'l, can easily be computed from A,e, = 9, by
backward substitution.

The geometrical interpretation of the above procedure is obvious. At the first stage,
the vector z is projected onto the basis vectors {Pi' i = 1, ... , M} (implicitly). Then the
scalar measures [err]V are calculated, and the maximum scalar measure [err]V =
max {[err]V, I ~ i ~ M} is determined. This leads to the selection of WI (= p) as the
basis vector of the one-dimensional euclidean space EI = E(1). At the second stage, all
the remaining basis vectors {Pi' i = I, ... , M and i # j} are transferred into an (M - 1)
dimensional euclidean space, which is orthogonal to E(I)' and the basis vector w 2
for the one-dimensional euclidean space E(2) is selected. The two-dimensional
euclidean space E2 is then the union of E(I) and E(2), having the orthogonal basis
vectors {WI' w 2}. Finally after M, stages, an M,-dimensional euclidean space EM. is
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1886 S. Chell et al.

established which has the orthogonal basis vectors {WI' w 2, ... , wM.l. It is worth
pointing out that the algorithm proposed by Desrochers and Mohseni (1984) is
theoretically equivalent to the above procedure. In their algorithm, projection
matrices are computed, and this makes the projection of z onto the basis vectors
explicit and the geometrical insight more apparent. By using projection matrices,
Desrochers and Mohseni (\ 984) have also been able to establish some properties of
the algorithm. Forming projection matrices explicitly, however, is time consuming
and computationally unnecessary.

It can easily be seen that the orthogonalization procedure used by Korenberg
(1985), Korenberg et al. (1988), Billings et al. (1988 b, 1989 b), is the CGS procedure by
simply comparing it with (34), and the algorithm of this subsection is in fact identical
to the forward-regression orthogonal algorithm given by Billings et al. (1988 b, 1989 b).
Application of this orthogonal algorithm to the identification of the polynomial
NARX model is straightforward since the identification of any subsystem is decoupled

M.
from the others. From (66) and (67) it is seen that 1- L [err], is the proportion of

i= 1

the unexplained dependent variable variance. The value of P determines how many
terms will be included in the final (sub)model and hence the complexity of the model.
Let Pi be the desired tolerance for the ith subsystem. Ideal Pi should be closely related
to E[e;(t)]/E[y;(t)). Since the latter is not known a priori, the appropriate Pi may
have to be found by trial and error.

The criterion of (70) concerns only the performance of the model (variance of
residuals) and does not take into account the model complexity. A criterion that
compromises between the performance and complexity of the model is Akaike's
information criterion AIc(4))

where

AIc(4)) = N log qt:),) + M,4>

~ I '" '"q0,) = - <~, ~>
N

(71)

(72)

is the variance of the residuals; and 4> is the critical value of the chi-square distribution
with one degree of freedom for a given significance level. To use this criterion,.the user
is first required to specify a significance level. Leontaritis and Billings (1987) have
pointed out that 4> = 4 is a convenient choice and it corresponds to the significance
level of 0'0456. AIC(4) provides an alternative criterion to stop the above forward
regression model selection procedure. When the minimum of AIC(4) is reached the
selection procedure is terminated. Other statistical criteria can also be employed to
stop the selection, and the relationship between these criteria and AIc(4)) has been
investigated by Soderstrom (1977), and Leontaritis and Billings (1987).

As mentioned before, the CGS orthogonalization is sensitive to computer round
off errors. Notice, however, that the model selection algorithm in this subsection is not
designed to orthogonalize the whole P which is often ill-conditioned. It selects P"
usually small subset of P and typically about 10 columns for SISO systems. Since P,
contains only significant terms of the system it is usually well-conditioned and the
problem of columns of W, losing their orthogonality rarely occurs. Indeed this model
selection algorithm performed well in many previous applications. Nevertheless, it
may be desirable to employ the MGS,orthogonalization procedure in a similar model
selection algorithm because of its numerical superiority..
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(74)

Using the CGS procedure to select terms does have two important advantages
which are worth emphasizing. Storing the matrix P in the memory of a microcom
puter could be a problem because its size is often huge. Notice that each column of Pis
a monomial function of the input-output data and the CGS algorithm computes one
column of A and orthogonalizes a column of P at a time. Every time a column is to be
orthogonalized it can be generated quickly from the input-output data. In this way,
storing P can be avoided and only Ws> which is often of modest dimensions, needs to
be kept. Implementing the CGS algorithm in a microcomputer should therefore be
straightforward. This will not be the case for MGS because storage for the whole Pis
required. The way that the CGS orthogonalization operates also makes the algorithm
easier to extend to the polynomial NARMAX model where noise modelling is a part
of the identification procedure. This is further discussed in § 5.

