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Regularized orthogonal least squares algorithm for constructing radial 
basis function networks 

S. CHENt ,  E. S. CHNGS and K. ALKADHIMIt  

The paper presents a regularized orthogonal least squares learning algorithm for 
radial basis function networks. The proposed algorithm combines the advantages of 
both the orthogonal forward regression and regularization methods to provide an 
efficient and powerful procedure for constructing parsimonious network models that 
generalize well. Examples of nonlinear modelling and prediction are used to 
demonstrate better generalization performance of this regularized orthogonal least 
squares algorithm over the unregularized one. 

1. Introduction 

For practical purposes, it is desired to construct a small neural network. Apart 
from some obvious advantages, small models often generalize better. The orthogonal 
least squares (OLS) algorithm (Chen et al. 1991) is an  efficient procedure for learning 
a parsimonious radial basis function (RBF) network. A simple mechanism can be built 
into the algorithm to avoid automatically any ill-conditioning of learning problems. 
For B-splines neural networks (Brown and Harris 1994), a learning procedure called 
ASMOD (Kavli 1993) has been developed for constructing parsimonious models. The 
parsimonious principle alone, however, is not entirely immune to overfitting. If data 
are highly noisy, small models constructed may still fit into noise. A technique for 
overcoming overfitting is regularization. This technique is usually applied to large full- 
size neural networks (Poggio and Girosi 1990, Bishop 1991). 

Some researchers have combined regularization techniques with the parsimonious 
principle. For example, Barron and Xiao (1991) proposed a first-order regularized 
stepwise selection of subset regression models. A recent study (Orr 1993) has applied 
both the forward regression and zero-order regularization techniques to construct 
parsimonious RBF networks with improved generalization properties. The zero-order 
regularization is a technique equivalent to simple weight-decaying in gradient descent 
methods for multilayer perceptron neutral networks (Hertz et al. 1991). It is also 
known as the ridge regression in the statistical literature (Hoerl and Kennard 1970). 
Although these regularized subset selection algorithms are capable of choosing a small 
model with improved generalization properties, they require considerably more 
computation than the OLS algorithm. 

This paper combines the zero-order regularization with the OLS algorithm to 
derive a regularized OLS (ROLS) algorithm for RBF networks. This new forward 
selection algorithm is capable of constructing small RBF networks which generalize 
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well. Furthermore, it has a similar computational requirement to that of the OLS 
algorithm and is, therefore, computationally very efficient. For the notational 
simplicity, RBF networks with a single output node are considered in this paper. 
However, the results can readily be applied to multi-output RBF networks (Chen et (11. 
1992). The effectiveness of the ROLS algorithm is demonstrated using a modelling and 
prediction application. 

2. Formulation of linear regression model 

Before describing the ROLS algorithm, we formulate the RBF network as a linear 
regression model. The RBF network with m inputs, n, hidden nodes and a scalar 
output is defined by 

where x = [x, ... xmlT is the input vector, 0, are the weights, c, = [c,,, ... c,,,lT are the 
RBF centres, 11.11 denotes the euclidean norm and #(.) is known as  the nonlinearity of 
hidden nodes. Two examples of #(.) are the thin-plate-spline function d(r) = r210g(r) 
and the gaussian function #(r) = exp(-r2/pZ), where p > 0 is a width parameter. 

Assume that we have a training set of N samples {d(r),x(t)},N_,, where d(t) is the 
target or desired network output corresponding to the network input vector ~ ( 1 ) .  
Assume for the time being that we use every x(t) as  a centre, that is, c, = x(& for 
1 < i < N. Then the actual network outputs are 

The model (2) may be referred to as the 'full' network model. By introducing the 
notation #,(t) = &\lx(r)-c,ll), we can express the desired output d(t) as 

where e(t) is the error between d(t) and f,(x(t)). By defining 

we can collect (3) for I < t < N together as 

Equation (9) has the form of a linear regression model, and the basis vectors a,, 
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Regularized orthogonal least squares algorithm 831 

1 $ i < N, can be referred to as regressors. In practice, it is often necessary to 
select a smaller subset of n, centres or regressors from the full model (2). 

3. The regularized OLS algorithm 

The error criterion used in deriving the OLS algorithm (Chen et al. 1991) is the 
total squared error eTe. The least squares criterion in certain circumstances is prone to 
overfitting. To prevent overfitting, regularization techniques can be applied. In the 
study of Orr (1993), a regularized forward selection (RFS) algorithm was derived by 
considering the zero-order regularized error criterion 

where A 2 0 is the regularization parameter. The RFS algorithm selects one centre 
from the full model (9) at a time. Each selection is chosen to decrease maximally the 
regularized squared error (10). A drawback of this algorithm is that it cannot utilize 
an orthogonalization scheme and therefore requires considerably more computation 
than the OLS algorithm. 

