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In this article a simple and effective controller design is introduced for the Hammerstein systems that are
identified based on observational input/output data. The nonlinear static function in the Hammerstein system is
modelled using a B-spline neural network. The controller is composed by computing the inverse of the B-spline
approximated nonlinear static function, and a linear pole assignment controller. The contribution of this article is
the inverse of De Boor algorithm that computes the inverse efficiently. Mathematical analysis is provided to
prove the convergence of the proposed algorithm. Numerical examples are utilised to demonstrate the efficacy of
the proposed approach.
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1. Introduction

The Hammerstein model, comprising a nonlinear static

functional transformation followed by a linear dynam-

ical model, has been applied to nonlinear plant/process

modelling in a wide range of biological/engineering

problems (Hunter and Korenberg 1986; Balestrino,

Landi, Ould-Zmirli and Sani 2001; Bloemen, van den

Boom, and Verbruggen 2001; Turunen, Tanttu, and

Loula 2003). For example, it is a suitable model for

signal processing applications involving any nonlinear

distortion followed by a linear filter, the modelling of

the human heart in order to regulate the heart rate

during treadmill exercises (Su 2007), and the modelling

of hydraulic actuator friction dynamics (Kwak, Yagle,

and Levitt 1998). The Hammerstein model has been

widely researched (Billings and Fakhouri 1979; Stoica

and Söderström 1982; Greblicki and Pawlak 1986;

Greblicki 1989, 2002; Verhaegen and Westwick 1996;

Lang 1997; Bai and Fu 2002; Chen 2004; Chaoui, Giri,

Rochdi, Haloua, and Naitali 2005). The model char-

acterisation/representation of the unknown nonlinear

static function is fundamental to the identification of

Hammerstein model. Various approaches have been

developed in order to capture the a priori unknown

nonlinearity by use of both parametric (Verhaegen and

Westwick 1996; Chaoui et al. 2005) and nonparametric

methods (Lang 1997; Greblicki 2002; Chen 2004). It

has been shown that the Bernstein basis is the best

conditioned and the most stable among all other

polynomial basis (Farouki and Goodman 1996). The

inverse of de Casteljau’s algorithm was introduced to

identify the Bezier–Berstein neural network using the

Bernstein approximation and from observational data

(Hong and Harris 2000). Recently a new identification

algorithm (Hong and Mitchell 2007) for the

Hammerstein model has been introduced based on

the Bezier–Bernstein approximation and the inverse of

de Casteljau’s algorithm. Alternatively, the special

structure of Hammerstein models can be exploited to

develop hybrid parameter estimation algorithms (Bai

1998; Bai and Fu 2002; Chaoui et al. 2005). Similar to

Bezier curve, the B-spline curve has also been widely

used in computer graphics and computer aided geo-

metric design (CAGD; Farin 1994). B-spline curves

consist of many polynomial pieces, offering much

more versatility than do Bezier curves while maintain-

ing the same advantage of the best conditioning

property. The early work on the construction of

B-spline curve is mathematically involved and numer-

ically unstable (De Boor 1978). De Boor algorithm

uses recurrence relations and is numerically stable

(De Boor 1978). The B-spline basis functions for

nonlinear systems modelling have been widely applied

(Kavli 1993; Brown and Harris 1994; Harris, Hong

and Gan 2002).

Model based control for the Hammerstein system

has been well studied (Anbumani, Patnaik, and Sarma

1981; Bloemen, van den Boom, and Verbruggen 2000;
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Bloemen et al. 2001). A popular treatment of handling

the Hammerstein model is to remove the nonlinearity

via an inversion (Fruzzetti, Palazoglu, and Mcdonald

1997; Patwardhan, Lakshminarayanan, and Shah

1998; Bloemen et al. 2000). This enables the celebrated

self tuning control methods to be readily applicable

(Astrom and Wittenmark 1989). The implementation

of model based control for a priori unknown

Hammerstein model requires system identification

including the modelling and identification of the

nonlinear static function. Different nonlinear model

representations result in variations in controller design

algorithms. For example, in Anbumani et al. (1981)

and Zhu, Warwick, and Douce (1991) the nonlinear

static function is based on an explicit polynomial

function of the input. The optimal control law satisfies

a polynomial equation of the input, which is then

found via root solving. In Hong and Mitchell (2006),

the closed-loop system is linearised by inserting the

inverse of the identified static nonlinearity, and

the nonlinear subsystems’ inverse is calculated using

the inverse of de Casteljau’s algorithm.

