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Stability issues of ® nite-precision controller structures for sampled-data systems

J. WU{ , R. H. ISTEPANIAN{ and S. CHEN}

The paper investigates the sensitivity of closed-loop stability with respect to (w.r.t.) ® nite word length (FWL) e� ects in
the implementation of the digital controller coe� cients. Both the shift and delta operators are considered for controller
parameterization. Two tractable lower-bound measures of closed-loop stability are studied, and the optimal realization
of general FWL controller structures is formulated as a constrained non-linear optimization problem. The emphasis of
the paper, however, is on the derivation of a new algorithmic approach for the optimal realization of FWL PID
controller structures. It is shown that, for PID structures, the optimization can be decoupled into two unconstrained
problems with a maximum of four independent variables. An optimization strategy is developed to provide an e� cient
computational method for searching the optimal FWL PID controller realization with maximum stability bound and
minimum bit-length requirement. Simulation results involving an IFAC benchmark PID controller system are presented
to illustrate the e� ectiveness of the proposed strategy.

1. Introduction

The recent advances in ® xed-point implementation
of digital controllers, such as the design of dedicated
® xed-point digital signal processor and digital control
processor architectures, have made FWL implementa-
tion an important issue in modern control engineering.
Improved control performance and increased levels of
integration are particularly important in many appli-
cation areas, such as consumer electronic products,
automotive and electromechanical control systems.
This is because controller hardware implementation
with ® xed-point arithmetic o� er the advantages of
speed, memory space, cost and simplicity over ¯ oat-
ing-point arithmetic (Masten and Panahi 1997) .
However, a designed stable closed-loop system may
become unstable when the in® nite-precision controller
is implemented using a ® xed-point processor due to
FWL e� ects. The r̀obustness’ of closed-loop stability
w.r.t. controller parameter perturbations therefore is a
critical issue in ® xed-point implementations and relevant
control engineering applications.

In recent years, many results have been reported in
the literature dealing with the issues of FWL controller
implementation. The degradation e� ects of FWL on the
digital controller designed using an LQG cost function
has been investigated (Moroney et al. 1980) . The e� ects
of FWL implementated digital controller on the stability

and performance of sampled-data systems has been
analysed (Fialho and Georgiou 1994) . A stability
measure quantifying the FWL e� ects has been devel-
oped (Moroney et al. 1980, Fialho and Georgiou
1994) . However, computing explicitly this measure is
still an unsolved open problem. To overcome this
computational di� culty, two tractable lower bounds
of this stability measure have been derived (Li 1998,
Istepanian et al. 1998 a). The criteria derived provide
lower bounds proportional to the closed-loop pole
sensitivity measures w.r.t. controller parameter pertur-
bations. It can be shown that the lower bound of
Istepanian et al. (1998) is a better stability measure
than that of Li (1998) .

Recent investigations on ® nite-precision controller
realizations have mainly been based on these two
lower-bounds of the stability measure and some similar
criteria (Madievski et al. 1995, Istepanian et al. 1996,
Li and Gevers 1996, Istepanian et al. 1998 b). The pres-
ent study continues this theme with an emphasis on
developing a new optimization method for the optimal
realization of ® nite-precision controller structures. The
problem is formulated as a constrained non-linear opti-
mization problem. In particular, for PID sttuctures, the
constrained optimization can be decoupled into two
unconstrained optimization problems, which permits
the development of an e� ective computational method
for obtaining the optimal FWL PID realization with the
maximum closed-loop stability measure. Notice that
PID controllers have been the most popular controllers
in process and industrial control applications for over 50
years and continue to maintain their popularity despite
opportunities to apply more advanced control method-
ologies. This is because of their simplicity, versatility,
robustness and successful commercial performance
(AÊ stroÈ m and Wittenmark 1989) . Most of the studies
in this area still focus on tuning methods, and very
few studies have been reported to date on the FWL
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implementation issues of discrete PID structures using
® xed-point arithmetic (Istepanian 1997) .

In all the above-mentioned works addressing the
closed-loop stability issues of FWL controller struc-
tures, the controllers were described and realized with
the usual shift operator. It is known that discrete-time
systems can also be described and realized with the delta
operator (Middleton and Goodwin 1990) . Two major
advantages are claimed for the use of ¯ operator
parameterization: a theoretically uni® ed formulation of
continuous-time and discrete-time systems; and better
numerical implementation properties (Gevers and Li
1993) . As with the majority of earlier works, the results
presented in this paper, when it was ® rst submitted, were
based on the shift operator parameterization. We have
since extended the approach to the delta operator
parameterization (Wu et al. 1999 a,b). These new
results are included in this revised paper. Our simulation
study con® rms that the ¯ operator parameterization
generally results in better closed-loop stability robust-
ness in FWL implementations, compared with the
usual shift operator parameterization.

The paper is organized as follows. In } 2, a closed-
loop stability measure is presented for sampled-data
systems with the shift operator parameterization and
FWL implemented controllers. Two tractable lower
bounds of this stability measure are considered. The
optimal controller realization which maximizes the
closed-loop stability measure can be obtained by solving
a constrained optimization problem, and this is pre-
sented in } 3. Section 4 speci® cally studies the optimal
realization of digital PID controllers subject to FWL
constraints. Section 5 extends these results to include
the delta operator parameterization. A practical bit
length consideration is also discussed. In } 6, the e� ec-
tiveness of the proposed optimization strategy for PID
structures is illustrated by the numerical example of an
IFAC benchmark PID control problem (Whidborne
et al. 1995) . Both the shift-operator and delta-operator
controllers were tested in the simulation study.
Discussions and some concluding remarks are given
in } 7.

