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t. Linear dete
tor required at dire
t-sequen
e 
ode division multiple a
-
ess (DS-CDMA) 
ommuni
ation systems is 
lassi
ally designed based on the min-imum mean squares error (MMSE) 
riterion, whi
h 
an eÆ
iently be implementedusing the standard adaptive algorithms, su
h as the least mean square (LMS) al-gorithm. As the probability distribution of the linear dete
tor's soft output isgenerally non-Gaussian, the MMSE solution 
an be far away from the optimalminimum bit error rate (MBER) solution. Adopting a non-Gaussian approa
h nat-urally leads to the MBER linear dete
tor. Based on the approa
h of Parzen win-dow or kernel density estimation for approximating the probability density fun
tion(p.d.f.), a sto
hasti
 gradient adaptive MBER algorithm, 
alled the least bit errorrate (LBER), is developed for training a linear multiuser dete
tor. A simpli�ed orapproximate LBER (ALBER) algorithm is parti
ularly promising, as it has a 
om-putational 
omplexity similar to that of the 
lassi
al LMS algorithm. Furthermore,this ALBER algorithm 
an be extended to the nonlinear multiuser dete
tion.Keywords: CDMA, linear dete
tor, mean square error, bit error rate, prob-ability density fun
tion, adaptive algorithm, least mean square algorithm,least bit error rate algorithm, nonlinear dete
tor.1 Introdu
tionDS-CDMA 
onstitutes an attra
tive multiuser s
heme that allows users totransmit at the same 
arrier frequen
y. However, this 
reates multiuser inter-feren
e (MUI) whi
h, if not 
ontrolled, 
an seriously degrade the quality ofre
eption. Multiuser dete
tion provides an e�e
tive means to 
ombating MUI[1℄,[2℄. In a DS-CDMA 
ommuni
ation system, the obje
tive of the re
eiveris to dete
t the transmitted information bits of one (at mobile-end) or many(at base station) users. The �rst 
ase is 
on
erned with 
ommuni
ation frombase station to mobile and is 
ommonly 
alled downlink. This 
hapter 
on-siders multiuser dete
tion at mobile. In the downlink s
enario, a mobile hasa very limited 
omputing power, and 
omputational 
omplexity is a 
riti
alissue. Typi
ally, a linear dete
tor is employed at the re
eiver to meet thestri
t real-time 
omputational 
onstraint.A variety of linear multiuser dete
tors have been proposed [2℄{[8℄. A verysimple linear dete
tor is the mat
hed �lter (MF) with the dete
tor weight



ve
tor being set to the user spreading 
ode. However, multipath distortions,whi
h are often en
ountered in DS-CDMA systems, 
an seriously degrade theperforman
e of the MF. Another linear dete
tor stru
ture is 
alled the zero-for
ing (ZF) dete
tor. As this ZF solution ignores the noise, it su�ers froma serious noise enhan
ing problem. Moreover, other interfering user 
odesrequired in 
al
ulating the ZF solution may not be available to the dete
tor,and it is not known how to adaptively implement the ZF solution. The mostpopular linear multiuser dete
tor is the MMSE dete
tor, as it usually providesgood performan
e and 
an readily be implemented using standard adaptive�lter te
hniques su
h as the LMS algorithm.The ultimate performan
e 
riterion of a dete
tor is its bit error rate(BER). Although for the linear dete
tor a small mean square error (MSE) isasso
iated with a small BER, the MMSE solution is generally not the MBERone. This is obvious, sin
e in order for the MMSE solution to be the MBERsolution the dete
tor's soft output should be Gaussian distributed. The 
on-ditional p.d.f. of the linear dete
tor output is however a sum of Gaussiandistributions and therefore non-Gaussian. In the situation where only a fewstrong interfering users exist, the MMSE solution 