4.2. Using the MGS procedure

The development of a forward-regression orthogonal algorithm using MGS
orthogonalization is straightforward. Because the MGS procedure makes the (k +
I)th, ... , Mth columns orthogonal to the kth column at the kth stage, the matrix P
must be kept in computer memory. The memory space for A, up to M, rows, must also
be provided and this is of course much larger than the space for As required in the
algorithm using CGS orthogonalization. Employing the same notation as (39) and
(40) leads to the defini tion of p(k- I) as

P(k-l) = [WI'" W k- I p~k-I) ... p~-l)] (73)

If some of the columns p~k-l), ... , p~-l) in p(k-I) haved been interchanged this will
still be referred to as p(k- I) for notational convenience. The forward-regression
orthogonal algorithm using the MGS orthogonalization can now be summarized as
follows.

At the kth stage, for i = k, ... , M, compute

(p(k- l ) Z(k-I) (gH)2(p\k-l) p!k-l»
(i _ I , [ J<i _ k I 'I

gk - (pjk I), p!k I)' err k - (z, z)

Assume that [err]~ = max {[err]~', k s; i '" M}. Then the jth column of p{k-l) is
interchanged with the kth column; the jth column of A is interchanged up to the
(k - I)th row with the kth column. The rest of the operations are as indicated in (39)
and (40). The selection procedure can be terminated in the same ways as discussed in
§ 4.1. Notice that Z(M,) is simply the residual vector and

(z(M,), z(M·» = I _ M.

(z, z) if:
1

[err].

Here As is the M, x M, principal minor of A.

4.3. Using the Household transformation

The Householder transformation method can be employed to derive a forward
regression algorithm. Unfortunately as in the case of the MGS method, the whole of P
must be stored in computer memory. Denote

fI(O) = [P: z] = [p\O) ... p~): z(O)] (75)

and Rk the k x k principal minor of R where R is defined in (42).
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1888 S. Chen et al.

After H'", j = 1, ... , k - 1 have been successively applied to P(OI, it is transformed to

Alk-II Alk-I). Zil-Il]
tlk ... tiM . (76)

(77)

Two important properties of H(ll should be noted as follows:

(a) it leaves the first k - I rows of Pil-Il unchanged;

(b) it leaves the column lengths invariant.

If the process were stopped at the (k - I)th stage and a subset model of k - 1
parameters were chosen, the sum of the squares of residuals would be

N

L [Z!"-11]2
i=k

and this is reduced to

(78)

after H(l) has been applied to Plk-I). The task is then to choose a column from
p~k-I), ... , p~-ll for which (Z~"))2 is maximized, and this can be achieved as follows.

D t A lk - I) - ( ;:ik - I) ;:ik - I ))T . - k M C tenoetlj - Pj '''',PNj ,J- , ... , . ompue

ajkl = (.f (P1r 11)2)1/2, bj") = t P1r Ilzlk-l), for} = k, ... , M
I=k i=k

Assume that the maximum of

(

bll) [;:il-I)] Ikl Ik-'))2
zlk-II_(p;:ik.-'I+sgn[p;;(k.-I}]a(kl)x j +sgn Pkj aj Zl

l kJ lJ J ajk)(aj"}+ 1P1.~ III)

=G~::r fork=k, ... ,M

is achieved at} = L; Then interchange the}mth column of plk-'I with the kth column.
The rest of the operations are as indicated in (51) and (52). The procedure is
terminated at the M,th stage when

M, (zjM,})2 M, (Z),})2
I - L-- = 1- L -- < p (79)

;= I (z, z) i» I (z, z)

or when AIC(4) is minimized. It can be seen that (zIO)2/<z, z) corrdsponds to [err]; in
the CGS and MGS algorithms and if the notation [err], = (zl'))2/<z, z) is used (79)
becomes identical to (70). The subset model parameter estimate e" is computed from