Computationally efficient and numerically stable

algorithms are in general desirable in nonlinear system

identification and control. In this article the control for

Hammerstein system as characterised by the B-spline

polynomial based model is investigated through the

removal of the nonlinearity via the inversion of the

B-spine neural network, and the application of a pole

assignment controller. Note that for the system iden-

tification of the resultant model representation, Bai’s

overparameterisation approach is directly applicable

(Bai and Fu 2002). In this article we used the Gauss–

Newton algorithm subject to constraints as proposed

in Hong and Mitchell (2007). The linearisation of the

closed-loop system is achieved by inserting the inverse

of the identified static nonlinearity via the inverse of

De Boor algorithm. In spite of being an iterative

numerical one, the proposed algorithm is shown to

have a very low computational cost. In addition, the

inverse of De Boor algorithm is numerically stable as

it builds upon De Boor algorithm (De Boor 1978).

Convergence analysis based on the Lyapunov method

is included.

2. Modelling of the Hammerstein system based on

B-spline functions

2.1. The Hammerstein system

TheHammerstein system, as shown in Figure 1, consists

of a cascade of two subsystems, a nonlinear memoryless

function 	(.) as the first subsystem, followed by a

linear dynamic part as the second subsystem.

The system can be represented by

yðtÞ ¼ ŷðtÞ þ �ðtÞ

¼ ÿa1yðtÿ 1Þ ÿ a2yðtÿ 2Þ ÿ � � � ÿ anayðtÿ naÞ

þ b1vðtÿ 1Þ þ � � � þ bnbvðtÿ nbÞ þ �ðtÞ,

ð1Þ

vðtÿ j Þ ¼ 	ðuðtÿ j ÞÞ, j ¼ 1, . . . , nb, ð2Þ

where y(t) is the system output and u(t) the system

input. �(t) is assumed to be a white noise sequence

independent of u(t) with zero mean and variance of �2.

v(t) is the output of nonlinear subsystem and the input

to the linear subsystem. aj’s and bj’s are parameters of

the linear subsystem. na and nb are assumed to be

known system output and input lags, respectively.

Denote a ¼ ½a1, . . . , ana �
T 2 <na and b ¼ ½b1, . . . , bnb �

T 2

<nb . It is assumed that Aðqÿ1Þ ¼ 1þ a1q
ÿ1 þ � � �þ

anaq
ÿna and Bðqÿ1Þ ¼ b1q

ÿ1 þ � � � þ bnbq
ÿnb are coprime

polynomials of qÿ1, where qÿ1 denotes the backward

shift operator. The gain of the linear subsystem is

given by

G ¼ lim
q!1

Bðqÿ1Þ

Aðqÿ1Þ
¼

Pnb
j¼1 bj

1þ
Pna

j¼1 aj
: ð3Þ

The two objectives of the work are that of the

system identification and the subsequent controller

design for the identified model. The objective of system

identification for the above Hammerstein model is

that, given an observational input/output data set

DN ¼ f yðtÞ, uðtÞgNt¼1, to identify	(.) and to estimate the

parameters aj, bj in the linear subsystems. Note that the

signals between the two subsystems are unavailable.

Without losing generality the following assump-

tions are initially made about the problem.

Assumption 1: 	(.) is a one-to-one mapping, i.e. it is

an invertible and continuous function.

Assumption 2: u(t) is bounded by Umin5 u(t)5Umax,

where Umin and Umax are assumed to be known finite

real values.

In this work the B-spline basis functions are

adopted in order to model 	(.). Specifically, the

B-spline basis functions are initially formed by using

the De Boor algorithm (de Boor 1978) for the input

data sets.

Linear

ξ(t)

ψ(•)
u(t) y(t)v(t)

Figure 1. The Hammerstein system.
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2.2. Modelling of W(.) using B-spline function

approximation

Univariate B-spline basis functions are parameterised

by the order of a piecewise polynomial of order k, and

also by a knot vector which is a set of values defined on

the real line that break it up into a number of intervals.

Supposing that there are d basis functions, the knot

vector is specified by (dþ k) knot values, {U1,

U2, . . . ,Udþk}. At each end there are k knots satisfying

the condition of being external to the input region, and

as a result the number of internal knots is (dÿ k).

