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Using zero-norm constraint for sparse probability density function estimation
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A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed
using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the
parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate
function of the zero-norm. It is shown that under certain condition, the kernel weights of the proposed pdf
estimator based on the zero-norm approximation can be updated using the multiplicative nonnegative quadratic
programming algorithm. Numerical examples are employed to demonstrate the efficacy of the proposed
approach.
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1. Introduction

One of the fundamental problems in data-based

nonlinear system modelling is to find the minimal

model with the best model generalization performance

from observational data. In linear-in-the-parameters

modelling and kernel methods, the number of terms in

the model is referred as the zero-norm of the param-

eters. Minimizing such quantity is related to variable

and feature selection, ensuring model sparsity and

generalization (Bradley and Mangasarian 1998;

Weston, Ellisseeff, Scholkopf, and Tipping 2003).

Because of the intractability in the minimization of

the zero-norm, there is considerable research on the

approximation schemes on the zero-norm (Bradley and

Mangasarian 1998; Weston et al. 2003) and the

associated computational complexities.

The estimation of the probability density function

(pdf) from observed data samples is a fundamental

problem in many machine learning and pattern recog-

nition applications (Duda and Hart 1973; Silverman

1986; Bishop 1995). The Parzen window (PW) estimate

is a simple yet remarkably accurate nonparametric

density estimation technique (Parzen 1962; Duda and

Hart 1973; Bishop 1995). A general and powerful

approach to the problem of pdf estimation is the finite

mixture model (McLachlan and Peel 2000). The finite

mixture model includes the PW estimate as a special

case in that equal weights are adopted in the PW, with

the number of mixtures equal to the number of training

data samples. A disadvantage associated with the PW

estimate is its high computational cost of the point

density estimate for a future data sample in the cases

where the training data set is very large. Clearly by

taking a much smaller number of mixture components,

the finite mixture model can be regarded as a

condensed representation of data (McLachlan and

Peel 2000). Note that the mixing weights in the finite

mixture model need to be determined through param-

etric optimization, unlike just adopting equal weights

in the PW. It is desirable to develop methods of fitting

a finite mixture model with the capability to infer a

minimal number of mixtures from the data efficiently.

Motivated by this, there is a considerable interest in

the research into the sparse pdf estimate, including

support vector machine (SVM) density estimation

technique (Weston et al. 1999; Vapnik and

Mukherjee 2000), the reduced set density estimator

(RSDE) (Girolami and He 2003). Alternatively a novel

regression-based probability density estimation

method has been introduced (Choudhury 2002), in

which the empirical cumulative distribution function

was constructed as the desired response (Weston et al.

1999). The regression-based idea of Choudhury (2002)

and the approach in Hong, Sharkey, and Warwick

(2003) and Chen, Hong, Harris, and Sharkey (2004b)

have been extended to yield sparse density estimation

algorithm based on an orthogonal forward regression

(OFR) algorithm (Chen, Hong, and Harris 2004a)

which is capable of automatically constructing very

sparse kernel density estimate, with comparable per-

formance to that of PW estimate. Alternatively, a

simple and viable alternative approach has been
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proposed to use the kernels directly as regressors and

the target response as PW estimate (Chen, Hong, and

Harris 2008).

Following the idea in Chen et al. (2008) of using

PW estimate as the target function and based on

zero-norm constraint, this article introduces a new

sparse kernel pdf estimator. It is suggested to minimize

an approximate function of the zero-norm of the

kernel weights vector. It is analyzed that under certain

condition, the kernel weights of the proposed pdf

estimator based on the zero-norm approximation can

be updated using the multiplicative nonnegative qua-

dratic programming (MNQP) algorithm.

2. The kernel density estimator

Given a finite data set consisting of N data samples,

D¼ {x1, . . . , xj, . . . , xN}, where the feature vector var-

iable xj2Rm follows an unknown pdf p(x), the

problem under study is to find a sparse approximation

of p(x) based on D.

A general kernel-based density estimate of p(x) is

given by

p̂ðx;b,�Þ¼
X

N

j¼1

�jK�ðx,xj Þ,

subject to �j � 0, j¼ 1, . . . ,N, bT1¼ 1,

ð1Þ

where b¼ [�1,�2, . . . ,�N]
T. �j’s are the kernels weights.