RM,e, = [Z\')], that is RM,e, = [Z~I}] (80)

z~A1s) z~s)

using backward substitution.
This algorithm seems to require less computer memory space than the algorithm

based on the MGS method because R is stored by overwriting part of P. Using the
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Householder transformation method to select predictors in such a forward-regression
manner has been mentioned by Golub (1965); a}k) and b}k) for j = k, ..., M can be
calculated quickly in the following way. Given

(81)

After plk) has been computed, (a}k+ 1»)2 and b}k+ I) for j = k + I, ... , M are updated
according to

(a)k+ 1»)2 = (a)k»)2 _ (Pi,~)2, b}k+ I) = b)k) _ Pi,~z~k), j = k + I, ... , M (82)

Naturally, if the columns of Plk- [) are interchanged, the a}k) must be interchanged
accordingly and so must the b)k).

5. Iterative schemes for polynomial NARMAX models
For the polynomial NARMAX model, delayed noise terms are included in each

subsystem model and these are generally unmeasured. The solution to this problem is
to replace e(t) by the prediction errors or residuals E(t) in the identification process.
Let Pi represent the full submodel set of subsystem i which is partitioned into

(83)

where each column in P p, is a monomial function of the input-output data only and
each column in Pn, is a monomial function of the prediction errors and the
input-output data. Here P p, may therefore be referred to as the full ith process sub
model and Pn, the full ith noise sub-model. A subset P'i of Pi is similarly represented as

coordinator

(84)

1st estimator mth estimator

Figure 1. Iterative scheme for the polynomial NARMAX model.

Referring to Fig. I, a general iterative scheme using the orthogonal algorithms of § 4
can be described as follows.

Initially the ith estimator selects columns of P p" from P p,' The selection is
terminated after M p" columns have been selected and the condition

,'"fp.,

1 - I. [err]j < Pp ,
j= 1

(85)
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1890 S. Chen et al.

is satisfied where PPI is the tolerance for the ith process sub-model. The initial
submodel parameter estimate 0~? (containing only M Po' elements) can be computed
and then sent to the coordinator. Based on 0;?, i = I, ... , m, the coordinator can
generate the initial prediction error sequence {E(l(t)}.

At the kth iteration (k ~ I) each estimator receives {E(k(t)} from the coordinator.
This allows the ith estimator to form p~~ and to select columns from P~~. Assume that
after M~:, more columns have been added to PPo' the condition

M'''+M~

1- L ·"[err]j<Pn,
j= 1

(86)

is satisfied, where Pn, ( < Pp.) is the tolerance for the ith noise sub-model, the selection
procedure is stopped, 0~~ (containing Mp" + M~:, elements) is computed and sent to
the coordinator.

Previous experience involving the CGS orthogonal algorithm has shown that
typically four to six iterations are usually adequate. Since the MGS and Householder
transformation algorithms are numerically more accurate than the CGS algorithm,
four to six iterations should also be adequate for the iterative schemes using these two
methods.

Notice that the selection of the process and noise model parameters is decoupled.
However, there is no particular reason why the process model terms should be
selected first and the noise model terms selected later other than that this way is
convenient for updating {E(t)}. For SISO systems, an additional stage may be added
to the above scheme: after a reasonable {E( t)} has been obtained, we may reselect
process and noise model terms together from P and stop the procedure when AIC(4)
is minimized. It is also possible to terminate the iterative scheme using AIC( </J) instead
of the error-reduction-ratio criterion for SISO systems. For example, the process
model regression is stopped when AIC(4) is minimized and, at each iteration, the noise
model regression is stopped when AIC(2) is minimized. Theoretical analysis
(Leontaritis and Billings 1987) and simulation studies (Leontaritis and Billings
1987; Chen and Billings 1988) indicate that AIC(2) often overestimates the number
of necessary parameters. Ideally we should treat the process and noise terms equally.
When AIC(4) is used to terminate the process model regression, however, we are in
fact trying to fit a NARX model to the system which may be better modelled by a
NARMAX model and some unnecessary process terms may be included in the
initial stage. AIC(2) is therefore deliberately used for the noise model regression at
each iteration in order to avoid the possibility of losing significant noise model terms.
For multivariable systems, AIC(</J) becomes

where

AIC(</J) = N log det C(0,) + M,</J (87)

(88)

and M, is the number of all the subsystem parameters. It is difficult to apply this
criterion to terminate the above iterative scheme for multivariable systems because
the model structure determination is done in a decentralized way.