2. S tability robustness measures of z operator based

controllers with FWL consideration

Consider the sampled-data system depicted in ® gure
1, where P… s† is the continuous-time ® nite-dimensional
linear time-invariant plant, C… z† is the discrete-time
® nite-dimensional linear shift-invariant controller with
z indicating the usual shift operator, Sh is the sampler
with sampling period h, and Hh is the hold device. The
outputs of the sampler and hold device are given by

y… z† ˆ Shy… s† : y… k† ˆ y… t† j tˆ kh

e… s† ˆ Hhe… z† : e… t† ˆ e… k† f or kh < t … k ‡ 1† h

)

… 1†

respectively. Assume that P… s† is strictly proper. Let
… Ap; Bp; Cp; 0† be a state-space realization of P… s† , that is

P… s† ˆ Cp… sI ¡ Ap†
¡ 1Bp … 2†

where Ap 2 R
m m , Bp 2 R

m l and Cp 2 R
q m . Let

… Ac; Bc; Cc; Dc† be a state-space realization of C… z† ,
that is

C… z† ˆ Cc… zI ¡ Ac†
¡ 1Bc ‡ Dc … 3†

where Ac 2 R
n n, Bc 2 R

n q, Cc 2 R
l n and Dc 2 R

l q.
The state-space realization for a given input± output
transfer function is not unique. For example, if
… Ac; Bc; Cc; Dc† is a realization of C… z† , so is … T

¡ 1AcT ,
T

¡ 1Bc, CcT , Dc† for any similarity transformation
T 2 R

n n. Considering the behaviour of the sampled-
data system at its sampling instants, we obtain a dis-
crete-time feedback system

y… z† ˆ ShP… s† Hhe… z†

e… z† ˆ C… z† y… z†

)

… 4†

The plant P… z† ˆ ShP… s† Hh is the discretization of P… s† ,
whose state-space realization is … Az; Bz; Cz; 0† with

Az ˆ eAph
2 R

m m

Bz ˆ

… h

0
eAp½ Bp d½ 2 R

m l

Cz ˆ Cp 2 R
q m

9

>
>
>
>
>
>
=

>
>
>
>
>
>
;

… 5†

It can easily be seen that the corresponding state-space
description … A; B; C; D† of the discrete-time closed-loop
system (4) without considering FWL e� ects is given by

1332 J. Wu et al.

Figure 1. Sampled-data system with digital controller
realization.
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Az ‡ BzDcCz BzCc

BcCz Ac

" #

ˆ
Az 0

0 0

" #

‡
Bz 0

0 In

" #

Dc Cc

Bc Ac

" #

Cz 0

0 In

" #

ˆ M0 ‡ M1XM2 ˆ A… X† … 6†

B ˆ
Bz

0
; C ˆ ‰ Cz 0Š ; D ˆ 0 … 7†

where M0 2 R
… m‡ n† … m‡ n† , M1 2 R

… m‡ n† … l‡ n† and
M2 2 R

… q‡ n† … m‡ n† are some ® xed matrices that depend
on P… s† and h, In denotes the n n identity matrix, and

X ˆ
Dc Cc

Bc Ac

" #

ˆ

p1 p2 . . . pq‡ n

pq‡ n‡ 1 pq‡ n‡ 2 . . . p2… q‡ n†

..

. ..
.

. . . ..
.

p… l‡ n¡ 1† … q‡ n† ‡ 1 p… l‡ n¡ 1† … q‡ n† ‡ 2 . . . p… l‡ n† … q‡ n†

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

… 8†

will be referred to as the controller matrix.
Suppose that C… z† has been chosen to make the

sampled-data system stable and the realization of C… z†

is X. Since the sampled-data system is stable if and only
if the system (4) is stable (Chen and Francis 1991) , it
follows that the eigenvalues of A… X† , denoted by
f ¶ i; 1 i m ‡ ng , satisfy

j ¶ i j < 1; 8 i 2 f 1; . . . ; m ‡ ng … 9†

When the realization … Ac; Bc; Cc; Dc† of C… z† is imple-
mented with a ® xed-point processor, the controller
matrix X is perturbed into X ‡ X due to the FWL
e� ects, where

X ˆ

p1 p2 . . . pq‡ n

pq‡ n‡ 1 pq‡ n‡ 2 . . . p2… q‡ n†

..

. ..
.

. . . ..
.

p… l‡ n¡ 1† … q‡ n† ‡ 1 p… l‡ n¡ 1† … q‡ n† ‡ 2 . . . pN

2

6

6

6

6

6

4

3

7

7

7

7

7

5

… 10†

and N ˆ … l ‡ n† … q ‡ n† . Each element of X is
bounded, that is

· … X† = max
i2 f 1;...;Ng

j pi j
°

2
… 11†

For a ® xed-point processor of Bs bits

° ˆ 2¡ … Bs¡ BX†
… 12†

where 2BX is a `normalization’ factor such that the abso-
lute value of each element of 2¡ BXX is not larger than 1.

With the perturbation X, ¶ i is moved to ~¶ i. The
closed-loop system is unstable if and only if there exists
i 2 f 1; . . . ; m ‡ ng such that j ~¶i j 1.

To see when the round-o� error will cause the
closed-loop system to be unstable, de® ne

·0… X† = inf f · … X† : A… X† ‡ M1 XM2 is unstableg

… 13†

It quanti® es the stability robustness of the realization X
to the FWL e� ects. However, computing explicitly the
value of ·0… X† is still an unsolved open problem. How
r̀obust’ a controller realization is to the FWL e� ects can
also be viewed from a di� erent angle. Let Bmin

s be the
smallest word length that can guarantee the closed-loop
stability. It would be highly desirable to know Bmin

s for a
given controller realization. However, except in simula-
tion, it is impractical to test the closed-loop system by
reducing Bs until it becomes unstable.

To overcome the di� culty in the computation of
·o… X† , Istepanian et al. (1998 a) introduced a lower
bound of ·0… X† as

·1… X† = min
i2 f 1;...;m‡ ng

1 ¡ j ¶i j

XN

jˆ 1

@¶ i=@pj X

… 14†

We have the following theorem.

Theorem 1: A… X† ‡ M1 XM2 is stable if · … X† <

·1… X† .

