
Least Bit Error Rate Adaptive MultiuserDetetionSheng ChenDepartment of Eletronis and Computer Siene, the University ofSouthampton, High�eld, Southampton SO17 1BJ, U.K.Abstrat. Linear detetor required at diret-sequene ode division multiple a-ess (DS-CDMA) ommuniation systems is lassially designed based on the min-imum mean squares error (MMSE) riterion, whih an eÆiently be implementedusing the standard adaptive algorithms, suh as the least mean square (LMS) al-gorithm. As the probability distribution of the linear detetor's soft output isgenerally non-Gaussian, the MMSE solution an be far away from the optimalminimum bit error rate (MBER) solution. Adopting a non-Gaussian approah nat-urally leads to the MBER linear detetor. Based on the approah of Parzen win-dow or kernel density estimation for approximating the probability density funtion(p.d.f.), a stohasti gradient adaptive MBER algorithm, alled the least bit errorrate (LBER), is developed for training a linear multiuser detetor. A simpli�ed orapproximate LBER (ALBER) algorithm is partiularly promising, as it has a om-putational omplexity similar to that of the lassial LMS algorithm. Furthermore,this ALBER algorithm an be extended to the nonlinear multiuser detetion.Keywords: CDMA, linear detetor, mean square error, bit error rate, prob-ability density funtion, adaptive algorithm, least mean square algorithm,least bit error rate algorithm, nonlinear detetor.1 IntrodutionDS-CDMA onstitutes an attrative multiuser sheme that allows users totransmit at the same arrier frequeny. However, this reates multiuser inter-ferene (MUI) whih, if not ontrolled, an seriously degrade the quality ofreeption. Multiuser detetion provides an e�etive means to ombating MUI[1℄,[2℄. In a DS-CDMA ommuniation system, the objetive of the reeiveris to detet the transmitted information bits of one (at mobile-end) or many(at base station) users. The �rst ase is onerned with ommuniation frombase station to mobile and is ommonly alled downlink. This hapter on-siders multiuser detetion at mobile. In the downlink senario, a mobile hasa very limited omputing power, and omputational omplexity is a ritialissue. Typially, a linear detetor is employed at the reeiver to meet thestrit real-time omputational onstraint.A variety of linear multiuser detetors have been proposed [2℄{[8℄. A verysimple linear detetor is the mathed �lter (MF) with the detetor weight



vetor being set to the user spreading ode. However, multipath distortions,whih are often enountered in DS-CDMA systems, an seriously degrade theperformane of the MF. Another linear detetor struture is alled the zero-foring (ZF) detetor. As this ZF solution ignores the noise, it su�ers froma serious noise enhaning problem. Moreover, other interfering user odesrequired in alulating the ZF solution may not be available to the detetor,and it is not known how to adaptively implement the ZF solution. The mostpopular linear multiuser detetor is the MMSE detetor, as it usually providesgood performane and an readily be implemented using standard adaptive�lter tehniques suh as the LMS algorithm.The ultimate performane riterion of a detetor is its bit error rate(BER). Although for the linear detetor a small mean square error (MSE) isassoiated with a small BER, the MMSE solution is generally not the MBERone. This is obvious, sine in order for the MMSE solution to be the MBERsolution the detetor's soft output should be Gaussian distributed. The on-ditional p.d.f. of the linear detetor output is however a sum of Gaussiandistributions and therefore non-Gaussian. In the situation