Computational aspects of different schemes obtained using different orthogonal
methods applied to the NARMAX model are now discussed.
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CGS scheme

The CGS algorithm orthogonalizes one column at a time. This makes the iterative
CGS scheme a simple and natural extension of the forward-regression orthogonal
procedure of § 4.1. After the initial stage, W'i contains M P,i orthogonal columns and
the first M P.i columns of A'i have been computed. At the kth iteration, the ith
estimator simply computes M P.i + I, ... , M P.i + M~~i columns of A'i and selects cor
responding columns of W'i from p~~ successively just as the M P.i + 1, ... , M P.i + M~~i

stages of the forward-regression orthogonal procedure of § 4.1.

MGS scheme

For the ith estimator, when p~~ has been formed at the kth iteration, each column
of p~~ must be made orthogonal to the ith, 1= I, ... , MP.i' column of W'i and the
corresponding (Xij must be computed first; ZIM,•.> must also be restored at the beginning
of each iteration. After these operations, the rest of the kth iteration is as the
M p•

i
+ 1, ... , M P•• + Mt stages of the forward-regression orthogonal procedure of

§ 4.2.

Householder transformation scheme

For the ith estimator, the initial stage consists of applying the forward-regression
orthogonal procedure of § 4.3 to

(89)

where Vi= (Yi( I), ... , y;(N))T. After M P.i Householder orthogonal matrices have been
applied to the matrix of (89) it is transformed to

(90)

These M p•• orthogonal transformations must be preserved (e.g., stored in the space
below the diagonal of RM ).

At the kth iteration, wh~n p~~ has been formed, the /th, 1= I, ... , MP." Householder
transformations must be applied to p~~ successively. Denoting the resulting matrix as
p~~, the rest of the kth iteration is as the M P.. + I, ... , M P•• + M~~i stages of the
forward-regression orthogonal procedure of § 4.3 applied to the matrix

(91)

6. Simulation study
The main purpose of this simulation study was to compare the performance of the

three algorithms and only SISO examples will be used. Some multivariable examples
using the CGS scheme can be found in work by Billings et at. (1989 b). The program is
written on a Sun 3/50 workstation and all calculations ard carried out in single
precision.
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1892 S. Chen et al.

Example I
The data was collected from a large pilot scale liquid level system where the input

was a zero mean gaussian signal. A description of this process is given by Billings and
Voon (1986). The inputs and outputs of the system are illustrated in Fig. 2.

8.9E -1

1.SE -1

input

output

500

-2.4E 0

Figure 2. Inputs and outputs of Example I.

500

A polynomial NARX model (/ = lI y = II. = 3 and lie = 0) was used to fit the data. The
full model set consisted of 84 terms. The results obtained by applying the forward
regression variant of CGS algorithm are given in Table I. Using the same p = 0·0048
the MGS and Householder transformation (HT) algorithms produced the same
model as in Table I.

Terms Estimates [err], Standard deviations

y(t- I) 0·80916E+0 0·97444E + 0 0·47816E - I
u(t- I) 0·41813E + 0 0·14158E- 1 0·15593E-I
u(t- 2) -0'10762E+0 0·26158E- 2 0·16974E - 1

y(t- 2)y(t - 3)u(t- 2) -Q-36722E +'0' '·0·12047E'-2 0·53508E - 1
y(t-I)u(t- t) -0·33901E+0 0·18040E - 2 0·27629E-I

y(t- 2)y(t- 3)u(t- 3) 0·14530E + 0 0·31312E - 3 0·20979E - 1
u(t-l)u2(t-2) -0·16590E + 0 0·17932E- 3 0·43352E - 1
y(t-l)u(t-2) 0·16459E + 0 0·73725E-4 0·31417E-I
y2(t_ 2)y(t- 3) -0'39164E - 1 0·90227E-4 0·60504E-2
y(t-I)y(t-2) -0'58358E - 1 0·18795E- 3 0·10442E-I

y(t- 2) 0·16186E + 0 0·12685E - 3 0·4629IE-I
y2(t_ 3)u(t- 2) 0·13916E + 0 0·64359E-4 0·54245E - 1

Tolerance p = O{)048, variance of residuals a; = Q'18585E- 2, residual variance and output variance
ratio= O'47429E - 2. ' .