Specifically

U1 5U2 5Uk

¼ Umin 5Ukþ1 5Ukþ2 5 � � � 5Ud 5Umax

¼ Udþ1 5 � � � 5Udþk: ð4Þ

Given these predetermined knots, a set of d B-spline

basis functions can be formed by using the De Boor

recursion (de Boor 1978), given by

B
ð0Þ
j ðuÞ ¼

1 if Uj � u5Ujþ1,

0 otherwise,

�

j ¼ 1, . . . , ðdþ kÞ

ð5Þ

B
ðiÞ
j ðuÞ ¼

uÿUj

Uiþj ÿUj

B
ðiÿ1Þ
i ðuÞ þ

Uiþjþ1 ÿ u

Uiþjþ1 ÿUjþ1

B
ðiÿ1Þ
jþ1 ðuÞ,

j ¼ 1, . . . , ðdþ kÿ iÞ

9

=

;

i ¼ 1, . . . ,k: ð6Þ

We model 	(.) as a B-spline neural network (Harris

et al. 2002), in the form

	ðuÞ ¼
Xd

j¼1

B
ðkÞ
j ðuÞ!j, ð7Þ

where !j’s are weights to be determined. Denote

x¼ [!1, . . . ,!d]
T2Rd. Note that due to the piecewise

nature of B-spline functions, there are only (kþ 1)

basis functions with non-zero values for any point u.

Hence, the computational cost for the evaluation of

	(u) based on the De Boor algorithm is determined by

the polynomial order k, rather than the number of

knots, and this is in the order of O(k2).

2.3. The system identification algorithm

With the B-spline approximation, the model predicted

output ŷ(t) in (1) can be written as

ŷðtÞ ¼ ÿa1yðtÿ 1Þ ÿ a2yðtÿ 2Þ ÿ � � � ÿ anayðtÿ naÞ

þ b1
Xd

j¼1

!jB
ðkÞ
j ðtÿ 1Þ þ � � � þ bnb

Xd

j¼1

!jB
ðkÞ
j ðtÿ nbÞ:

ð8Þ

Over the estimation data set DN ¼ f yðtÞ, uðtÞgNt¼1, (1)

can be rewritten in a linear regression form

yðtÞ ¼ ½pðxðtÞÞ�Tq þ �ðtÞ, ð9Þ

where x(t)¼ [ÿy(tÿ 1), . . . ,ÿy(tÿ na), u(tÿ 1), . . . ,

u(tÿ nb)]
T is system input vector of observables with

assumed known dimension of (naþ nb), q ¼

½aT,ðb1!1Þ,...,ðb1!d Þ,...,ðbnb!1Þ,...,ðbnb!nb Þ�
T2<naþd�nb ,

pðxðtÞÞ ¼ ½ÿyðtÿ 1Þ, . . . ,ÿyðtÿ naÞ,B
ðkÞ
1 ðtÿ 1Þ, . . . ,

B
ðkÞ
d ðtÿ 1Þ, . . . ,B

ðkÞ
1 ðtÿ nbÞ, . . . ,B

ðkÞ
d ðtÿ nbÞ�

T

ð10Þ

(9) can be rewritten in the matrix form as

y ¼ Pq þ ., ð11Þ

where y¼ [ y(1), . . . , y(N )]T is the output vector.

.¼ [�(1), . . . , �(N )]T, and P is the regression matrix

P ¼

p1ðxð1ÞÞ p2ðxð1ÞÞ � � � pnaþd�nbðxð1ÞÞ

p1ðxð2ÞÞ p2ðxð2ÞÞ � � � pnaþd�nbðxð2ÞÞ

� � � � � � � � � � � �

p1ðxðN ÞÞ p2ðxðN ÞÞ � � � pnaþd�nb ðxðN ÞÞ

2

6
6
6
4

3

7
7
7
5
:

ð12Þ

The parameter vector q can be found as the least

squares solution of

q LS ¼ Bÿ1PTy ð13Þ

provided that B¼PTP is of full rank. Alternatively, if

this condition is violated, i.e. Rank(B)¼ r5 naþ d � nb,

then performing the singular value decomposition

(SVD) BQ¼Q', where '¼diag[�1, . . . , �r, 0, . . . , 0],

Q ¼ ½q1, . . . , q1, . . . , qnaþd�nb
�, followed by truncating

the eigenvectors corresponding to zero eigenvalues,

we have

q
svd
LS ¼

Xr

i¼1

yTPqi
�i

qi: ð14Þ

This procedure produces our final estimate of â,

which is simply taken as the subvector of the resultant

q
svd
LS , consisting of its first na elements. Clearly,

information on b̂ and x̂ are contained in q
svd
LS .

Hence, it is straightforward to recover these based on

Bai’s approach using singular value decomposition

(SVD; Bai and Fu 2002). Alternatively, the parameter

estimation for b and x can be obtained using our

previous work (Hong and Mitchell 2007). This is

outlined below and in the summary in Appendix A.