Proof: When X is small, using a ® rst-order approx-
imation we have (Li and Gevers 1996, Istepanian et al.
1998 a)

¶ i ˆ ~¶ i ¡ ¶ i

XN

jˆ 1

@¶ i

@pj X
pj ; 1 i m ‡ n … 15†

where ~¶ i are the eigenvalues of A… X ‡ X† . It follows
that

j ¶ i j

XN

jˆ 1

@¶ i

@pj X
j pj j ·… X†

X N

jˆ 1

@¶i

@pj X
… 16†

Thus for 1 i m ‡ n, if

· … X† <
1 ¡ j ¶ i j

X N

jˆ 1

@¶ i=@pj X

… 17†

we have

Stability of ® nite-precision controller structures 1333
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7 j ~¶ i j j ¶ i j ‡ j ¶ i j j ¶ i j ‡ · … X†

X N

jˆ 1

@¶ i

@pj X

< j ¶ i j ‡
1 ¡ j ¶ i j

XN

jˆ 1

@¶ i=@pj X

X N

jˆ 1

@¶ i

@pj X
ˆ 1 … 18†

which means that A… X ‡ X† is stable. &

The following lemma shows that ·1… X† can be com-
puted easily. The proofs of this lemma can be found in
Istepanian et al. (1998 a).

Lemma 1: L et A… X† be diagonalizable and have
f ¶ i; i ˆ 1; . . . ; m ‡ ng as its eigenvalues, and xi be a
right eigenvector of A… X† corresponding to the eigen-
value ¶i . Denote Mx ˆ ‰ x1 xm‡ n Š and My ˆ

‰ y1 ym‡ nŠ ˆ M¡ H
x , where y i is called the reciprocal

left eigenvector corresponding to ¶ i, and H denotes
the transpose and conjugate operation. Then
8 i 2 f 1; . . . ; m ‡ ng

@¶ i

@X
ˆ

@¶ i

@p1

@¶ i

@p2
. . .

@ ¶i

@pq‡ n

@¶ i

@pq‡ n‡ 1

@¶ i

@pq‡ n‡ 2
. . .

@ ¶i

@p2… q‡ n†

..

. ..
.

. . . ..
.

@¶ i

@p… l‡ n¡ 1† … q‡ n† ‡ 1

@¶ i

@p… l‡ n¡ 1† … q‡ n† ‡ 2
. . .

@ ¶i

@pN

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ˆ MT
1 yi x

T
i MT

2 … 19†

where T denotes the transpose operation, and * the con-
jugate operation.

When a designed in® nite-precision stable controller
X is implemented with a ® xed-point processor, the norm
of the controller perturbation · … X† and the lower-
bound stability measure ·1… X† can be evaluated. If
·1… X† > · … X† , the closed-loop stability is maintained.
Furthermore, when X is implemented with a ® xed-point
processor of Bs bits, from (11) and Theorem 1, it is easily
seen that the closed-loop system is stable if

·1… X† >
2¡ … Bs¡ BX†

2
… 20†

De® ne B̂min
s1 as the smallest integer that is not less than

¡ log2 ·1… X† ¡ 1 ‡ BX. We can use B̂min
s1 as a super

estimate of Bmin
s . Thus, ·1… X† provides a tractable

closed-loop stability robustness measure of X with
FWL considerations.

Another tractable stability robustness measure with
FWL considerations was discussed by Li and Gevers
(1996) and Li (1998) . This measure is de® ned as

·2… X† = min
i2 f 1;...;m‡ ng

1 ¡ j ¶ i j
�������������������������������������

N
XN

jˆ 1

@¶ i=@pj X

2

v

u

u

t

… 21†

It is also a lower bound of ·0… X† . Similarly, an estimate
B̂min

s2 of Bmin
s can be computed based on ·2… X† . Since

X N

jˆ 1

@¶ i

@pj X

 ! 2

N
XN

jˆ 1

@¶ i

@pj X

2

… 22†

we have ·2… X† ·1… X† ·0… X† . It is clear that ·1… X† ,
which is closer to ·0… X† , is a better stability robustness
measure and can provice a better estimate of Bmin

2 .

3. Optimal realization of z operator based controller

structures with FWL consideration

From the previous section, we know that there are
di� erent realizations X for a given C… z† , and the
stability measure ·1… X† is a function of the realization.
It is of practical importance to ® nd a realization such
that ·1… X† is maximized. Such a realization is optimal in
the sense that it has maximum closed-loop stability
robustness to FWL e� ects. The digital controller imple-
mented with an optimal realization means that the
stability of the closed-loop system is guaranteed with a
minimum hardware requirement in terms of word
length. Given an initial realization X0 of C… z†

X0 ˆ
D0

c C0
c

B0
c A0

c

" #

… 23†

any realization of C… z† can be expressed as:

XT =
Il 0
0 T

¡ 1 X0
Iq 0
0 T

… 24†

where T 2 R
n n and det … T † 6ˆ 0. From (6), the closed-

loop transition matrix is

A… XT † ˆ
Az 0

0 0
‡

Bz 0

0 In

Il 0

0 T
¡ 1

X0
Iq 0

0 T

Cz 0

0 In

ˆ
Im 0

0 T
¡ 1

Az 0

0 0

Im 0

0 T

‡
Im 0

0 T
¡ 1

Bz 0

0 In

X0
Cz 0

0 In

Im 0

0 T

ˆ
Im 0

0 T
¡ 1 A… X0†

Im 0

0 T
… 25†

1334 J. Wu et al.
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Obviously, A… XT † has the same eigenvalues as A… X0† .
Let ¶

0
i be the ith eigenvalue of A… X0† , and x

0
i and y

0
i be

the corresponding right and reciprocal left eigenvectors,
respectively. From (25), the ith right and reciprocal left
eigenvectors of A… XT † are

Im 0
0 T

¡ 1 x
0
i 2 C

m‡ n and
Im 0
0 T

T y
0
i 2 C

m‡ n

… 26†

respectively. Applying Lemma 1, we have

@¶ i

@X Xˆ XT

ˆ
BT

z 0

0 In

" #

Im 0

0 T
T

" #

… y
0
i † … x

0
i †

T

Im 0

0 T
¡ T

" #

CT
z 0

0 In

" #

ˆ
Il 0

0 T
T

" #

BT
z 0

0 In

" #

… y
0
i † … x

0
i †

T

CT
z 0

0 In

" #

Iq 0

0 T
¡ T

" #

ˆ
Il 0

0 T
T

" #

@¶ i

@X Xˆ X0

Iq 0

0 T
¡ T

" #

… 27†

From (14), (19) and (27), the optimal realization
problem of FWL controllers can be de® ned as the fol-
lowing maximization problem