Table I. Selected model of Example 1 (using CGS and ERR criterion).
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Orthogonal least squares methods 1893

Example 2

This is a simulated system. The data was generated by

y(t) = 0'5y(t - I) + u(t - 2) + 0'lu2(t -I) + 0'5e(t - I)

+ 0'2u(t - I)e(t - 2) + e(t)

where the system noise e(t) was a gaussian white sequence with mean zero and
variance 0·04 and the system input u(t) was an independent sequence of uniform
distribution with mean zero and variance 1·0. The inputs. and outputs of the system
are shown in Fig. 3.

3.6E 0

lnput

OU'tpU1:

-2. SE 0 SOO

Figure 3. Inputs and outputs of Example 2.

A polynomial NARMAX model with 1= ny = n. = ne = 2 was used to fit the data.
The full model set contained 28 terms. Using the iterative scheme discussed in § 5, that
is, selecting process model terms first and then entering an iterative loop to select the
noise model terms, the MGS algorithm gave the correct final model, and this can be
seen from Table 2 where Pp = 0'034, P. = 0·026 and five iterations (computing the

Terms Estimates [err], Standard deviations

U(I- 2) 0-10032E+ I 0·67047E + 0 0-89932E - 2
y(1- I) 0-50276E + 0 0·28735E + 0 0-73754E - 2

U2(1_ I) 0-91 139E- I 0'8564OE-2 0-68862E - 2
e(1- 1) 0-54833E + 0 0'69294E- 2 0-45770E - 1

u(t - 1)e(I- 2) 0-23770E + 0 0'16084E-2 0-42268E - 1

Variance of residuals u; =0-41436E - 1,residual variance and output variance ratio=0-25072E - 1.

Table 2. Selected model of Example 2 (using MGS and ERR criterion).
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residual sequence 5 times) were involved. Under the same conditions the CGS and HT
algorithms produced identical results.

As mentioned in § 5, other iterative strategies can also be employed. The following
procedure was also tested on Example 2. First use AIC( 4) to terminate the process
model regression and use this to produce the initial residual sequence {Ell (t)} and
noise model set p~l . Next use AIC(2) to terminate the noise model regression. Having
obtained {E(k(t)} k;;,: 2 then select the process and noise model terms together from the
full model set or the model set obtained from the previous iteration. Each of such
regressions is terminated when AIC(4) is minimized. When the model set contains
the noise terms, to compute the exact AIC(¢) value each time a term is selected would
require the computation of all the selected parameter values OJ and the recalculation of
the residual sequence. This can be avoided by computing the approximate AIC(¢)
value using the approximate variance of the residuals. For a model of M, terms, if the
residual sequence is approximated by

.....::.=z- (92)

then the approximate variance of the residuals is readily given by

er; (I-l [errJ)

where

(93)

(94)
I

er; = N (z, z)

Notice that for polynomial NARX models (92) gives the exact residual sequence and
(93) the exact variance of the residuals. Using this procedure and involving only two
iterations (k = 2), the HT algorithm produced the model shown in Table 3. The results
obtained by the CGS and MGS algorithms were identical to those of Table 3.

Terms Estimates [err]; Standard deviations

u(t - 2) 0'IOO34E + 1 0·67047E +0 0·903t7E - 2
y(t - I) 0'50355E + 0 0·28735E + 0 O·74037E - 2
u'(t - I) O·89880E - 1 O·85640E- 2 O·69221E - 2
e(t - I) O·51440E + 0 O·65584E - 2 O'44959E - I

u(t - 1)e(1 - 2) O·20321E + 0 O·12277E - 2 O'41518E - 1

Variance of residuals II; = O·41754E- I, residual variance and output variance ratio =o-25265E-1.

Table 3. Selected model of Example 2 (using HT and Ale criterion).

7. Conclusions
Several orthogonal forward-regression estimators have been derived for the

identification of polynomial NARMAX systems by modifying and augmenting some
well-known orthogonal least squares methods. It has been shown that these
estimators efficiently combine structure determination with parameter estimation to
provide very powerful procedures for identifying parsimonious models of structure
unknown systems. The application to both simulated and real data has been
demonstrated.
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Whilst the iterative CGS scheme is easier to implement on a microcomputer and
its coding is simpler, experience has shown that the iterative MGS and HT schemes
work faster. The first (off-line) version of the Givens method discussed in § 3.2 can also
be used to develop a similar model structure selection routine but it will require more
computations compared with the three routines discussed in this work.
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