Consider that a sequence z(t) is generated, based on the

derived parameter estimates â, as an auxiliary model

1978 X. Hong et al.
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output sequence, given by

zðtÞ ¼ yðtÞ þ â1yðtÿ 1Þ þ â2yðtÿ 2Þ

þ � � � þ ânayðtÿ naÞ: ð15Þ

z(t) can be interpreted as an intermediate model

residual after the model output y(t) has been explained

by the na regressors of y(tÿ 1), . . . , y(tÿ na). Then

consider approximating z(t) using the following model

ẑðtÞ ¼ b1
Xd

j¼1

!jB
ðkÞ
j ðtÿ 1Þ þ � � � þ bnb

Xd

j¼1

!jB
ðkÞ
j ðtÿ nbÞ,

¼ gðxðtÞ, b,xÞ: ð16Þ

By setting the objective function as

Jgðb,xÞ ¼
1

N

XN

t¼1

½zðtÞ ÿ gðxðtÞÞ, b,xÞ�2,

subject to

Pnb
j¼1 b̂j

1þ
Pna

j¼1 âj
¼ 1,

the Gauss–Newton algorithm subject to constraints as

proposed in Hong and Mitchell (2007) is used in this

work. For completeness, see Appendix A.

3. The controller design combining the inverse of

De Boor algorithm and pole assignment

3.1. The proposed inverse of De Boor algorithm

Using parameter estimates !̂j (Appendix A), the

output of the nonlinear subsystem is represented by

v ¼ 	̂ðuÞ ¼
Xd

j¼1

B
ðkÞ
j ðuÞ!̂j: ð17Þ

In this section we consider the problem of finding its

inverse, u ¼ 	̂
ÿ1
ðvÞ, given that v lies in the region

between two points, 	̂ðUminÞ and 	̂ðUmaxÞ, i.e. finding

the root of the polynomial equation v ¼ 	̂ðuÞ ¼
Pd

j¼1 B
ðkÞ
j ðuÞ!̂j. In order to solve this problem, the

inverse of De Boor algorithm is introduced below.

Initially, a sequence in the domain of v is

generated as

Vi ¼
Xd

j¼1

B
ðkÞ
j ðUiÞ!̂j, i ¼ 1, 2, . . . , ðdþ kÞ: ð18Þ

Note that v ¼ 	̂ðuÞ is a one-to-one mapping, and this

means that the resultant sequence due to the internal

knots [Vk, . . . ,Vd] is either increasing or decreasing.

The algorithm is as follows.

(1) Given v, and the sequence {Vi}, initially find

l ¼ argfðvÿ ViÞðvÿ Viþ1Þ5 0,

i ¼ k, kþ 1, . . . , ðdÿ 1Þg:
ð19Þ

(2) Initialise u(0) as a random number with

Ul5 u(0)5Ulþ1.

(3) The (mþ 1)th step is given by

uðmþ1Þ ¼ uðmÞ þ DuðmÞ

¼ uðmÞ þ � � sign
Vd ÿ Vk

Ud ÿUk

� �
ÿ

vÿ 	̂ðuðmÞÞ
�

, ð20Þ

where

signðsÞ ¼
1 if s � 0,

ÿ1 if s5 0,

�

ð21Þ

05 �� 1 is the learning rate, that is preset

empirically. 	̂ðuðmÞÞ is calculated using De Boor

algorithm ((5) and (6) and (17)).

(4) Set m¼mþ 1, repeat Step 3 and 4, until
jDuðmÞj
UdÿUk

5 ", where "4 0 is a predetermined

small number in order to achieve the required

precision, e.g. "¼ 10ÿ3. Or the iteration can be

terminated when m reaches a predetermined

maximum value.

Theorem 1: The sequence {u(0), . . . , u(m), . . .} converges

to the unique solution of u ¼ 	̂
ÿ1
ðvÞ, as m!1, if

�5 2

j	̂
0
ðuðmÞÞj

, where 	̂
0
ðuðmÞÞ ¼ d	̂

du
ju¼uðmÞ .

Proof: (i) Proof of the existence of the inverse. This is

straightforward as it is easy to verify by the interme-

diate value theorem that there exists a point

Ul5 u5Ulþ1, such that v ¼ 	̂ðuÞ.

(ii) Proof of convergency. Construct a Lyapunov

function in the form of

Lm ¼ vÿ	ðuðmÞÞ
ÿ �2

� 0: ð22Þ

Since � can be set as arbitrarily small, it is assumed

that the following first order Taylor expansion is

adequate

	̂ðuðmþ1ÞÞ � 	̂ðuðmÞÞ þ 	̂
0
ðuðmÞÞDuðmÞ: ð23Þ

Clearly we have sign VdÿVk

UdÿUk

h i

¼ sign½	̂
0
ðuðmÞÞ�,

such that

sign
Vd ÿ Vk

Ud ÿUk

� �

	̂
0
ðuðmÞÞ ¼ j	̂

0
ðuðmÞÞj: ð24Þ
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Applying (20), (23) and (24) to yield