We can actually combine the zero-order regularization with the OLS algorithm to 
form an efficient procedure for subset selection. Let an orthogonal decomposition of 
the regression matrix @ be 

where 

and 

W=[w, ... w,] 

with orthogonal columns that satisfy 

w:w,=O, i f i S j  

The full model (9) can be rewritten as 

d =  Wg+e 

The orthogonal weight vectorg = [g ,  ... g,lT and the original weight vector 8 satisfy 
the triangular system 

Knowing A and g, O can readily be solved from (16). The orthogonalization can be 
performed, for example, using the Gram-Schmidt or Householder transformation 
schemes. 
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The key to derive a computationally efficient ROLS scheme is to consider the 
following zero-order regularized error criterion 

It is obvious that the criterion (17) is similar to the criterion (lo) due to the relationship 
(16). In fact, the term IgTg penalizes large g,, which is equivalent to penalizing large 0,. 

After some simple calculations, it can be shown that the regularized error criterion 
(1 7) can be expressed as 

Normalizing (18) by dTd yields 

Similar to the case of the OLS algorithm (Chen er al. 1991), we can define the 
regularized error reduction ratio due to w, as 

[rerr], = (wT w, + I)g,2/dTd (20) 

Based on this ratio, significant regressors can be selected in a forward-regression 
procedure exactly as in the case of the OLS algorithm (Chen et al. 1991). The selection 
is terminated at the nHth stage when 

"H 

I - [rerr], < c 

is satisfied, where 0 < < < 1 is a chosen tolerance. This produces a subset network 
containing n, significant regressors. The ROLS algorithm based on the modified 
Gram-Schmidt scheme is given in the Appendix. 

It should be emphasized that the solution found by the ROLS algorithm is 
identical to that found by the RFS algorithm of Orr (1993). Both algorithms perform 
a subset model selection based on the forward search technique. The ROLS algorithm, 
however, requires considerably less computation than the RFS by exploiting some 
orthogonal properties. The forward selection is a suboptimal method and does not 
guarantee to find the optimal solution. To find the optimal nH-term subset model from 
an N-term full model, it is required to calculate the performance of all possible nH-term 
subset models and to choose the best one. This is computationally prohibitive even for 
a modest N and thus impractical. A subset model found using the forward selection 
technique is generally good enough for many practical applications. 

4. Choice of regularization parameter 

The appropriate value of I is problem dependent (dependent on the underlying 
system that generates the training data and the choice of basis function +(.)). How to 
choose a good value of 1 has been addressed in the statistical literature (Hoerl and 
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Regularized orthogonal least squares algorithm 833 

Kennard 1970, Golub et al. 1979). A previous study using the second-order 
regularization (Bishop 1991) has suggested that the performance of the RBF network 
may be fairly insensitive to the precise value of l .  

An elegant approach to the selection of the regularization parameter is to adopt a 
Bayesian interpretation and to calculate the best value of regularization parameter 
using the evidence procedure (Mackay 1992). Applying this Bayesian approach to the 
ROLS algorithm results in the following iterative procedure for estimating I. Given an 
initial guess of 1, the algorithm constructs a network model. This in turn allows an 
uptading of 1 by the formula 

where 

is the number of good parameter measurements (Mackay 1992). After a few iterations, 
an appropriate R value can be found. 

5. Examples 

In the first example, the RBF network with a gaussian basis function and a width 
p = 0.2 is used to approximate the scalar function 

Ax) = sin (2rrx), 0 < x $ 1 (24) 

One hundred training data were generated fromAx)+e, where x was taken from the 
uniform distribution in (0 1) and the noise e had a aaussian distribution with zero 

> ,  - 
mean and standard deviation 0.4. A separated test data set was also generated for 
x = 0,0.01, .. . ,0.99,1.00. The training data and the functionflx) are plotted in Fig. 1. 
The training data set is highly ill-conditioned. The ROLS algorithm selected 15 centres 
from the training set. 

Figure 2 depicts the mean square error (MSE) as a function of log,,(l) for both the 
training and testing data sets. The optimal value of 1 for this example is approximately 
1.0. However, for a large range of l values, the MSE over the testing set is quite flat, 
indicating that the performance of the ROLS algorithm is fairly insensitive to the 
precise value of l in this large region. Figure 3 shows the network mapping constructed 
by the ROLS algorithm with 1 = 1.0. As a comparison, the network mapping 
constructed by the OLS algorithm is given in Fig. 4, where overfitting can be clearly 
seen. 