’ = max
XT

·1… XT † ˆ max
XT

min
1 i m‡ n

1 ¡ j ¶
0
i j

XN

jˆ 1

@¶ i=@pj Xˆ XT

… 28†

For the complex-valued matrix M 2 C
m n with elements

Mi; j , de® ne a norm

k Mk s =
X m

iˆ 1

X n

jˆ 1

j Mi; j j … 29†

The optimization problem (28) is equivalent to the mini-
mization problem

v ˆ
1
’

= min
XT

max
1 i m‡ n

@¶ i=@X†… j Xˆ XT s

1 ¡ j ¶0
i j

ˆ min
T 2 R

n n

det … T † 6ˆ 0

max
1 i m‡ n

Il 0

0 T
T

" #

F i

Iq 0

0 T
¡ T

" #

s

… 30†

where

F i ˆ
… @¶ i=@X† j Xˆ X0

1 ¡ j ¶0
i j

; 1 i m ‡ n … 31†

are the eigenvalue sensitivity matrices.

Thus the optimal controller realization problem is
posed as an optimization problem with the cost function

f … T † ˆ max
1 i m‡ n

"

Il 0
0 T

T

#

F i

"

Iq 0

0 T
¡ T

#

s

… 32†

and the constraint det … T † 6ˆ 0. Evidently, the cost func-
tion (32) is non-smooth and non-convex, and optimiza-
tion must be based on a direct search without the aid of
cost function derivatives. The conventional optimization
methods for this kind of problem, such as Rosenbrock
and Simplex algorithms (Kowalik and Osborne 1968,
Beveridge and Schechter 1970, Dixon 1972) , in general
can only ® nd a local minimum. A more serious problem,
however, is the need to satisfy det … T † 6ˆ 0 during the
optimization process. It is well known that constrained
optimization is more di� cult to solve, compared with
unconstrained optimization. In all the previous works
(Gevers and Li 1993, Li and Gevers 1996, Istepanian
et al. 1996, 1998 a,b), similar optimization problems
were solved with some success by using a conventional
direct search algorithm and ignoring the constraints
during optimization. Nevertheless, the possible pitfall
of violating the constraint by this kind of approach
remains, which may result in an invalid solution.

4. Optimal realization of z operator based PID

controller structures with FWL consideration

From the previous discussion, we know there is a
need to develop some new e� cient numerical algorithm
for solving the optimal FWL controller realization
problem. A main contribution of this paper is to
show how this can be achieved for the optimal FWL
PID controller realization problem. Assume that
C… z† is a digital physically realizable non-interacting
PID controller structure (Rad and Lo 1994). Let
… A0

c 2 R
2 2

; B0
c 2 R

2 1
; C0

c 2 R
1 2

; D0
c 2 R † be an initial

realization of the PID controller C… z† . From (30), the
optimal FWL PID controller realization problem is
de® ned as the optimization problem

v = min
T 2 R

2 2

det … T † 6ˆ 0

max
1 i m‡ 2

"

Il 0
0 T

T

#

F i

"

Iq 0

0 T
¡ T

#

s

… 33†

As is di� cult to handle the constraint det … T † 6ˆ 0
directly in numerical optimization, we show in the
following theorem that the optimization problem (33)
can be decoupled into the two s̀impler’ unconstrained
problems. First we de® ne the two cost functions

f1… x; y; w† ˆ max
1 i m‡ 2

w 0 0
0 x 0
0 y 1=x

2

6

4

3

7

5 F i

1=w 0 0
0 1=x 0
0 ¡ y x

2

6

4

3

7

5

s

… 34†

Stability of ® nite-precision controller structures 1335
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and

f2… x; y; u; w† ˆ max
1 i m‡ 2

w 0 0

0 x u

0 … xy ¡ 1† =u y

2

6

6

4

3

7

7

5

F i

1=w 0 0

0 y ¡ u

0 … 1 ¡ xy† =u x

2

6

6

4

3

7

7

5

s

… 35†

Theorem 2: L et

v1 ˆ min
x2 … 0;‡ 1 †

y2 … ¡ 1 ;‡ 1 †

w2 … 0;‡ 1 †

f1… x; y; w† … 36†

and

v2 ˆ min
x2 … ¡ 1 ;‡ 1 †

y2 … ¡ 1 ;‡ 1 †

u2 … 0;‡ 1 †

w2 … 0;‡ 1 †

f2… x; y; u; w† … 37†

Then

v ˆ min f v1; v2g … 38†

If v ˆ v1 and … xopt1; yopt1; wopt1 † is the optimal solution
of problem … 36† , the optimal solution of problem … 33†

is given as

T opt ˆ
1

wopt1

xopt1 yopt1

0 1=xopt1

" #

… 39†

If v ˆ v2 and … xopt2; yopt2; uopt2; wopt2† is the optimal
solution of problem … 37† , the optimal solution of problem
… 33† is given as

T opt ˆ
1

wopt2

xopt2 … xopt2yopt2 ¡ 1† =uopt2

uopt2 yopt2

" #

… 40†

The proof of Theorem 2 is given in the Appendix.
Note that f1… x; y; w† and f2… x; y; u; w† are still non-
smooth and non-convex functions, and it may be di� -
cult for a conventional non-gradient-based algorithm
(Kowalik and Osborne 1968, Beveridge and Schechter
1970, Dixon 1972) to obtain a global minimum solution.
This di� culty, however, can be overcome by employing
an e� cient global optimization strategy, such as the
genetic algorithm (GA) (Goldberg 1989, Davis 1991,
Man et al. 1997) or the adaptive simulated annealing
(ASA) (Ingber and Rosen 1992, Ingber 1996, Rosen
1997, Chen et al. 1998). In this study, we adopt the
ASA for its simplicity and ease of programming. The
detailed implementation of the ASA algorithm can be
found in Ingber and Rosen (1992) , Ingber (1996) , Rosen
(1997) and Chen et al. (1998) . It is equally valid to adopt
the GA in the optimization.