Lmþ1 ÿ Lm

¼ 2vÿ 	̂ðuðmÞÞ ÿ 	̂ðuðmþ1ÞÞ
� �

	̂ðuðmÞÞ ÿ 	̂ðuðmþ1ÞÞ
� �

¼ ÿ	̂
0
ðuðmÞÞ 2vÿ 2	̂ðuðmÞÞ ÿ 	̂

0
ðuðmÞÞDuðmÞ

� �

DuðmÞ

¼ ÿj	̂
0
ðuðmÞÞj 2ÿ �j	̂

0
ðuðmÞÞj

� �

vÿ 	̂ðuðmÞÞ
� �2

¼ ÿj	̂
0
ðuðmÞÞj 2ÿ �j	̂

0
ðuðmÞÞj

� �

Lm5 0

if �5
2

j	̂
0
ðuðmÞÞj

: ð25Þ

Hence, Lmþ1ÿLm! 0, as m!1. It follows from (25)

that Lm! 0. Finally, because 	̂ðuÞ is a one-to-one

mapping, then u is the unique solution of v ¼ 	̂ðuÞ.

This concludes the proof.

3.2. Pole assignment controller

The closed-loop control system for Hammerstein

model is as shown in Figure 2, in which

Fðqÿ1Þ ¼ 1þ f1q
ÿ1 þ � � � þ fnfq

ÿnf , ð26Þ

Gðqÿ1Þ ¼ g0 þ g1q
ÿ1 þ � � � þ gngq

ÿng , ð27Þ

Hðqÿ1Þ ¼ h0 þ h1q
ÿ1 þ � � � þ hnhq

ÿnh , ð28Þ

where nf, ng and nh are lags in the controller to be

determined. Here the problem under study is the

control of the Hammerstein system, of which the

nonlinear subsystem is modelled as a B-spline curve

and identified from input/output data. The proposed

controller is the pole assignment design scheme for F,

G, H (Wellstead, Edmunds, Pragerand, and Zanker

1979; Wellstead and Zarrop 1991), followed by 	̂
ÿ1
,

which is calculated using the inverse of the De Boor

algorithm as introduced in Section 3.1. Note that

Figure 2 simply depicts the gain schedule linearisation

using an approximation inverse (Astrom and

Wittenmark 1989). In the following, it is shown that

the B-spline based Hammerstein model is amenable to

linear controller design, e.g. pole assignment.

We assume that the modelling of 	̂
ÿ1

using the

inverse of De Boor algorithm, as proposed in this

work, can cancel the actual nonlinearity in

Hammerstein system. Hence, the closed-loop descrip-

tion of the system is

½AFþ BG�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

closed loop denominator

yðtÞ ¼ BHrðtÞ,
ð29Þ

where r(t) is a reference signal for the system output

y(t) to follow. The dynamics of the closed-loop are

specified by a stable polynomial

AFþ BG ¼ Tðqÿ1Þ ¼ 1þ t1q
ÿ1 þ � � � þ tnq

ÿn: ð30Þ

1
−1

ψ
B

A

G

F

H

Hammerstein system

v(t)r(t)
u(t)

ψ(•)
v(t) y(t)

_

+

Figure 2. The control of Hammerstein system using pole assignment and the inverse of De Boor algorithm.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u

B
j(3

) ( u
)

Figure 3. Eight B-spline basis functions used in the two
Hammerstein systems.
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The coefficients of polynomials F, G can be solved by

setting nf ¼ nbþ 1, ng¼ naÿ 1, n� naþ nbþ 1. H can be

predetermined as desired subject to

lim
q!1

Bðqÿ1ÞHðqÿ1Þ

Tðqÿ1Þ
¼ 1: ð31Þ

From Figure 2, it is clear that the actual control input

u(t) applied to the Hammerstein system is given by

uðtÞ ¼ 	̂
ÿ1
ðv̂ðtÞÞ ¼ 	̂

ÿ1
�
HrðtÞ ÿ GyðtÞ

F

�

ð32Þ

Rewriting (32) in a recursive form yields the following

control law

1: v̂ðtÞ ¼
Xnh

j¼0

hjrðtÿ j Þ ÿ
X
ng

j¼0

gjyðtÿ j Þ ÿ
X
nf

j¼1

fjv̂ðtÿ j Þ,

2: Find uðtÞ ¼ 	̂
ÿ1
ðv̂ðtÞÞ using the inverse

of De Boor algorithm. ð33Þ

Note that in practice if v̂ðtÞ is out of the region between

	̂ðUminÞ and 	̂ðUmaxÞ (which is undesirable), v̂ðtÞ is

reset as 0 to avoid this to happen at the next time step.