an be 
onsiderably inferiorto the MBER one. A non-adaptive MBER linear multiuser dete
tor is 
onsid-ered in [9℄ based on gradient optimization for narrow-band Gaussian CDMA
hannels whi
h do not introdu
e intersymbol interferen
e (ISI). There are afew adaptive MBER linear multiuser dete
tors in the literature [10℄{[12℄.The adaptive MBER algorithm given in [10℄ uses a di�eren
e approxima-tion to estimate the gradient of one-sample error probability. Its main draw-ba
k is very slow 
onvergen
e, parti
ularly in the situation where the errorrate is very low. Furthermore, the 
omputational 
omplexity of the algorithmis high and is in the order O(M2),M being the dete
tor length. The adaptiveMBER algorithm reported in [11℄, 
alled the approximate MBER (AMBER)dete
tor, is appealing due to its 
omputational simpli
ity. It is a sto
hasti
gradient algorithm that is identi
al to the signed-error LMS algorithm [13℄,ex
ept in the vi
inity of the de
ision boundary where it is modi�ed to 
on-tinue updating the weights when the signed-error LMS algorithm would not.The AMBER algorithm therefore 
an 
ontinuously update when the dete
torweight ve
tor has rea
hed the regions of very low error rate.This 
hapter 
onsiders the adaptive MBER algorithm based on a densityapproximation approa
h [12℄, 
alled the LBER algorithm. Previous studieshave shown that this LBER algorithm outperforms the AMBER algorithmin terms of 
onvergen
e speed and steady-state BER misadjustment, in boththe linear multiuser dete
tion appli
ation [12℄ and the single-user equalizationappli
ation [14℄,[15℄. Although the 
omputational requirement of this LBERlinear dete
tor is 
onsiderably higher than the AMBER linear dete
tor, its
omplexity is still in the order O(M). Furthermore, as will be shown in this
hapter, a simpli�ed LBER algorithm 
alled the ALBER has a similar per-forman
e to the full LBER algorithm and yet has a 
omplexity similar to the



very simple LMS algorithm. An added advantage of this ALBER algorithmis that it 
an be extended to the nonlinear multiuser dete
tor.A basi
 assumption for a linear dete
tor to work adequately is that thetwo 
lasses of signal states related to the transmitted bit being +1 and �1,respe
tively, are linearly separable. Multipath distortions however may resultin linearly inseparable situation. In the nonlinear separable 
ase, a nonlin-ear multiuser dete
tor is required to a
hieve good performan
e. Classi
ally,training a nonlinear dete
tor is based on the LMS algorithm. Previous work[16℄,[17℄ has shown that a nonlinear dete
tor trained by the ALBER algo-rithm 
an 
losely mat
h the theoreti
al optimal performan
e.2 System ModelThe dis
rete-time baseband model of the syn
hronous DS-CDMA downlinksystem supporting N users and transmitting M (> N) 
hips per bit is de-pi
ted in Fig. 1, where bi(k) 2 f�1g denotes the k-th bit of user i, theunit-length signature sequen
e for user i is �si = [�si;1 � � � �si;M ℄T and thetransfer fun
tion asso
iated with the 
hannel impulse response (CIR) at 
hiprate is H(z) = nh�1Xi=0 hiz�i: (1)The bit ve
tor of N users at bit instant k is b(k) = [b1(k) � � � bN (k)℄T ,and the re
eived signal ve
tor obtained by sampling at 
hip rate is r(k) =[r1(k) � � � rM (k)℄T . It 
an be shown that the baseband model for r(k) isr(k) = P26664 b(k)b(k � 1)...b(k � L+ 1)37775+ n(k) = �r(k) + n(k) (2)where L is the 
hannel ISI span, �r(k) denotes the noise-free re
eived signalve
tor, the white Gaussian noise ve
tor n(k) = [n1(k) � � � nM (k)℄T with
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hronous CDMA downlink.