1 is a vector with an appropriate dimension and all

elements as ones. K�(x, xj) is a chosen kernel function

with kernel width �. In this study,

K�ðx, xj Þ ¼
1

ð2��2Þm=2
exp ÿkxÿ xj k2

2�2

� �

ð2Þ

is used. Let the well-known PW estimator be denoted

by p̂ðx;bPar, �ParÞ, where bPar ¼ ½�Par
1 , . . . ,�Par

N �T,
�Par
j ¼ 1

N
8j. The log-likelihood for b can be formed

using observed data D as log L as

1

N

X

N

i¼1

log p̂ðxi; b, �Þ ¼
1

N

X

N

i¼1

log
X

N

j¼1

�jK�ðxi, xj Þ
 !

: ð3Þ

Note that by the law of large numbers the

log-likelihood of (3) tends to
Z

<m

pðxÞ log p̂ðx; b, �Þdx, ð4Þ

as N!1 with probability one. Equation (4) is simply

the negative cross-entropy or divergence between the

true density p(x) and the estimate p̂ðx;b, �Þ. It can be

shown that the PW estimator �Par
j ¼ 1

N
8j can be

obtained as an optimal estimator via the maximization

of (3) with respective to b subject to the constraints

�j� 0, j¼ 1, . . . ,N, bT 1¼ 1. Note that the choice of

�
Par is crucial in density estimation using PW

(Silverman 1986). Based on the principle of minimizing

the mean integrated square error (MISE) (Silverman

1986), �Par can be found so as to minimize the least

squares cross validation criterion M(�) given by

Silverman (1986)

1

N2

X

N

i, j¼1

K ffiffi

2
p

�
ðxi, xj Þ ÿ

2

NðNÿ 1Þ
X

N

i, j¼1, j6¼i

K�ðxi, xj Þ

� 1

N2

X

N

i, j¼1

K�
�ðxi, xj Þ þ

2

Nð2��2Þm=2
, ð5Þ

where K�
�ðxi, xj Þ ¼ K ffiffi

2
p

�ðxi, xj Þ ÿ 2K�ðxi, xj Þ. The com-

putational cost of finding �Par is O(N2), this is scaled by

the number of grid search set by the user.

With the PW estimator, the associated computa-

tional cost for evaluating the probability density

estimate for a future sample scales directly with the

sample size N. Therefore it is desirable to devise a

sparse representation of p̂ðx;b, �Þ, in which the terms

are composed of a small subset of data samples.

Clearly any good sparse kernel density estimator

p̂ðx; b, �Þ should be devised as close as possible to the

unknown true density p(x). Because the PW estimators

have the property of optimality, it was suggested (Chen

et al. 2008) that it is possible to use the PW estimator

as the target of the proposed sparse kernel density

estimator. Specifically we can write a regression

equation linking p̂ðx; b, �Þ and p̂ðx;bPar, �ParÞ as

p̂ðx;bPar, �ParÞ ¼
X

N

j¼1

�jK�ðx, xj Þ þ "ðxÞ, ð6Þ

where "(x) is the modelling error at x between the

sparse kernel density estimator p̂ðx; b, �Þ and the PW

density estimator p̂ðx;bPar, �ParÞ that is initially con-

structed based on D. The aims are to obtain �j via

minimizing some modelling error criterion, e.g.

E["2(x)], and simultaneously to achieve a sparse

representation of p̂ðx; b, �Þ (with most elements in b

being zeros in (6)) subject to the constraints �j� 0,

j¼ 1, . . . ,N, bT 1¼ 1.

Define yk ¼ p̂ðxk;bPar, �ParÞ, /(k)¼ [Kk,1 Kk,2� � �
Kk,N]

T with Kk,i¼K�(xk, xi) and "(k)¼ "(x), then

model (6) at data point xk2D can be expressed as

yk ¼ ŷk þ "ðkÞ ¼ �TðkÞbþ "ðkÞ: ð7Þ

Over the training data set D, model (6) can be

written in the matrix form

y ¼ �bþ e, ð8Þ
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with the following additional notations �¼
[Kk,i]2RN�N, 1� i, k�N, e¼ ["(1) "(2) � � � "(N )]T

and y¼ [y(1) y(2) � � � y(N )]T. The kernel weights

vector b can be obtained by solving the following

constrained nonnegative quadratic programming

min
b

�

1

2
bTBbÿ vTb

�

, ð9Þ

s.t. bT1 ¼ 1 and �j � 0, j ¼ 1, . . . ,N, ð10Þ

where B¼�
T
� is the related design matrix and

v¼�
Ty. The solution can be readily solved using an

iterative MNQP algorithm (Sha, Saul, and Lee 2002;

Girolami and He 2003; Chen et al. 2008). Denote

(¼ [/1, . . . ,/j, . . . ,/N], where /j denotes column vec-

tors of (. Note the row vectors of ( is denoted

by /(k).