5. Extension to d operator parameterization

The results presented in }} 2± 4 are derived based on
the z operator parameterization. These have been
extended to delta operator based controllers in a new
study (Wu et al. 1999 a,b). The delta operator is de® ned
as (Middleton and Goodwin 1990)

¯ ˆ
z ¡ 1

h
… 41†

Let a state-space realization of the ¯-based controller
C… ¯ † be … A¯;c; B¯;c; C¯;c; D¯;c† . The subscript ¯ dis-
tinguishes this model from the z-based controller reali-
zation … Ac; Bc; Cc; Dc† . A state-space model of the
closed-loop system in the ¯ domain is … A¯ ; B¯ ; C¯ ; D¯ †

with the eigenvalues of A¯ being f ¶¯;i; 1 i m ‡ ng .
Notice that, just as in the z-based case of (6),
A¯ ˆ A¯ … X̄ † is a function of the controller matrix

X̄ ˆ
D¯;c C¯;c

B¯;c A¯;c
… 42†

The relationships between the z and ¯ parameterizations
are well known (Neuman 1993a,b). For example, two
state-space models of C… z† and C… ¯ † are linked by

Ac ˆ hA¯;c ‡ In; Bc ˆ hB¯;c; Cc ˆ C¯;c; Dc ˆ D¯;c

… 43†

and the two sets of the eigenvalues f ¶ ig and f ¶¯;ig satisfy

¶ i ˆ 1 ‡ h¶¯;i ; 8 i … 44†

From (44), we have the condition of closed-loop
stability in the ¯ domain.

Lemma 2: The discrete-time system … A¯ ; B¯ ; C¯ ; D¯ † is
stable if and only if

¶¯;i ‡
1
h

<
1
h

; 8 i … 45†

We can now summarize the main results of Wu et al.
(1999 a,b). Similar to (14), a lower-bound stability meas-
ure for ¯-based FWL controllers is

·1… X̄ † = min
1 i m‡ n

… 1=h† ¡ j ¶¯;i ‡ … 1=h† j

X N

jˆ 1

@¶¯;i=@pj
X¯

… 46†

where pj are the elements of X̄ . The optimal realization
problem of ¯-based controller structures with FWL
consideration is posed as a constrained optimization
problem with the cost function f … T † as de® ned in (32)
and subject to the constraint det … T † 6ˆ 0, but the eigen-
value sensitivity matrices are now given di� erently by

F i ˆ
… @¶¯;i=@X† j Xˆ X¯;0

… 1=h† ¡ j ¶0
¯;i ‡ … 1=h† j

… 47†

1336 J. Wu et al.
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where X̄ ;0 is the initial realization of the controller
matrix and ¶

0
¯;i the eigenvalues of A¯ … X̄ ;0† . The compu-

tation of @¶¯;i=@X is the same as given in (19) but the
matrices M1 and M2 are now formed di� erently from
the state-space model of the ¯-based plant model P… ¯ † . It
can also be shown that the optimal realization problem
of ¯-based FWL PID controller structures can be
decoupled into two unconstrained optimization prob-
lems and a theorem similar to Theorem 2 can be proved
(Wu et al. 1999 a).

It is worth pointing out a practical constraint on the
FWL implementation of ¯-based controllers, which is
often overlooked. The state-space equation of the ¯-
based controller

¯x… k† ˆ A¯;cx… k† ‡ B¯;cu… k† … 48†

is realized using

x… k ‡ 1† ˆ x… k† ‡ h… A¯;cx… k† ‡ B¯;cu… k† † … 49†

The sampling period h should be implemented exactly
without any FWL errors in order to avoid further per-
turbations to the controller X̄ . Otherwise, analysis
based on X̄ may not be valid. Notice that controllers
based on the z operator do not have this problem.

More speci® cally, assume that h can be realized
exactly by Bh bits with the integer part of h requiring
Bh;I bits and the fractional part of h requiring Bh;F bits.
Let B̂min

s1 be the smallest integer that is not less than
¡ log2 ·1… X̄ † ¡ 1 ‡ BX. Here 2BX is the normalization
factor for X̄ . In the z-based case, we can use B̂min

s1 as
an estimated minimum bit length that can guarantee the
closed-loop stability. In the ¯-based case, this needs
modi® cation to take into accountt the requirement of
implementingh exactly. A modi® ed estimate of the mini-
mum bit length that can guarantee the closed-loop sta-
bility is

B̂min
sh ˆ max f Bh;I ; BXg ‡ max f Bh;F ; B̂min

s1 ¡ BXg … 50†

For example, if h ˆ 23 and B̂min
s1 ˆ 8 with BX ˆ 1, the

estimated minimum bit length is B̂min
sh ˆ 3 ‡ … 8 ¡ 1† ˆ 10.

If h ˆ 2¡ 10 and B̂min
s1 ˆ 4 with BX ˆ 1, B̂min

sh ˆ

1 ‡ 10 ˆ 11.

6. A numerical example

To show how the optimization approach presented
earlier can be used e� ciently for designing optimal FWL
PID controller structures, we consider the following
IFAC benchmark PID control system (Whidborne et
al. 1995) . The continuous-time plant model is

P… s† ˆ
25… ¡ 0:4s ‡ 1†

… s2 ‡ 3s ‡ 25† … 5s ‡ 1†
… 51†

and the designed PID controller is

C… s† ˆ 1:311 ‡
0:431

s
‡

1:048s
1 ‡ 12:92s

… 52†

The sampled-data system with the in® nite-precision digi-
tal controller is stable when the sampling period h 23.
The range of the sampling period tested in the simu-
lation was 23 to 2¡ 12 , to cover the slow to very fast
sampling conditions. For the comparison purpose,
both the z and ¯ based controllers were investigated in
the simulation. To study the important role of the opti-
mization algorithm employed, both the conventional
Rosenbrock and advanced ASA algorithms were used
in the optimization.