In the second example, the RBF network with a thin-plate-spline basis function is 
used to predict the sunspot time series. The sunspot time series over the years 
1700-1979 can be found in the Appendix A1 of Tong (1983). The data from 1700 to 
1920 were used for training, and the multi-step predictions were then computed over 
the years 1921-195s and the years 1921-1979 respectively. A RBF network of 25 
centres was constructed using the OLS algorithm in a previous study (Chen 1994), and 
the predictive accuracy of the resulting RBF model was shown to be better than some 
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Figure I .  Noisy training data (points) and underlying function (curve). 
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Figure 2. Mean square error as a function of the regularization parameter. 
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Figure 3. Network mapping constructed by the regularized orthogonal least squares 
algorithm. 
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t r a i n i n g  data - . . o o ,  ; le twork o u t p u t  - 

Figure 4. Network mapping constructed by the orthogonal least squares algorithm. 

ROLS - OLS - r 

0.05 
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p r e d i c t i o n  step 

Figure 5. Normalized variances of multi-step prediction errors for the sunspot time series 
over years 192 1-1955. 

other nonlinear models fitted to the time series (Weigend et al. 1990, Chen and Billings 
1989). 

As a comparison, the ROLS algorithm was used to construct a RBF network of 25 
centres based on the same full network model with I = lo7. Figure 5 compares the 
predictive performance of this model over the period 1921-1955 with that of the 
network constructed using the OLS algorithm. Predictive accuracies of the two 
network models obtained using the ROLS and OLS algorithms respectively over 
the period 1921-1979 are plotted in Fig. 6. The results shown in Figs 5 and 6 clearly 
demonstrate that the ROLS algorithm has better generalization properties. 

The choices of the I value were very different for the two examples. This is because 
the underlying data generating mechanisms were very different and different basis 
functions were used for the two examples. In fact, when the Bayesian approach 
mentioned in the previous section was used to estimate I, the procedure converged 
approximately to 1.0 for the first example and very close to lo7 for the second 
example. 
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OLS - 
ROLS - 

0 5 10 15 20 
p r e d i c t i o n .  step 

Figure 6. Normalized variances of multi-step prediction errors for the sunspot time series over 
years 1921-1979. 

6. Conclusions 

A very efficient learning algorithm for radial basis function networks has been 
derived by combining the orthogonal-least-squares forward selection and the zero- 
order regularization technique. This algorithm is capable of constructing parsi- 
monious radial basis function networks which generalize well under severely noisy 
conditions. Although the method has been presented in the context of radial basis 
function networks, it can actually be applied to all the nonlinear models that have a 
linear-in-the-parameters structure, such as the fuzzy basis function network and the 
Volterra series model. 

Appendix 

The modified Gram-Schmidt orthogonal procedure calculates the A matrix row 
by row and orthogonalizes @ as follows: at the kth stage make the columns 
k +  l < j < N, orthogonal to the kth column and repeat the operation for 
1 < k < N- 1. Specifically, denoting @?) = Gj, 1 $ j  $ N ,  then 

w* = @y' 
a k , j = w ~ @ y - l ) / ( w ~ ~ k ) , k + l < j < N  k = 1 , 2  ,..., N-l I (A 1) 

@y-l)-ak,Jw,,k+l < j <  N 

The last stage of the procedure is simply w, = @f-". The elements ofg  are computed 
by transforming d''' = d i n  a similar way 

where I 3 0 is the regularization parameter. 
This orthogonalization scheme can be used to derive a simple and efficient 

algorithm for selecting subset models. First introduce the definition of @'*-I) as 

W-l) = [wl . . . Wk-l @Lk-l' . . . @ y ]  (A 3) 
If some of the columns @:-I), . . . , @:-I) in @'k-l) have been interchanged, this will still 
be referred to as @'*-') for notational convenience. The kth stage of the selection 
procedure is given as follows. 
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Step 1 .  F o r  k < j < N, compute 

g;j) = (@y-l))Tdk-l)/((@y-l))T @?-I) + A )  

[rerrlf' = (gi'))Z((@y-l))T @?-I) + 12)/ffd 
Step 2. Find 

I 
[rerr], = [rerrlij*) = max {[rerr]L1), k < j < N) 

Then the  j,th column of  @"-" is interchanged with the kth column of  @ ( k - ' ) ,  

and the j,th column of  A is interchanged u p  t o  the (k- l) th row with the kth 
column of  A .  This effectively selects the j,th candidate as  the k th  regressor in 
the subset model. 

Step 3 .  Perform the orthogonalization as  indicated in (A 1) t o  derive the kth row of  A 
a n d  t o  transform @'k-l) into @'"'. d"-" is then updated into d'*) in the way 
shown in (A 2). 

The  selection is terminated a t  the n,th stage when the criterion (21) is satisfied and this 
produces a subset model containing n ,  significant regressors. 
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