E[n(k)nT (k)℄ = �2nI, and the M � LN system matrix P is given byP =H266664 �SA 0 � � � 00 �SA . . . ...... . . . . . . 00 � � � 0 �SA377775 (3)with the user signature matrix �S = [�s1 � � � �sN ℄, the diagonal user signalamplitude matrix A = diagfA1 � � � ANg and the M � LM CIR matrixH = 26664h0 h1 � � � hnh�1 0 � � � 0 0 0 00 h0 h1 � � � hnh�1 0 � � � 0 0 0... . . . . . . . . . � � � . . . . . . . . . ...0 � � � 0 h0 h1 � � � hnh�1 0 � � � 037775 : (4)The 
hannel ISI span L depends on the length of the CIR, nh, related to thelength of the 
hip sequen
e, M . For nh = 1, L = 1; for 1 < nh �M , L = 2;for M < nh � 2M , L = 3; and so on.Let the Nb = 2LN possible 
ombinations of [bT (k) � � � bT (k � L + 1)℄Tbe b(j) = 26664 b(j)(k)b(j)(k � 1)...b(j)(k � L+ 1)37775 ; 1 � j � Nb; (5)and b(j)i the i-th element of b(j)(k). Clearly,�r(k) 2 R 4= f�rj = Pb(j); 1 � j � Nbg: (6)R is 
alled the set of noise-free re
eived signal states. For user i, it 
an bedivided into two subsets depending on the value of bi(k)R(�) 4= f�r(�)j 2 R : bi(k) = �1g: (7)Consider the linear dete
tor for user i whi
h takes the formy(k) = wT r(k) = wT (�r(k) + n(k)) = �y(k) + e(k) (8)where w = [w1 � � � wM ℄T is the dete
tor weight ve
tor and e(k) is Gaussianwith zero mean and varian
e wTw�2n. The estimated bi(k) is given byb̂i(k) = sgn(y(k)) = �+1; y(k) � 0;�1; y(k) < 0: (9)Obviously, the s
alar �y(k) 
an only take values from the setY 4= f�yj = wT�rj ; 1 � j � Nbg (10)



whi
h 
an be divided into two subsets depending on the value of bi(k)Y(�) 4= f�y(�)j 2 Y : bi(k) = �1g: (11)For the linear dete
tor (8) to perform adequately, Y(+) and Y(�) must belinearly separable. Otherwise, a nonlinear dete
tor should be used. The simpleMF dete
tor is given by wMF = �si. The most popular solution for the lineardete
tor (8) is the MMSE one given bywMMSE = ��2nI+PPT ��1 pi (12)with pi denoting the i-th 
olumn of P. Although user i may not know theother user 
odes and therefore may be unable to 
ompute wMMSE dire
tly,adaptive implementation using the LMS does not require to know the otheruser 
odes. The ZF solution wZF is obtained by setting �2n = 0 in (12).3 The MBER Linear Multiuser Dete
torThe 
onditional p.d.f. of y(k) given bi(k) = +1 ispy(yj+ 1) = 1Nsbp2��npwTw NsbXj=1 exp0B���y � �y(+)j �22�2nwTw 1CA (13)where Nsb = Nb=2 is the number of points in Y(+) and �y(+)j 2 Y(+). Thus,the 
onditional BER of the linear dete
tor given bi(k) = +1 isPE;+(w) = Z 0�1 py(yj+ 1) d y = 1Nsb NsbXj=1Q (gj;+(w)) (14)where gj;+(w) = �y(+)j�npwTw = wT �r(+)j�npwTw = sgn(b(j)i )�y(+)j�npwTw (15)and Q(x) = 1p2� Z 1x exp��u22 � d u: (16)Similarly, the 
onditional p.d.f. of y(k) given bi(k) = �1 ispy(yj � 1) = 1Nsbp2��npwTw NsbXj=1 exp0B���y � �y(�)j �22�2nwTw 1CA (17)



where �y(�)j 2 Y(�), and the 
onditional BER given bi(k) = �1 isPE;�(w) = Z 10 py(yj � 1) d y = 1Nsb NsbXj=1Q (gj;�(w)) (18)where gj;�(w) = � �y(�)j�npwTw = sgn(b(j)i )�y(�)j�npwTw : (19)Be