6.1. Results for z operator based controllers
Given a sampling rate, the discrete-time plant

model P… z† and the digital controller C… z† were
obtained. The initial controller realization X0 was
chosen to be the controllable canonical realization.
The eigenvalues f ¶ ig of the ideal closed-loop system
and the eigenvalue sensitivity matrices f F ig were then
computed. The optimal PID controller realizations
obtained by solving the optimization problems (36)
and (37) with the Rosenbrock algorithm were denoted
as ~Xopt1 and ~Xopt2 , respectively. Similarly, the two
optimal solutions of (36) and (37) obtained using the
ASA algorithm were denoted as Xopt1 and Xopt2 ,
respectively. Table 1 summarizes the values of the
stability lower bound measure ·1 for di� erent controller
realizations under various sampling conditions, and
table 2 lists the corresponding estimated minimum bit
lengths that can guarantee the closed-loop stability for
these controller realizations.

Several observations can readily be made. The
results given in tables 1 and 2 show that the optimal
controller realizations have much larger closed-loop
stability margins than the non-optimal controllable
canonical realization and require much smaller word
lengths in ® xed-point implementation. In the very fast
sampling condition of h ˆ 2¡ 12, the stability measure of
Xopt2 is 105 times larger than that of X0. It can also be
seen that, when the sampling rate increases, the closed-
loop stability measure of the z-based controller
decreases considerably. This is true for non-optimal
and optimal controller realizations. The ASA algorithm
generally yielded better optimization results, compared
with the Rosenbrock algorithm. From the results
listed in table 1, it is obvious that the conventional
Rosenbrock algorithm often missed the true global
optimal solution, particularly under fast sampling
conditions.

6.2. Results for ¯ operator-based controllers
The discrete-time plant model P… ¯ † and controller

C… ¯ † were derived for each sampling rate. The initial

Stability of ® nite-precision controller structures 1337



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f S
ou

th
am

pt
on

] A
t: 

14
:1

9 
5 

S
ep

te
m

be
r 2

00
7 

controller realization X̄ ;0 was chosen to be the
c̀ontrollable’ or direct-form realization. The eigenvalues

f ¶¯;ig of the ideal closed-loop system and the eigenvalue
sensitivity matrices f F ig were then calculated to form
the two optimization problems, similar to (36) and
(37). The optimal PID controller realizations obtained
using the Rosenbrock algorithm were denoted as ~X̄ ;opt1

and ~X̄ ;opt2, respectively, and the two optimal realiza-
tions obtained using the ASA algorithm were denoted
as X̄ ;opt1 and X̄ ;opt2, respectively. Table 3 provides the
values of the stability lower bound measure for di� erent
controller realizations under various sampling con-

ditions, and table 4 gives the corresponding estimated
minimum bit lengths that can guarantee the closed-loop
stability for these realizations. Both the B̂min

s1 and B̂min
sh

are listed in table 4.
The results show that the optimal ¯-based controller

realization has a much better closed-loop stability
margin than the non-optimal direct-form realization
X̄ ;0, although the di� erence is not as great as in
the case of z parameterization. The results also con® rm
that the ¯-based controller realizations have better
stability bounds than the z-based realizations under
fast sampling conditions. Increasing the sampling rate

1338 J. Wu et al.

Stability measure ·1
Sampling
period h X0

~Xopt1
~Xopt2 Xopt1 Xopt2

23 1.306137e-2 3.856 044e-2 3.893 488e-2 3.767 304e-2 3.675 970e-2
22 1.738083e-2 1.128 260e-1 1.244 934e-1 1.495 225e-1 1.641 928e-1
21 5.898659e-3 6.305 634e-2 6.994 177e-2 1.232 973e-1 1.273 720e-1
20 1.754786e-3 2.805 390e-2 3.574 639e-2 5.466 344e-2 7.310 598e-2
2¡ 1 4.819871e-4 9.198 569e-3 9.684 189e-3 2.580 249e-2 3.771 688e-2
2¡ 2 1.265127e-4 2.625 682e-3 1.056 738e-2 8.901 379e-3 1.921 549e-2
2¡ 3 3.242422e-5 1.361 176e-3 8.597 592e-4 6.696 976e-3 9.719 583e-3
2¡ 4 8.208513e-6 2.757 079e-4 6.607 722e-4 2.931 593e-3 4.889 652e-3
2¡ 5 2.065125e-6 6.045 046e-5 7.753 055e-4 8.875 924e-4 2.144 777e-3
2¡ 6 5.179179e-7 1.073 104e-5 1.216 844e-3 5.955 617e-4 1.073 485e-3
2¡ 7 1.296848e-7 1.512 025e-5 2.101 092e-5 1.523 501e-5 5.331 186e-4
2¡ 8 3.244692e-8 6.614 090e-7 3.962 129e-6 8.400 932e-6 3.021 479e-4
2¡ 9 8.114948e-9 1.758 011e-7 7.370 831e-7 5.230 490e-6 1.240 600e-4
2¡ 10 2.029139e-9 3.318 801e-8 4.552 015e-7 5.204 957e-7 6.892 182e-5
2¡ 11 5.073338e-10 1.023 806e-8 7.476 508e-9 6.273 487e-8 3.090 558e-5
2¡ 12 1.268400e-10 2.150 888e-9 2.923 607e-9 1.970 226e-8 1.327 938e-5

Table 1. Lower-bound stability measures of di� erent z operator based controller realizations for various
sampling periods.