where only a fewstrong interfering users exist, the MMSE solution an be onsiderably inferiorto the MBER one. A non-adaptive MBER linear multiuser detetor is onsid-ered in [9℄ based on gradient optimization for narrow-band Gaussian CDMAhannels whih do not introdue intersymbol interferene (ISI). There are afew adaptive MBER linear multiuser detetors in the literature [10℄{[12℄.The adaptive MBER algorithm given in [10℄ uses a di�erene approxima-tion to estimate the gradient of one-sample error probability. Its main draw-bak is very slow onvergene, partiularly in the situation where the errorrate is very low. Furthermore, the omputational omplexity of the algorithmis high and is in the order O(M2),M being the detetor length. The adaptiveMBER algorithm reported in [11℄, alled the approximate MBER (AMBER)detetor, is appealing due to its omputational simpliity. It is a stohastigradient algorithm that is idential to the signed-error LMS algorithm [13℄,exept in the viinity of the deision boundary where it is modi�ed to on-tinue updating the weights when the signed-error LMS algorithm would not.The AMBER algorithm therefore an ontinuously update when the detetorweight vetor has reahed the regions of very low error rate.This hapter onsiders the adaptive MBER algorithm based on a densityapproximation approah [12℄, alled the LBER algorithm. Previous studieshave shown that this LBER algorithm outperforms the AMBER algorithmin terms of onvergene speed and steady-state BER misadjustment, in boththe linear multiuser detetion appliation [12℄ and the single-user equalizationappliation [14℄,[15℄. Although the omputational requirement of this LBERlinear detetor is onsiderably higher than the AMBER linear detetor, itsomplexity is still in the order O(M). Furthermore, as will be shown in thishapter, a simpli�ed LBER algorithm alled the ALBER has a similar per-formane to the full LBER algorithm and yet has a omplexity similar to the



very simple LMS algorithm. An added advantage of this ALBER algorithmis that it an be extended to the nonlinear multiuser detetor.A basi assumption for a linear detetor to work adequately is that thetwo lasses of signal states related to the transmitted bit being +1 and �1,respetively, are linearly separable. Multipath distortions however may resultin linearly inseparable situation. In the nonlinear separable ase, a nonlin-ear multiuser detetor is required to ahieve good performane. Classially,training a nonlinear detetor is based on the LMS algorithm. Previous work[16℄,[17℄ has shown that a nonlinear detetor trained by the ALBER algo-rithm an losely math the theoretial optimal performane.2 System ModelThe disrete-time baseband model of the synhronous DS-CDMA downlinksystem supporting N users and transmitting M (> N) hips per bit is de-pited in Fig. 1, where bi(k) 2 f�1g denotes the k-th bit of user i, theunit-length signature sequene for user i is �si = [�si;1 � � � �si;M ℄T and thetransfer funtion assoiated with the hannel impulse response (CIR) at hiprate is H(z) = nh�1Xi=0 hiz�i: (1)The bit vetor of N users at bit instant k is b(k) = [b1(k) � � � bN (k)℄T ,and the reeived signal vetor obtained by sampling at hip rate is r(k) =[r1(k) � � � rM (k)℄T . It an be shown that the baseband model for r(k) isr(k) = P26664 b(k)b(k � 1)...b(k � L+ 1)37775+ n(k) = �r(k) + n(k) (2)where L is the hannel ISI span, �r(k) denotes the noise-free reeived signalvetor, the white Gaussian noise vetor n(k) = [n1(k) � � � nM (k)℄T with
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Fig. 1. Disrete-time model of synhronous CDMA downlink.