3. Sparse pdf estimation using zero-norm constraint

In order to improve the sparsity of model (6), the

quantity kbk0, that counts the number of nonzero

entries in b and is referred to as zero-norm of b, can be

utilised as an additional constraint (Bradley and

Mangasarian 1998; Weston et al. 2003). It is a very

hard problem to directly minimize the zero-norm of b

(Amaldi and Kann 1998; Weston et al. 2003), so the

work of Bradley and Mangasarian (1998) proposed an

approximate approach with

kbk0 �
X

N

i¼1

1ÿ eÿ�j�ijÿ �

, ð11Þ

in which �40 is a properly chosen parameter.

(kbk0! 0 if �! 0, and kbk0!N if �!þ1.)

Following the idea in Bradley and Mangasarian

(1998), the objective function (9) can be modified to

yield

min
b

1

2
bTBbÿ vTb

� �

þ �
X

N

i¼1

1ÿ eÿ�j�ijÿ �

,

s.t. bT1 ¼ 1 and �j � 0, j ¼ 1, . . . ,N, ð12Þ

where �40 is a small parameter that regulates the

tradeoff between the two objectives. Here we propose a

further approximation by using the Taylor series

expansion up to the second order, such that

eÿ�j�ij � 1ÿ �j�ij þ
�2�2

i

2
, ð13Þ

and

X

N

i¼1

1ÿ eÿ�j�ijÿ �

� �
X

N

i¼1

j�ij ÿ
�2

2

X

N

i¼1

�2
i : ð14Þ

Applying the constraint bT1¼ 1 and �j� 0, j¼ 1, . . . ,N

to (14), we obtain

X

N

i¼1

1ÿ eÿ�j�ijÿ �

� �ÿ �2

2
bTb: ð15Þ

Based on (15), (12) can be approximately reformulated

min
b

�

1

2
bTAbÿ vTb

�

, ð16Þ

s.t. bT1 ¼ 1 and �j � 0, j ¼ 1, . . . ,N, ð17Þ

where A¼Bÿ �I, I is the identity matrix with appro-

priate dimension and �¼ ��
2 is a predetermined small

parameter.

Provided that � is set in a manner that A is a

positive-definite matrix, the solution to the above can

be readily solved using an iterative MNQP algorithm

(Sha et al. 2002; Girolami and He 2003; Chen et al.

2008) as that of (9).

Lemma 1: Assuming that B is full rank, the condition

for A to be positive definite matrix is �5�N¼ �min,

where �min is the smallest eigenvalue of B.

Proof: Consider the singular value decomposition

(SVD) of matrix B with orthonormal matrix

Q2RN�N, such that

QTBQ ¼ diagð�1, �2, . . . , �NÞ 2 <N�N, ð18Þ

where �1� �2� � � � � �N are N nonnegative singular

values of B. Applying A¼Bÿ �I and QTQ¼ I, we

obtain

QTAQ ¼ diagð�0
1, �

0
2, . . . , �

0
NÞ 2 <N�N, ð19Þ

where �0
i ¼ �i ÿ �4 0, i¼ 1, 2 . . . ,N are eigenvalues

of A. This concludes the proof.

For completeness, the MNQP algorithm for solving

(16) is described below (Girolami and He 2003; Chen

et al. 2008). For convenience, denote A¼ [ai, j],

v¼ [v1 � � � vN]T. Since the elements of A and v are

strictly positive, the Lagrangian for the above problem

can be formed as Girolami and He (2003)

L ¼ 1

2

X

N

i¼1

X

N

j¼1

ai, j
�
ðtÞ
j ð�ðtþ1Þ

i Þ2

�
ðtÞ
i

ÿ
X

N

i¼1

vi�
ðtþ1Þ
i

ÿ hðtÞ
X

N

i¼1

�
ðtþ1Þ
i ÿ 1

 !

, ð20Þ

where the superscript (t) denotes the iteration index

and h is the Lagrangian multiplier. Setting

@L
@�

ðtþ1Þ
i

¼ 0 and
@L
@hðtÞ

¼ 0 ð21Þ

International Journal of Systems Science 2109
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yields the following updating equations:

c
ðtÞ
i ¼ �

ðtÞ
i

X

N

j¼1

ai, j�
ðtÞ
j

 !

, 1 � i � N, ð22Þ

hðtÞ ¼
X

N

j¼1

c
ðtÞ
i

 !ÿ1

1ÿ
X

N

i¼1

c
ðtÞ
i vi

 !