Estimated minimum bit length B̂min
s1

Sampling
period h X0 ~Xopt1 ~Xopt2 Xopt1 Xopt2

23 8 6 6 6 6
22 7 5 5 4 4
21 8 6 4 4 3
20 10 8 5 6 4
2¡ 1 12 10 9 7 5
2¡ 2 13 12 8 8 6
2¡ 3 15 12 13 8 8
2¡ 4 17 16 13 9 8
2¡ 5 19 17 13 11 9
2¡ 6 21 18 10 11 10
2¡ 7 23 18 18 17 11
2¡ 8 25 22 26 18 12
2¡ 9 27 26 23 19 13
2¡ 10 29 28 23 22 14
2¡ 11 31 31 29 26 15
2¡ 12 33 29 31 26 17

Table 2. Estimated minimal bit lengths of di� erent z operator based controller realizations for various
sampling periods.
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leads to a slightly improved stability margin for the
¯-based controller realization. This is in contrast to the
z-based controller realization, which has considerably
degraded stability margin when the sampling rate
increases. Although the estimated minimum bit length
based on ·1 and the realization is consistently 4 for
various sampling conditions, the modi® ed estimate of
the minimum bit length is larger and increases as the
sampling rate increases. Even taking this into account,
however, the estimate of the minimum bit length is
still smaller than that of the corresponding z-based
controller.

7. Conclusions

In this paper we have proposed a new optimal
procedure for the sensitivity analysis of closed-loop
stability, subject to FWL implemented controller coe� -
cients. It has been shown that the optimal realization of
® nite-precision digital controllers can be interpreted as a
constrained optimization problem. In particular, for
® nite-precision PID controllers, the optimization can
be decoupled into two unconstrained optimization prob-
lems. An e� cient optimization approach has been devel-
oped for solving this optimal FWL PID controller

Stability of ® nite-precision controller structures 1339

Stability measure ·1
Sampling
period h X̄ ;0

~X̄ ;opt1
~X̄ ;opt2 X̄ ;opt1 X̄ ;opt2

23 1.477 681e-3 9.853 745e-3 9.990 982e-3 9.852 372e-3 9.986 133e-3
22 4.068 193e-3 6.091 837e-2 6.051 241e-2 6.267 552e-2 6.439 696e-2
21 5.081 170e-3 6.838 224e-2 6.964 563e-2 6.842 345e-2 7.051 816e-2
20 5.721 692e-3 7.119 400e-2 4.360 879e-2 7.136 269e-2 7.310 503e-2
2¡ 1 6.086 598e-3 7.225 940e-2 6.204 462e-2 7.274 529e-2 7.445 603e-2
2¡ 2 6.279 701e-3 7.370 771e-2 6.446 224e-2 7.328 164e-2 7.515 015e-2
2¡ 3 6.379 331e-3 7.175 426e-2 4.686 201e-2 7.353 966e-2 7.549 933e-2
2¡ 4 6.429 949e-3 7.148 362e-2 7.104 903e-2 7.409 947e-2 7.567 885e-2
2¡ 5 6.455 462e-3 7.053 846e-2 6.664 081e-2 7.393 526e-2 7.576 799e-2
2¡ 6 6.468 270e-3 7.404 889e-2 6.680 168e-2 7.396 521e-2 7.581 252e-2
2¡ 7 6.474 687e-3 7.405 083e-2 7.118 904e-2 7.397 951e-2 7.583 418e-2
2¡ 8 6.477 899e-3 7.081 827e-2 6.691 980e-2 7.417 212e-2 7.584 603e-2
2¡ 9 6.479 505e-3 7.407 674e-2 6.685 483e-2 7.411 691e-2 7.585 130e-2
2¡ 10 6.480 309e-3 7.064 170e-2 7.114 443e-2 7.413 070e-2 7.585 433e-2
2¡ 11 6.480 711e-3 7.404 690e-2 7.104 011e-2 7.419 079e-2 7.585 577e-2
2¡ 12 6.480 912e-3 7.064 419e-2 6.683 266e-2 7.422 571e-2 7.585 604e-2

Table 3. Lower-bound stability measures of di� erent ¯ operator based controller realizations for various
sampling periods.

Estimated minimum bit length … B̂min
s1 ; B̂min

sh †

Sampling
period h X̄ ;0

~X̄ ;opt1
~X̄ ;opt2 X̄ ;opt1 X̄ ;opt2

23 11, 12 8, 9 8, 9 8, 9 8, 9
22 9, 9 6, 6 6, 6 5, 5 5, 5
21 8, 8 4, 4 4, 4 4, 4 4, 4
20 8, 8 5, 5 7, 7 4, 4 4, 4
2¡ 1 8, 8 5, 5 6, 6 4, 4 4, 4
2¡ 2 8, 8 5, 5 5, 5 4, 4 4, 4
2¡ 3 8, 8 4, 4 7, 7 4, 4 4, 4
2¡ 4 8, 8 5, 6 4, 5 4, 5 4, 5
2¡ 5 8, 8 4, 6 5, 7 4, 6 4, 6
2¡ 6 8, 8 5, 8 5, 8 4, 7 4, 7
2¡ 7 8, 8 4, 8 4, 8 4, 8 4, 8
2¡ 8 8, 9 4, 9 5, 10 4, 9 4, 9
2¡ 9 8, 10 4, 10 4, 10 4, 10 4, 10
2¡ 10 8, 11 4, 11 4, 11 4, 11 4, 11
2¡ 11 8, 12 4, 12 4, 12 4, 12 4, 12
2¡ 12 8, 13 4, 13 4, 13 4, 13 4, 13

Table 4. Estimated minimal bit lengths of di� erent ¯ operator based controller realizations for various
sampling periods. B̂min

s1 is estimated from ·1 and the realization, and B̂min
sh is the modi® ed estimate

taking into account the implementation of h.
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realization problem. The approach is equally valid for
the digital controllers based on either z or ¯ operator
parameterization.

The theoretical results have been veri® ed using a
numerical example based on an IFAC benchmark PID
control system. The results obtained demonstrate that
the proposed approach greatly improves the stability
robustness with minimum word length characteristics,
compared to non-optimal realizations. The important
role of an e� cient global optimization method in search-
ing for the true optimal controller realization has also
been highlighted in the numerical example. The simula-
tion study also con® rms that the ¯-based controller has
clear advantages over the z-based controller in FWL
implementation, particularly under fast sampling con-
ditions.