E[n(k)nT (k)℄ = �2nI, and the M � LN system matrix P is given byP =H266664 �SA 0 � � � 00 �SA . . . ...... . . . . . . 00 � � � 0 �SA377775 (3)with the user signature matrix �S = [�s1 � � � �sN ℄, the diagonal user signalamplitude matrix A = diagfA1 � � � ANg and the M � LM CIR matrixH = 26664h0 h1 � � � hnh�1 0 � � � 0 0 0 00 h0 h1 � � � hnh�1 0 � � � 0 0 0... . . . . . . . . . � � � . . . . . . . . . ...0 � � � 0 h0 h1 � � � hnh�1 0 � � � 037775 : (4)The hannel ISI span L depends on the length of the CIR, nh, related to thelength of the hip sequene, M . For nh = 1, L = 1; for 1 < nh �M , L = 2;for M < nh � 2M , L = 3; and so on.Let the Nb = 2LN possible ombinations of [bT (k) � � � bT (k � L + 1)℄Tbe b(j) = 26664 b(j)(k)b(j)(k � 1)...b(j)(k � L+ 1)37775 ; 1 � j � Nb; (5)and b(j)i the i-th element of b(j)(k). Clearly,�r(k) 2 R 4= f�rj = Pb(j); 1 � j � Nbg: (6)R is alled the set of noise-free reeived signal states. For user i, it an bedivided into two subsets depending on the value of bi(k)R(�) 4= f�r(�)j 2 R : bi(k) = �1g: (7)Consider the linear detetor for user i whih takes the formy(k) = wT r(k) = wT (�r(k) + n(k)) = �y(k) + e(k) (8)where w = [w1 � � � wM ℄T is the detetor weight vetor and e(k) is Gaussianwith zero mean and variane wTw�2n. The estimated bi(k) is given byb̂i(k) = sgn(y(k)) = �+1; y(k) � 0;�1; y(k) < 0: (9)Obviously, the salar �y(k) an only take values from the setY 4= f�yj = wT�rj ; 1 � j � Nbg (10)



whih an be divided into two subsets depending on the value of bi(k)Y(�) 4= f�y(�)j 2 Y : bi(k) = �1g: (11)For the linear detetor (8) to perform adequately, Y(+) and Y(�) must belinearly separable. Otherwise, a nonlinear detetor should be used. The simpleMF detetor is given by wMF = �si. The most popular solution for the lineardetetor (8) is the MMSE one given bywMMSE = ��2nI+PPT ��1 pi (12)with pi denoting the i-th olumn of P. Although user i may not know theother user odes and therefore may be unable to ompute wMMSE diretly,adaptive implementation using the LMS does not require to know the otheruser odes. The ZF solution wZF is obtained by setting �2n = 0 in (12).3 The MBER Linear Multiuser DetetorThe onditional p.d.f. of y(k) given bi(k) = +1 ispy(yj+ 1) = 1Nsbp2��npwTw NsbXj=1 exp0B���y � �y(+)j �22�2nwTw 1CA (13)where Nsb = Nb=2 is the number of points in Y(+) and �y(+)j 2 Y(+). Thus,the onditional BER of the linear detetor given bi(k) = +1 isPE;+(w) = Z 0�1 py(yj+ 1) d y = 1Nsb NsbXj=1Q (gj;+(w)) (14)where gj;+(w) = �y(+)j�npwTw = wT �r(+)j�npwTw = sgn(b(j)i )�y(+)j�npwTw (15)and Q(x) = 1p2� Z 1x exp��u22 � d u: (16)Similarly, the onditional p.d.f. of y(k) given bi(k) = �1 ispy(yj � 1) = 1Nsbp2��npwTw NsbXj=1 exp0B���y � �y(�)j �22�2nwTw 1CA (17)



where �y(�)j 2 Y(�), and the onditional BER given bi(k) = �1 isPE;�(w) = Z 10 py(yj � 1) d y = 1Nsb NsbXj=1Q (gj;�(w)) (18)where gj;�(w) = � �y(�)j�npwTw = sgn(b(j)i )�y(�)j�npwTw : (19)Beause of the symmetri distribution of Y , PE;�(w) = PE;+(w). Thus, theBER of the linear detetor with the weight vetor w isPE(w) = PE;+(w) = 1Nsb NsbXj=1Q (gj;+(w)) : (20)It is seen that the BER an be evaluated based on a single subset Y(+) (orY(�)). Also the BER is invariant to a positive saling of the weight vetor,that is, the BER depends on the diretion of w only.The MBER solution is de�ned aswMBER = argminw PE(w): (21)The gradient of PE(w) with respet to w isrPE(w) = 1Nsbp2��n NsbXj=1 exp0B�� ��y(+)j �22�2nwTw1CA�sgn(b(j)i ) �y(+)j w(wTw)3=2 � �r(+)jpwTw! : (22)With the gradient, the optimization problem (21) an be solved for itera-tively using a onjugated gradient algorithm [18℄,[12℄ with a resetting of thesearh diretion to the negative gradient �rPE(w) every J iterations. It isomputationally advantageous to normalize w to a unit-length after everyiteration, so that the gradient an be simpli�ed asrPE(w) = 1Nsbp2��n NsbXj=1 exp0B����y(+)j �22�2n 1CA sgn(b(j)i )��y(+)j w � �r(+)j � :(23)It is obvious that, if Y(�) is used for the BER evaluation, one only needs tosubstitute �y(+)j and �r(+)j by �y(�)j and �r(�)j in the gradient formula.