, ð23Þ

�
ðtþ1Þ
i ¼ c

ðtÞ
i ðvi þ hðtÞÞ: ð24Þ

The initial condition can be set as �
ð0Þ
i ¼ 1

N
, 1� i�N.

It is easy to verify that (17) is maintained over the

iterations. Over the iterations, some of the kernel

weights are driven to near zero, and the corresponding

kernels can be removed from the model (6).

Remarks:

(1) The general problem of minimising kbkq for

05q51 is nonconvex (hard). With the two

successive approximation step of (11) and (13),

the computational difficulty is alleviated by

changing the problem to a convex optimisation

problem.

(2) From (15), it is seen that the minimisation of

the proposed zero-norm approximation, com-

bined with the convexity constraint of the

kernel parameter vector, is equivalent to the

maximisation of the two-norm of the para-

meters. The fact that the maximisation of the

two-norm of the parameters, subject to the

convexity constraint of the parameters,

encourages model sparsity is explained as

follows. Under condition (17), the model

sparsity is equivalent to the unevenness in the

distribution of the parameters magnitude, e.g.

the two-norm of the parameters is maximised

as one when �k¼ 1, and �j¼ 0 for 8j 6¼ k,

j¼ 1, . . . ,N, corresponding to the smallest

zero-norm of 1 when the parameters are the

most unevenly distributed. The two-norm of

the parameters is minimised as 1
N
when �j ¼ 1

N
,

j¼ 1, . . . ,N, which corresponds to the largest

zero-norm of N when the parameters are

uniformly distributed. This leads to nonsparse

estimate.

(3) Remark 2 is interesting as it shows that the

maximal, not the minimal, of the two-norm of

the parameters leads to model sparsity. It is

worth noting that whenever other constraints

to the parameters are present, only the minimal

of zero-norm can be considered as the natural

measure of model sparsity without the need of

further mathematical proof.

(4) The strength of the zero norm constraint is

represented by a high value of � which is upper

bounded by the smallest eigenvalue of the

design matrix according to Lemma 1. This

implies that the proposed algorithm may be

most effective when it is applied following some

model subset selection preprocessing proce-

dures. This is because it is common for the

design matrix of a large data set to be

ill-conditioned. Alternatively the proposed

algorithm can be applied by gradually increas-

ing � from 0 to a higher value, while the kernels

with close to zero parameters are removed over

the iterations to improve the condition of the

updated design matrix using only a subset of

the kernels. In this article we used the forward

D-optimality criteria subset selective algorithm

(Appendix and Chen, Hong, and Harris 2010)

followed by applying the proposed algorithm.

4. Illustrative examples

In the following examples, a data set of N points was

randomly drawn from a given distribution described

below (N¼ 500 in Example 1 and N¼ 600 in

Example 2). This was used to construct the sparse

pdf p̂ðx; g, �Þ using the proposed MNQP approach

based on zero-norm constraint, following the prepro-

cessing using the forward D-optimality criteria subset

selective algorithm (Appendix). For each example, the

experiment was repeated for 100 different random

runs. For each random run, a separate test data set of

Ntest¼ 10,000 points was used for evaluation

according to

L1 ¼
1

Ntest

X

Ntest

k¼1

j pðxkÞ ÿ p̂ðxk; g, �Þj: ð25Þ

In both examples, �Par was found using a coarse

grid search based on (5) for each of 100 training data

sets. Then �¼ 
�
Par, where 
 was empirically set based

on the first data set to save computational cost. For the

forward D-optimality criteria subset selective algo-

rithm (Appendix), a predetermined ns¼ 30 was set for

all runs to obtain subset models, then for each of the

subset models the smallest eigenvalue was found and

set as �. The other four methods used for comparison

are (a) the PW estimate; (b) the sparse density

construction (SDC) algorithm (Chen et al. 2004a);

(c) the sparse Kernel density construction (SKD)

algorithm (Chen et al. 2008) and (d) the RSDE-

MNQP (Sha et al. 2002; Girolami and He 2003). The

results of the proposed method in comparison with

2110 X. Hong et al.
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other approaches are shown in Table 1, where the

results of the SDC, SKD, RSDE-MNQP are quoted

from Chen et al. (2004a), Chen et al. (2008) and Hong

et al. (2008).