Future work will investigate the extension of the
e� cient method for obtaining the FWL PID controller
realizations presented in this study to FWL higher-order
controller realizations. Ongoing work will also explore
the integration of the proposed optimization procedure
with the closed-loop controller performance and the
sparseness consideration of controller realizations. This
will provide a multi-objective framework to develop
the optimal ® nite-precision controller realization that
possesses the optimal trade-o� between minimal
computational requirements, improved performance
and stability robustness.
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Appendix

De® ne the n n diagonal matrix set

 n = f U ˆ diag … u1; u2; . . . ; un† : ui 2 f ¡ 1; 1g

8 i 2 f 1; . . . ; ng g … 53†

From the de® nition of k Mk s (29), we have

Lemma 3: 8 M 2 C
m n, U1 2  m and U2 2  n

k U1Mk s ˆ k Mk s and k MU2k s ˆ k Mk s … 54†

Proof of Theorem 2: De® ne the sets

±0 = T ˆ
t1 t2

t3 t4

" #

: t1 2 R ; t2 2 R ; t3 2 R ; t4 2 R ; t1t4 ¡ t2t3 6ˆ 0

( )

±1 = T ˆ
t1 t2

0 t4

" #

: t1 2 R ; t2 2 R ; t4 2 R ; t1t4 6ˆ 0

( )

±2 = T ˆ
t1 t2

t3 t4

" #

: t1 2 R ; t2 2 R ; t3 2 R ; t4 2 R ; t3 6ˆ 0; t1t4 ¡ t2t3 6ˆ 0

( )

9

>
>
>
>
>
>
>
>
>
>
>
=

>
>
>
>
>
>
>
>
>
>
>
;

… 55†

Construct the optimization problems

v1 = min
T 2 ±1

max
i2 f 1;...;m‡ 2g

"

1 0
0 T

T

#

F i

"

1 0
0 T

¡ T

#

s

… 56†

and

v2 = min
T 2 ±2

max
i2 f 1;...;m‡ 2g

"

1 0

0 T
T

#

F i

"

1 0

0 T
¡ T

#

s

… 57†

Obviously ±0 ˆ ±1 [ ±2 and, therefore, v ˆ min f v1; v2g .
De® ne the function sgn … †

sgn … x† ˆ
1; x 0

¡ 1; x < 0
… 58†

Consider the optimization problem (56). Utilizing
Lemma 3, 8 T 2 ±1 and 8 i 2 f 1; . . . ; m ‡ 2g we have

"

1 0

0 T
T

#

F i

"

1 0

0 T
¡ T

#

s

ˆ

1 0 0
0 t1 0
0 t2 t4

2

6

4

3

7

5 F

1 0 0
0 1=t1 0
0 ¡ t2=… t1t4† 1=t4

2

6

4

3

7

5

s

ˆ
1

����������

j t1t4 j
p

1 0 0
0 sgn … t1† 0
0 0 sgn … t4†

2

6

4

3

7

5

1 0 0
0 t1 0
0 t2 t4

2

6

4

3

7

5

F i

1 0 0
0 1=t1 0
0 ¡ t2=… t1t4† 1=t4

2

6

4

3

7

5

1 0 0
0 sgn … t1† 0
0 0 sgn … t4†

2

6

4

3

7

5

����������

j t1t4 j

p

s

ˆ

1=
����������

j t1t4 j
p

0 0

0
�������������

j t1=t4 j
p

0

0 sgn … t4† t2=
����������

j t1t4 j
p �������������

j t4=t1j
p

2

6

4

3

7

5

F i

����������

j t1t4 j
p

0 0

0
�������������

j t4=t1 j
p

0

0 ¡ sgn … t4† t2=
����������

j t1t4 j
p �������������

j t1=t4j
p

2

6

4

3

7

5

s

… 59†

De® ne
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x ˆ

���������������

j t1 j = j t4 j

p

2 … 0; ‡ 1 †

y ˆ sgn … t4†
t2

����������

j t1t4 j
p 2 … ¡ 1 ; ‡ 1 †

w ˆ
1

����������

j t1t4 j
p 2 … 0; ‡ 1 †

9

>
>
>
>
>
>
>
>
=

>
>
>
>
>
>
>
>
;

… 60†

Then

f1… x; y; w† = max
i2 f 1;...;m‡ 2g

w 0 0

0 x 0

0 y 1=x

2

6

6

4

3

7

7

5

F i

1=w 0 0

0 1=x 0

0 ¡ y x

2

6

6

4

3

7

7

5

s

ˆ max
i2 f 1;...;m‡ 2g

1 0

0 T
T

" #

F i
1 0

0 T
¡ T

" #

s

… 61†

and

v1 = min
T 2 ±1

max
i2 f 1;...;m‡ 2g

1 0

0 T
T

" #

F i
1 0

0 T
¡ T

" #

s

ˆ min
x2 … 0;‡ 1 †

y2 … ¡ 1 ;‡ 1 †

w2 … 0;‡ 1 †

f1… x; y; w† … 62†

If v ˆ v1 and … xopt1; yopt1; wopt1† is the solution of the
optimization problem (62)

v ˆ v1 ˆ max
i2 f 1;...;m‡ 2g

wopt1 0 0

0 xopt1 0

0 yopt1 1=xopt1

2

6

6

4

3

7

7

5

F i

1=wopt1 0 0

0 1=xopt1 0

0 ¡ yopt1 xopt1

2

6

6

4

3

7

7

5

s

ˆ max
i2 f 1;...;m‡ 2g

1
wopt1

wopt1 0 0

0 xopt1 0

0 yopt1 1=xopt1

2

6

6

4

3

7

7

5

F i

1=wopt1 0 0

0 1=xopt1 0

0 ¡ yopt1 xopt1

2

6

6

4

3

7

7

5
wopt1

s

… 63†

which means that

T opt ˆ
1

wopt1

xopt1 yopt1

0 1=xopt1
… 64†

is the optimal solution of the problem (33).

By considering (57) in a similar way, we can prove
the rest of Theorem 2. &
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