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Fig. 2. Bit error rate surfae of user-one detetor for a simple two-user system withtwo hips per bit and SNR1=25 dB given in Example 1.Unlike the MMSE solution (12), there exists no lose-form solution forwMBER. For wMMSE to ahieve the MBER, the p.d.f. (13) or (17) must beGaussian. If the number of users is large, this p.d.f. will be lose to Gaussian,and the BER di�erene between wMMSE and wMBER is expeted to be small,if any gap exists. If however, there exist only a few interferers, it is likely thatthe BER di�erene between wMMSE and wMBER will be large. Whether theMMSE solution an ahieve a BER lose to the MBER also depends on theCIR. Before turning to the adaptive MBER algorithm, onsider the followingsimple example, whih provides some insights to the MBER solutions.Example 1. This is a simplest system with two equal-power users and twohips per bit. The two hip odes are (+1;+1) and (+1;�1), respetively, andthe transfer funtion of the CIR at hip rate is H(z) = 1 + 0:8z�1 + 0:6z�2.The signal to noise ratio for user 1 is SNR1 = 25 dB. The log10(BER) surfaefor user 1 is plotted in Fig. 2. Some general observations an be drawn fromFig. 2. The MBER solutions form a half line in the weight spae, with one endof the line approahing the original and the other end approahing in�nity.Any point in this half line is a global MBER solution. The point marked inthe MBER solution half line is the unit-length one. The origin of the weightspae is the singular (disontinuity) point of the BER surfae. The MMSEsolution for this example is also depited in Fig. 2. For the MMSE solution,log10(BER) = �3:88, while for a MBER one, log10(BER) = �5:56.



4 Adaptive MBER AlgorithmsThe p.d.f. of y(k) is expliitly given bypy(y) = 1Nbp2��npwTw NbXj=1 exp � (y � �yj)22�2nwTw! (24)and the BER an alternatively be expressed asPE(w) = 1Nb NbXj=1Q (gj(w)) (25)where �yj 2 Y and gj(w) = sgn(b(j)i )�yj�npwTw : (26)In reality, the p.d.f. of y(k) is unknown. A widely used approah to approxi-mate a p.d.f. is known as the kernel density estimate [19℄{[21℄.Given a blok of K training samples fr(k); bi(k)g, a kernel density orParzen window estimate of the p.d.f. (24) is given by:p̂y(y) = 1Kp2��npwTw KXk=1 exp�� (y � y(k))22�2nwTw � (27)where the kernel width �n is related to the noise standard deviation �n [20℄.From this estimated p.d.f., the estimated BER is given byP̂E(w) = 1K KXk=1Q (ĝk(w)) (28)with ĝk(w) = sgn(bi(k))y(k)�npwTw : (29)The gradient of P̂E(w) isrP̂E(w) = 1Kp2��n KXk=1 exp�� y2(k)2�2nwTw��sgn(bi(k)) y(k)w(wTw)3=2 � r(k)pwTw! : (30)By substituting rPE(w) with rP̂E(w) in the onjugate gradient updatingmehanism, a blok-data adaptive algorithm an readily be obtained [12℄.