The computational cost of the inverse of De Boor

algorithm is that of De Boor algorithm at O(k2), scaled

by the number of iterations. The proposed controller is

very efficient. First, because of the piecewise nature of

B-spline, the polynomial order k can be kept quite low

without losing its approximation performance. Second

the number of iterations needed for convergence

should be low as the proposed algorithm provides an

initial solution that is close to the real inverse.

4. Numerical examples

Two Hammerstein systems are simulated, in which the

linear subsystems are the same for both systems,

as A(qÿ1)¼ 1ÿ 1.2qÿ1þ 0.9qÿ2, B(qÿ1)¼ 1.7qÿ1ÿ qÿ2.

For the nonlinear subsystem, 	(.) is given by

System 1 : 	ðuÞ ¼ 2 signðuÞ
ffiffiffiffiffiffi

juj
p

, ð34Þ

System 2 : 	ðuÞ ¼ ÿ2 signðuÞu2, ð35Þ

respectively. Note that these nonlinear functions may

be associated with physical devices such as nonlinear

valves, e.g. the exit flow rate/fluid level in some parts of

a pH neutralisation process (Henson and Seborg 1994).

The variances of the additive noise to the system

output are set as �2¼ 0.0001 and 0.01, respectively, for

both systems. For each system, 1000 training data

samples y(t) were generated by using (1) and (2), where

u(t) was uniformly distributed random variable
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Figure 4. The modelling results for the nonlinear function
	(u): (a) System 1 and (b) System 2.

Table 1. Results of linear subsystem parameter estimation for two systems.

a1 a2 b1 b2

True parameter ÿ1.2 0.9 1.7 ÿ1
Estimate parameters (System 1, �2¼ 0.0001) ÿ1.1986 0.8993 1.6886 ÿ0.9880
Estimate parameters (System 1, �2¼ 0.01) ÿ1.2003 0.9006 1.7115 ÿ1.0112
Estimate parameters (System 2, �2¼ 0.0001) ÿ1.1989 0.8994 1.6887 ÿ0.9882
Estimate parameters (System 2, �2¼ 0.01) ÿ1.1992 0.8999 1.6781 ÿ0.9774
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u(t)2 [ÿ1.5, 1.5]. The polynomial degree of B-spline

basis functions was set as k¼ 2 (piecewise quadratic).

The knots sequence Uj is set as

½ÿ3, ÿ2:5, ÿ2, ÿ1, ÿ0:3, 0, 0:3, 1, 2, 2:5, 3�:

The resultant 8 basis functions are plotted in Figure 3.

Initially, the system identification was carried out using

the modelling algorithm outlined in Appendix A for

each system. The modelling results are shown in

Table 1, for the linear subsystem, and in Figure 4(a)

and (b) for the nonlinear subsystems.

For both systems, the simulations of the pole

assignment controllers were experimented based on a

given polynomial T(qÿ1)¼ 1ÿ 0.6qÿ1þ 0.1qÿ2. Under

the assumption that the proposed inverse of De Boor

algorithm can cancel the nonlinearity in the system

which is modelled as shown Figure 4, and by using

parameter estimates given in Table 1, the required

controller polynomials are estimated as

Fðqÿ1Þ ¼ 1ÿ 0:4862qÿ1

and

Gðqÿ1Þ ¼ 0:6425ÿ 0:4426qÿ1:

and we predetermine

Hðqÿ1Þ ¼ 0:5300þ 0:1836qÿ1:

The learning rate was preset as �¼ 0.02. The maximum

value of iteration number m was predetermined as 200.

The performance of the controllers for the two systems

were tested. For each system, the reference signals r(t)

are generated as a series of square waves with its

magnitude at three different levels every 200 time steps.

Figures 5(a) and 6(a) plot the computed control signal

applied to each system, respectively. Figures 5(b) and

6(b) plot the system output y(t) together with the

corresponding reference signal r(t) for both systems,

respectively. From these figures, the proposed is shown

method to have excellent results in terms of system

identification as well as the subsequent control for the

identified systems.
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Figure 5. The results of the pole assignment controller for
System 1.
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5. Conclusions

This brief article has introduced a simple and effective

method for the modelling and control of the

Hammerstein system based on observational input/

output data. The modelling of the nonlinear static

function in the Hammerstein system is based on the

B-spline function approximation. The main contribu-

tion of this article is the calculation of the inverse of the

estimated nonlinear function using a new algorithm,

the inverse of De Boor algorithm. This step is used to

remove the nonlinearity, lending to the linear control-

ler methods. A pole assignment controller is used for

completeness. Mathematical analysis is provided to

prove the convergence of the proposed inverse of De

Boor algorithm. The efficacy of the proposed approach

have been demonstrated via two numerical examples.