ause of the symmetri
 distribution of Y , PE;�(w) = PE;+(w). Thus, theBER of the linear dete
tor with the weight ve
tor w isPE(w) = PE;+(w) = 1Nsb NsbXj=1Q (gj;+(w)) : (20)It is seen that the BER 
an be evaluated based on a single subset Y(+) (orY(�)). Also the BER is invariant to a positive s
aling of the weight ve
tor,that is, the BER depends on the dire
tion of w only.The MBER solution is de�ned aswMBER = argminw PE(w): (21)The gradient of PE(w) with respe
t to w isrPE(w) = 1Nsbp2��n NsbXj=1 exp0B�� ��y(+)j �22�2nwTw1CA�sgn(b(j)i ) �y(+)j w(wTw)3=2 � �r(+)jpwTw! : (22)With the gradient, the optimization problem (21) 
an be solved for itera-tively using a 
onjugated gradient algorithm [18℄,[12℄ with a resetting of thesear
h dire
tion to the negative gradient �rPE(w) every J iterations. It is
omputationally advantageous to normalize w to a unit-length after everyiteration, so that the gradient 
an be simpli�ed asrPE(w) = 1Nsbp2��n NsbXj=1 exp0B����y(+)j �22�2n 1CA sgn(b(j)i )��y(+)j w � �r(+)j � :(23)It is obvious that, if Y(�) is used for the BER evaluation, one only needs tosubstitute �y(+)j and �r(+)j by �y(�)j and �r(�)j in the gradient formula.
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Fig. 2. Bit error rate surfa
e of user-one dete
tor for a simple two-user system withtwo 
hips per bit and SNR1=25 dB given in Example 1.Unlike the MMSE solution (12), there exists no 
lose-form solution forwMBER. For wMMSE to a
hieve the MBER, the p.d.f. (13) or (17) must beGaussian. If the number of users is large, this p.d.f. will be 
lose to Gaussian,and the BER di�eren
e between wMMSE and wMBER is expe
ted to be small,if any gap exists. If however, there exist only a few interferers, it is likely thatthe BER di�eren
e between wMMSE and wMBER will be large. Whether theMMSE solution 
an a
hieve a BER 
lose to the MBER also depends on theCIR. Before turning to the adaptive MBER algorithm, 
onsider the followingsimple example, whi
h provides some insights to the MBER solutions.Example 1. This is a simplest system with two equal-power users and two
hips per bit. The two 
hip 
odes are (+1;+1) and (+1;�1), respe
tively, andthe transfer fun
tion of the CIR at 
hip rate is H(z) = 1 + 0:8z�1 + 0:6z�2.The signal to noise ratio for user 1 is SNR1 = 25 dB. The log10(BER) surfa
efor user 1 is plotted in Fig. 2. Some general observations 
an be drawn fromFig. 2. The MBER solutions form a half line in the weight spa
e, with one endof the line approa
hing the original and the other end approa
hing in�nity.Any point in this half line is a global MBER solution. The point marked inthe MBER solution half line is the unit-length one. The origin of the weightspa
e is the singular (dis
ontinuity) point of the BER surfa
e. The MMSEsolution for this example is also depi
ted in Fig. 2. For the MMSE solution,log10(BER) = �3:88, while for a MBER one, log10(BER) = �5:56.