4.1 Least Bit Error Rate AlgorithmTo derive a sample-by-sample adaptive algorithm, onsider a single-sampleestimate of py(y)p̂y(y; k) = 1p2��npwTw exp�� (y � y(k))22�2nwTw � : (31)Using the instantaneous stohasti gradientrP̂E(w; k) = sgn(bi(k))p2��n exp�� y2(k)2�2nwTw� y(k)w(wTw)3=2 � r(k)pwTw! ; (32)with a re-saling to ensure wTw = 1, gives rise to the LBER algorithm:w(k + 1) = w(k) + � sgn(bi(k))p2��n exp��y2(k)2�2n � (r(k) � y(k)w(k)) ; (33)w(k + 1) = w(k + 1)pwT (k + 1)w(k + 1) ; (34)where the adaptive gain � and the kernel width �n are the two algorithmparameters that need to be set appropriately.4.2 Approximate Least Bit Error Rate AlgorithmIn the kernel density estimate (27), a variable width �npwTw is used. Thisis beause the true standard deviation of y(k) is �npwTw, whih dependson the detetor weight vetor. If an approximation is made by using a on-stant width �n in a kernel density estimate, omputational omplexity anbe redued onsiderably. Formally, this is to use the kernel density estimate~py(y) = 1Kp2��n KXk=1 exp�� (y � y(k))22�2n � (35)as an approximation of the true density (24), and to use~PE(w) = 1K KXk=1Q (~gk(w)) (36)with ~gk(w) = sgn(bi(k))y(k)�n (37)as a BER estimate. The gradient of ~PE(w) has a muh simpler form.Adopting this approah, an approximate LBER algorithm is obtained:w(k + 1) = w(k) + � sgn(bi(k))p2��n exp��y2(k)2�2n � r(k): (38)For this ALBER algorithm, there is no need to normalizew after eah update,and the algorithm has a similar omplexity to the LMS algorithm.
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ondition, and the algorithm with w(0) set to the MMSE solution performsbetter than the LBER algorithm with the same initial ondition. The ALBERalgorithm has an added advantage of simpler omputational requirements.Example 3. This example investigate the near-far e�et to the adaptiveMBER algorithm. The system has two users with the two user hip odesgiven by (+1;+1;�1;�1) and (+1;�1;�1;+1), respetively. The transferfuntion of the CIR at hip rate is given byH(z) = 1:0 + 0:25z�1 + 0:5z�3: (40)The linear detetor for user 1 is onsidered. With a �xed user 1 signal powerA1 and a �xed SNR1 = 16 dB, the interfering user 2 powerA2 is varied to pro-vide di�erent desired signal to interferene ratios (SIR). Fig. 10 summarizesthe performane of various detetors.Example 4. The settings of this example are idential to Example 2, exeptthat the three-path hannelH(z) = h0 + h1z�1 + h2z�2 (41)is a Rayleigh fading one with the normalized Doppler frequeny fd = 7:69�10�7. Transmission is organized into frames, and a frame onsists of 37 train-ing bits and 112 data bits. Deision-direted adaptation is employed duringdata transmission. The hannel is assumed to be frame faded, that is, thehannel is kept onstant within a frame. A typial set of the hannel taps
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Fig. 10. Comparison of bit error rates of various linear detetors for user 1 ofExample 3. SNR1 = 16 dB with varying SIR.
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Fig. 11. A typial set of hannel fading paths for Example 4.is shown in Fig. 11. Linear detetor for user 1 is onsidered. Fig. 12 depitsthe performane of the two adaptive algorithms, the LBER and LMS, inomparison with the benhmark of the theoretial MMSE performane.6 Extension to the nonlinear multiuser detetorIf we are not restriting to the lass of linear detetor, then the optimaldetetor for the system model desribed in Setion 2 an easily be shown tobe the following Bayesian detetor [22℄yB(k) = fB(r(k)) = NbXj=1 �jb(j)i exp��kr(k)� �rjk22�2n � (42)where �rj 2 R and �j is a positive onstant inorporating a priori probabilityof �rj . Sine all the states in R are equiprobable, all the �j have the samevalue. The hard deision is made by quantizing yB(k) aording to the rule(9). Although this Bayesian detetor provides the best performane, it isomputationally very expensive. Furthermore, the set of the hannel states�rj are unknown and have to be learned by some means.Consider the general nonlinear detetor for user i, whih has the formy(k) = f(r(k);w) (43)