Example 1: The density to be estimated for this 2-D

example was given by the mixture of two densities of a

Gaussian and a Laplacian, as defined by

pðxÞ ¼ 1

4�
exp ÿ ðx1 ÿ 2Þ2

2

� �

exp ÿ ðx2 ÿ 2Þ2

2

� �

þ 0:35

8
expðÿ0:7jx1 þ 2jÞ expðÿ0:5jx2 þ 2jÞ:

ð26Þ

Example 2: The density to be estimated for this 6-D

example was defined by

pðxÞ ¼ 1

3

X

3

i¼1

1

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðÿiÞ
p exp ÿ1

2
ðxÿliÞT!ÿ1

i ðxÿ�iÞ
�

,

�

ð27Þ

with l1¼ [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]T, l2¼ [ÿ1.0,ÿ1.0,

ÿ1.0,ÿ1.0,ÿ1.0,ÿ1.0]T, l3¼ [0, 0, 0, 0, 0, 0]T, !1¼
diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0} !2¼ diag{2.0, 1.0, 2.0,

1.0, 2.0, 1.0} and !3¼ diag{2.0, 1.0, 2.0,1.0, 2.0, 1.0}.

Note that the involved computational cost is

mainly from the forward D-optimality criteria subset

selective algorithm (Appendix) of O(N2). The compu-

tational cost in the MNQP is negligible in comparison

to O(N2). From the results in Table 1, it is shown that

the proposed method has comparable accuracy to PW

other sparse pdf estimators, and is effective in building

sparse pdf models.

5. Conclusions

In this article, we proposed the idea of integrating the

zero-norm constraint into the construction of a sparse

kernel pdf estimator that uses the classical PW

estimate as the target function. By making use of

the convexity constraint for the kernel parameters and

the proposed approximation function of the zero-

norm, this hard problem is alleviated and approxi-

mately formulated as a simple quadratic program-

ming problem, which lends itself to the utilisation of

the MNQP algorithm. Some analysis are provided to

suggest that the proposed approach can be benefited

from preprocessing procedures to improve the condi-

tion of the kernel matrix. The simulation experiments

are based on the proposed algorithm, following a

preprocessing stage using the forward D-optimality

criteria subset selective algorithm as described in the

appendix.
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Appendix

The forward D-optimality criteria subset selective

algorithm

The D-optimality design criterion (Atkinson and Donev
1992) can be applied as a model selection criterion that
maximizes the determinant of the design matrix defined as
Bk ¼ (

T
k(k, where (k 2 <N�ns denotes the resultant regres-

sion matrix, consisting of ns regressors selected from N
regressors in (. Specifically

max JD ¼ detðBkÞ ¼
Y

ns

k¼1

�k

( )

, ð28Þ

where �1 � �2 � � � � � �ns are ns nonnegative singular values
of Bk. The same notation as (18) is used for simplicity.

An orthogonal decomposition of ( is

( ¼ WR, ð29Þ

where

R ¼

1 r1,2 � � � r1,N

0 1 . .
. ..

.

..

. . .
. . .

.
rNÿ1,N

0 � � � 0 1

2

6

6

6

4

3

7

7

7

5

, ð30Þ

and W is an N�N matrix with orthogonal columns that
satisfy

WTW ¼ diagf�1, . . . , �j, . . . , �Ng, ð31Þ
with

�j ¼ wT
j wj, j ¼ 1, . . . ,N: ð32Þ

Denote (k¼WkRk, where Rk is a unit upper triangular
matrix based on the orthogonal triangularisation of (k.
Because

detðBkÞ ¼ detðRT
k Þ detðWT

kWkÞ detðRkÞ

¼ detðWT
kWkÞ ¼

Y

k

j¼1

�k ð33Þ

due to det(Rk)¼ 1, the selection of a subset of (k from ( for
higher value of JD can be achieved via the maximization of
Qk

j¼1 �k.
The forward D-optimality criteria subset selective algo-

rithm outlined below involves selecting a set of ns kernels
(regressors) (k¼ [/1, . . . ,/k], k¼ 1, . . . , ns, from N kernels to
form a set of orthogonal basis wk, k¼ 1, . . . , ns (e.g. via using
the modified Gram–Schmidt orthogonalisation procedure
(Chen, Billings, and Luo 1989) in a forward selective manner.
At the kth selection, a candidate regressor is selected as the
kth basis of the subset if it produces the largest value of �k
from the remaining (Nÿ kþ 1) candidates. The variable
selection is terminated when

�ns 5 �, ð34Þ

where � is a preset small positive number. Because this
algorithm is used at the preprocessing stage, the choice of �
can be coarse, e.g. it can be set so that ns is sufficiently large.

Note that if the above algorithm is used as preprocessing,
then in (9) and (16), the associated matrices B is replaced by
Bk, and v is replaced by �T

k y and the matrix dimensions and
entries in (22)–(24) are adjusted accordingly.
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