4 Adaptive MBER AlgorithmsThe p.d.f. of y(k) is expli
itly given bypy(y) = 1Nbp2��npwTw NbXj=1 exp � (y � �yj)22�2nwTw! (24)and the BER 
an alternatively be expressed asPE(w) = 1Nb NbXj=1Q (gj(w)) (25)where �yj 2 Y and gj(w) = sgn(b(j)i )�yj�npwTw : (26)In reality, the p.d.f. of y(k) is unknown. A widely used approa
h to approxi-mate a p.d.f. is known as the kernel density estimate [19℄{[21℄.Given a blo
k of K training samples fr(k); bi(k)g, a kernel density orParzen window estimate of the p.d.f. (24) is given by:p̂y(y) = 1Kp2��npwTw KXk=1 exp�� (y � y(k))22�2nwTw � (27)where the kernel width �n is related to the noise standard deviation �n [20℄.From this estimated p.d.f., the estimated BER is given byP̂E(w) = 1K KXk=1Q (ĝk(w)) (28)with ĝk(w) = sgn(bi(k))y(k)�npwTw : (29)The gradient of P̂E(w) isrP̂E(w) = 1Kp2��n KXk=1 exp�� y2(k)2�2nwTw��sgn(bi(k)) y(k)w(wTw)3=2 � r(k)pwTw! : (30)By substituting rPE(w) with rP̂E(w) in the 
onjugate gradient updatingme
hanism, a blo
k-data adaptive algorithm 
an readily be obtained [12℄.



4.1 Least Bit Error Rate AlgorithmTo derive a sample-by-sample adaptive algorithm, 
onsider a single-sampleestimate of py(y)p̂y(y; k) = 1p2��npwTw exp�� (y � y(k))22�2nwTw � : (31)Using the instantaneous sto
hasti
 gradientrP̂E(w; k) = sgn(bi(k))p2��n exp�� y2(k)2�2nwTw� y(k)w(wTw)3=2 � r(k)pwTw! ; (32)with a re-s
aling to ensure wTw = 1, gives rise to the LBER algorithm:w(k + 1) = w(k) + � sgn(bi(k))p2��n exp��y2(k)2�2n � (r(k) � y(k)w(k)) ; (33)w(k + 1) = w(k + 1)pwT (k + 1)w(k + 1) ; (34)where the adaptive gain � and the kernel width �n are the two algorithmparameters that need to be set appropriately.4.2 Approximate Least Bit Error Rate AlgorithmIn the kernel density estimate (27), a variable width �npwTw is used. Thisis be
ause the true standard deviation of y(k) is �npwTw, whi
h dependson the dete
tor weight ve
tor. If an approximation is made by using a 
on-stant width �n in a kernel density estimate, 
omputational 
omplexity 
anbe redu
ed 
onsiderably. Formally, this is to use the kernel density estimate~py(y) = 1Kp2��n KXk=1 exp�� (y � y(k))22�2n � (35)as an approximation of the true density (24), and to use~PE(w) = 1K KXk=1Q (~gk(w)) (36)with ~gk(w) = sgn(bi(k))y(k)�n (37)as a BER estimate. The gradient of ~PE(w) has a mu
h simpler form.Adopting this approa
h, an approximate LBER algorithm is obtained:w(k + 1) = w(k) + � sgn(bi(k))p2��n exp��y2(k)2�2n � r(k): (38)For this ALBER algorithm, there is no need to normalizew after ea
h update,and the algorithm has a similar 
omplexity to the LMS algorithm.