Acknowledgements

The authors gratefully acknowledge that part of this work
was supported by EPSRC in the UK. They also thank the
reviewers for their valuable comments.

Notes on contributors

Xia Hong received her university
education at National University of
Defense Technology, P.R. China
(BSc, 1984; MSc, 1987), and
University of Sheffield, UK (PhD,
1998), all in automatic control. She
worked as a research assistant in
Beijing Institute of Systems
Engineering, Beijing, China from

1987–1993. She worked as a research fellow in the
Department of Electronics and Computer Science at
University of Southampton from 1997–2001. She is currently
a Reader of computational intelligence at School of Systems
Engineering, University of Reading. She is actively engaged
in research into nonlinear systems identification, data
modelling, estimation and intelligent control, neural net-
works, pattern recognition, learning theory and their
applications. She has published over 100 research papers,
and coauthored a research book. She was awarded a Donald
Julius Groen Prize by IMechE in 1999.

Richard Mitchell received his B.Sc.
(Hons) in cybernetics and control
engineering and his PhD in cyber-
netics from the Department of
Cybernetics, University of Reading,
Reading, UK, in 1980 and 1987,
respectively. He was appointed
Lecturer in Cybernetics in 1983 and
is now Senior Lecturer in Cybernetics

and also Senior Tutor in the School of Systems Engineering,
University of Reading. He has published four textbooks,
edited a custom book on cybernetics and has over 100
research papers in control engineering, robotics and learning
systems.

Sheng Chen received his BEng in
control engineering from the East
China Petroleum Institute in 1982
and his PhD in control engineering
from the City University at London in
1986. In 2005, he was awarded
the Doctor of Sciences (DSc) by the
University of Southampton. He joined
the School of Electronics and

Computer Science, the University of Southampton in
September 1999. He previously held research and academic
appointments at the Universities of Sheffield, Edinburgh and
Portsmouth. Professor Chen is a Chartered Engineer (CEng),
a Fellow of IET (FIET) and a Fellow of IEEE (FIEEE). His
research interests are in adaptive signal processing for
communications, wireless communications, modelling and
identification of nonlinear systems, learning theory and
neural networks, finite-precision digital controller design
and networked control systems, evolutionary computation
methods and optimisation. In the database of the world’s
most highly cited researchers in various disciplines, compiled
by Institute for Scientific Information (ISI) of the USA,
Professor Chen is on the list of highly cited researchers in the
engineering category.

References

Anbumani, K., Patnaik, L.M., and Sarma, I.G. (1981),

‘Self-tuning Minimum Variance Control of Nonlinear

Systems of the Hammerstein Model’, IEEE Transactions

on Automatic Control, AC-26, 959–961.

Astrom, K.J., and Wittenmark, B. (1989), Adaptive Control,

Reading, MA: Addison Wesley.

Bai, E.W. (1998), ‘An Optimal Two-stage Identification

Algorithm for Hammerstein-Wiener Nonlinear Systems’,

Automatica, 34, 333–338.

Bai, E.W., and Fu, M.Y. (2002), ‘A Blind Approach to

Hammerstein Model Identification’, IEEE Transactions on

Signal Processing, 50, 1610–1619.

Balestrino, A., Landi, A., Ould-Zmirli, M., and Sani, L.

(2001), ‘Automatic Nonlinear Auto-tuning Method for

Hammerstein Modelling of Electrical Drives’, IEEE

Transactions on Industrial Electronics, 48, 645–655.

Billings, S.A., and Fakhouri, S.Y. (1979), ‘Nonlinear System

Identification Using the Hammerstein Model’,

International Journal of Systems Science, 10, 567–578.

Bloemen, H.H., van den Boom, T.J., and Verbruggen, H.B.

(2000), ‘Model Based Predictive Control for Hammerstein

Systems’, in Proceedings of the 39th IEEE Conference on

Decision and Control, Sydney, Australia, pp. 4963–4968.

Bloemen, H.H.J., van den Boom, T.J., and Verbruggen, H.B.

(2001), ‘Model-based Predictive Control for

Hammerstein–Wiener Systems’, International Journal of

Control, 74, 482–295.

Brown, M., and Harris, C.J. (1994), Neurofuzzy Adaptive

Modelling and Control, Prentice Hall: Hemel Hempstead.

Chaoui, F.Z., Giri, F., Rochdi, Y., Haloua, M., and Naitali,

A. (2005), ‘System Identification Based Hammerstein

Model’, International Journal of Control, 78, 430–442.