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Fig. 12. Performane omparison of three user-1 detetors for Example 4. For thetwo adaptive algorithms, w(0) = wMF.where the detetor map f is realized for example by a neural network andthe vetor w onsists of all the adjustable parameters of the detetor. Classi-ally, adaptive training of suh a nonlinear struture is based on the MMSEpriniple and typially implemented using the LMS algorithmy(k) = f(r(k);w(k � 1))w(k) = w(k � 1) + �(bi(k)� y(k))�f(r(k);w(k�1))�w � (44)However, the true performane riterion should be the BER, and we onsiderhow to onstrut an adaptive MBER algorithm.By linearizing the detetor (43) around �r(k), it an be approximated asy(k) � �y(k) + e(k) (45)where �y(k) = f(�r(k);w) (46)an only take the value from the setY 4= f�yj = f(�rj ;w); 1 � j � Nbg (47)and e(k) = ��f(�r(k);w)�r �T n(k) (48)



is Gaussian with zero mean and variane�2n(w) = �2nNb NbXj=1 ��f(�rj ;w)�r �T �f(�rj ;w)�r (49)The p.d.f. of y(k) an then be approximated bypy(y) � 1Nbp2��2n(w) NbXj=1 exp�� (y � �yj)22�2n(w) � (50)and the BER of the detetor is approximatelyPE(w) � 1Nb NbXj=1Q(gj(w)) (51)where gj(w) = sgn(b(j)i )�yj�n(w) = sgn(b(j)i )f(�rj ;w)�n(w) : (52)Using the kernel density estimate (35) with a onstant �2n to approximatethe density (50) naturally leads to the ALBER algorithmy(k) = f(r(k);w(k � 1))w(k) = w(k � 1) + � sgn(bi(k))p2��n exp��y2(k)2�2n � �f(r(k);w(k�1))�w ) (53)for training the nonlinear detetor (43). The derivative �f�w depends on thepartiular detetor map employed. For example, onsider the radial basisfuntion (RBF) detetor of the formy(k) = fRBF (r(k);w) = nXj=1 �j exp��kr(k)� jk2~�j � : (54)The parameter vetor w ontains all the RBF weights �j , widths ~�j andenters j . The dimension of w is therefore n � (M + 2). The derivatives�fRBF�w are given in the forms�fRBF��j = exp��kr(k)�jk2~�j ��fRBF�~�j = �j exp��kr(k)�jk2~�j � kr(k)�jk2~�2j�fRBF�j = 2�j exp��kr(k)�jk2~�j � r(k)�j~�j
9>>>>>=>>>>>; 1 � j � n: (55)Example 5. The settings of this example are idential to Example 2, exeptthat this time the detetor for user 2 is onsidered. For user 2, R(+) and
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Fig. 13. Linear and nonlinear detetor bit error rates for user 2 of Example 5.SNRi, 1 � i � 4, are idential. The RBF detetor has 64 enters.R(�) are almost linearly inseparable, and a linear detetor has poor BERperformane, as is shown in Fig. 13. For this example, the linear MMSEsolution and the linear MBER one produe the same BER. The BERs ofthe optimal Bayesian detetor is also shown in Fig. 13. Note that in thisexample the number of hannel states Nb = 256, and the Bayesian detetoris highly omplex. The performane of the 64-enter RBF detetor trainedby the ALBER algorithm (53) is depited in Fig. 13. It an be seen that theperformane of this ALBER RBF detetor is very lose to the full optimalBayesian performane. Interestingly, in the simulation it is observed that thesame 64-enter RBF detetor under the idential onditions but trained bythe LMS algorithm (44), although onverged well in the MSE, often resultsin a BER near 0.5. This on�rms with the results given in [16℄,[17℄.7 ConlusionsAdaptive multiuser detetion has been onsidered based on the priniple ofminimizing the BER. It has learly been demonstrated that, even for thelinear detetor, the MBER solution an be onsiderably better than the las-sial MMSE solution at least for ertain situations. A fully adaptive MBERapproah has been developed for training the linear detetor. In partiular,the ALBER algorithm has a omputational omplexity similar to that of thevery simple LMS algorithm. Furthermore, it has been shown how to extendthe adaptive MBER approah to the nonlinear multiuser detetor.AknowledgementFigs. 2, 10, 11 and 12 were provided by Mr. A.K. Samingan.
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