International Journal of Systems Science 1983

D
o

w
n

lo
ad

ed
 b

y
 [

U
n

iv
er

si
ty

 o
f 

S
o

u
th

am
p

to
n

 H
ig

h
fi

el
d

] 
at

 0
1

:4
3

 0
9

 A
u

g
u

st
 2

0
1

2
 



Chen, H.F. (2004), ‘Pathwise Convergence of Recursive

Identification Algorithms for Hammerstein Systems’,

IEEE Transactions on Automatic Control, 49, 1873–1896.

De Boor (1978), A Practical Guide to Splines, New York:

Spring Verlag.

Farin, G. (1994), Curves and Surfaces for Computer-aided

Geometric Design: A Practical Guide, Boston:

Academic Press.

Farouki, R.T., and Goodman, T.N.T. (1996), ‘On the

Optimal Stability of the Bernstein Basis’, Mathematics of

Computation, 65, 1553–1566.

Fruzzetti, E., Palazoglu, A., and Mcdonald, K.A. (1997),

‘Nonlinear Model Predictive Control Using Hammerstein

Models’, Journal of Process Control, 7, 31–41.

Greblicki, W. (1989), ‘Nonparametric Orthogonal Series

Identification of Hammerstein Systems’, International

Journal of Systems Science, 20, 2355–2367.

Greblicki, W. (2002), ‘Stochastic Approximation in

Nonparametric Identification of Hammerstein Systems’,

IEEE Transactions on Automatic Control, 47, 1800–1810.

Greblicki, W., and Pawlak, M. (1986), ‘Identification of

Discrete Hammerstein Systems Using Kernel Regression

Estimate’, IEEE Transactions on Automatic Control,

AC-31, 74–77.

Harris, C.J., Hong, X., and Gan, Q. (2002), Adaptive

Modelling, Estimation and Fusion from Data: A

Neurofuzzy Approach, Berlin, Heidelberg: Springer-Verlag.

Henson, M.A., and Seborg, D.E. (1994), ‘Adaptive

Nonlinear Control of a pH Neutralization Process’,

IEEE Transactions on Control Systems Technologies, 2,

169–182.

Hong, X., and Harris, C.J. (2000), ‘Generalised Neurofuzzy

Network Modelling Algorithms Using Bezier–Bernstein

Polynomial Functions and Additive Decomposition’,

IEEE Transactions on Neural Networks, 11, 889–902.

Hong, X., and Mitchell, R.J. (2006), ‘A Pole Assignment

Controller for Bezier–Bernstein Polynomial Based

Hammerstein Model’, in Proceedings of International

Control Conference (ICC) 2006, Glascow, UK.

Hong, X., and Mitchell, R.J. (2007), ‘A Hammerstein Model

Identification Algorithm Using Bezier–Bernstein

Approximation’, IET Proceedings Control Theory and

Applications, 1, 1149–1159.

Hunter, I.W., and Korenberg, M.J. (1986), ‘The

Identification of Nonlinear Biological Systems: Wiener

and Hammerstein Cascade Models’, Biological

Cybernetics, 55, 135–144.

Kavli, T. (1993), ‘ASMOD – An Algorithm for Adaptive

Spline Modelling of Observation Data’, International

Journal of Control, 58, 947–967.

Kwak, B., Yagle, A.E., and Levitt, J.A. (1998), ‘Nonlinear

System Identification of Hydraulic Actuator Friction

Dynamics Using a Hammerstein Model’, in Proceedings

of the IEEE ASSP’98, Seattle, WA, pp. 1933–1936.

Lang, Z.Q. (1997), ‘A Nonparametric Polynomial

Identification Algorithm for the Hammerstein System’,

IEEE Transactions on Automatic Control, 42,

1435–1441.

Patwardhan, R.S., Lakshminarayanan, S., and Shah, S.L.

(1998), ‘Constrained Nonlinear MC Using Hammerstein

and Wiener Model: PLS Framework’, AIChE Journal, 44,

1611–1622.
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Appendix A: A summary of the modelling algorithm

(1) Based on the training data set and any prior
knowledge of the system, predetermine the number
of basis functions d, the polynomial order k and the
input range [Umin,Umax]. Predetermine a set of
(dþ k) knots according to (4).

(2) Over the training data set DN ¼ f yðtÞ, uðtÞgNt¼1, con-
struct d basis functions B

ðd Þ
j ðuðtÞÞ based on (5) and

(6). Subsequently, apply the method described in
Section 2.3 to find the parameter vector â as the
subvector of q svd

LS .
(3) Construct the auxiliary model output sequence z(t)

using (15).
(4) Apply the Gauss–Newton algorithm subject to

constraint (Hong and Mitchell 2007) to find b̂ and x̂.
(5) Based on x̂, the underlying function 	(.) for any

point within the range (Umin, Umax) can be recovered
by applying the De Boor algorithm (using (5)–(7)).
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