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urves areindistinguishable.5 Simulation StudyThe adaptive MBER algorithms dis
ussed in the previous se
tion are inves-tigated using 
omputer simulation.Example 2. This is a 4-user system with 8 
hips per bit. The four user 
odesequen
es are (+1;+1;+1;+1;�1;�1;�1;�1), (+1;�1;+1;�1;�1;+1;�1;+1), (+1;+1;�1;�1;�1;�1;+1;+1) and (+1;�1;�1;+1;�1;+1;+1;�1),respe
tively. The four users have equal signal power and the transfer fun
tionof the CIR at 
hip rate isH(z) = 0:4 + 0:7z�1 + 0:4z�2: (39)
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urves areindistinguishable.The linear dete
tor for user 1 is 
onsidered. Fig. 3 
ompares the BER perfor-man
e of the MMSE dete
tor with that of the MBER dete
tor. The MBERsolution is obtained using the 
onjugate gradient algorithm with a periodi
resetting of sear
h dire
tion. It 
an be seen that for this 
ase the BERs ofthe two dete
tors are 
onsiderably di�erent. Given the user 1 SNR to beSNR1 = 16 dB, Fig. 4 depi
ts the 
onditional p.d.f.s, py(yj + 1), for theMMSE and MBER dete
tors. It 
an be see that the 
onditional p.d.f. of theMMSE dete
tor resembles a Gaussian. This is not surprising. The 
onditionalp.d.f. py(yj+1) is a sum of Gaussian distributions. The MMSE solution 
anbe viewed to set the parameter ve
tor w of py(yj + 1) in su
h a way that
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ision dire
ted adaptation) of the ALBER algorithm for user 1 of Example2. SNRi = 16 dB, 1 � i � 4, w(0) = wMF, adaptive gain � = 0:5 and width�2n = 25�2n.this non-Gaussian distribution looks like a Gaussian distribution. The non-Gaussian nature of py(yj+1) is 
learly demonstrated in the 
ase of the MBERsolution. The two adaptive MBER algorithms, the LBER and ALBER, arenext studied. In the investigation, all the results are averaged over 100 runs.Fig. 5 shows the learning 
urves of the LBER algorithm, given SNR1 =16 dB and w(0) = wMMSE, where the adaptive gain � = 0:05 and the widthparameter �2n = 4�2n � 0:1. There are in fa
t two indistinguishable learning
urves in Fig. 5, the solid one indi
ates the training performan
e, and thedashed one is the de
ision-dire
ted performan
e with b1(k) being substitutedby the dete
tor's de
isions b̂1(k). It is well known that the BER surfa
e ishighly 
ompli
ated and may 
ontain lo
al minima. Our experien
e has sug-gested that initializing w(0) to the MMSE solution is generally a bad 
hoi
efor the LBER algorithm, as the 
onvergen
e speed is generally slow and thesteady-state BER misadjustment is relatively large for this initial 
ondition.The training and de
ision-dire
ted learning 
urves for the LBER algorithmgiven w(0) = [0:01 0:01 0:01 �0:01 �0:01 �0:01 �0:01 0:01℄T are shown inFig. 6. It 
an be seen that for this 
hoi
e of w(0) the algorithm has a mu
hfaster 
onvergen
e rate and a smaller steady-state BER misadjustment. Un-like the MMSE solution, the MF is known to a dete
tor and 
an 
onvenientlybe used as w(0). With w(0) = wMF, the two learning 
urves of the LBERalgorithm are illustrated in Fig. 7. It 
an be seen that the algorithm performsbetter with the MF solution as w(0) than with the MMSE solution as w(0).The learning 
urves of the ALBER algorithm with w(0) set to the MMSEsolution and MF one are depi
ted in Figs. 8 and 9, respe
tively. ComparingFigs. 8 and 9 with Figs. 5 and 7, it 
an be seen that this approximateLBER algorithm does not seem to result in performan
e degradation. Infa
t, the ALBER algorithm appears to be less sensitive to the 
hoi
e of initial




ondition, and the algorithm with w(0) set to the MMSE solution performsbetter than the LBER algorithm with the same initial 
ondition. The ALBERalgorithm has an added advantage of simpler 
omputational requirements.Example 3. This example investigate the near-far e�e
t to the adaptiveMBER algorithm. The system has two users with the two user 
hip 
odesgiven by (+1;+1;�1;�1) and (+1;�1;�1;+1), respe
tively. The transferfun
tion of the CIR at 
hip rate is given byH(z) = 1:0 + 0:25z�1 + 0:5z�3: (40)The linear dete
tor for user 1 is 
onsidered. With a �xed user 1 signal powerA1 and a �xed SNR1 = 16 dB, the interfering user 2 powerA2 is varied to pro-vide di�erent desired signal to interferen
e ratios (SIR). Fig. 10 summarizesthe performan
e of various dete
tors.Example 4. The settings of this example are identi
al to Example 2, ex
eptthat the three-path 
hannelH(z) = h0 + h1z�1 + h2z�2 (41)is a Rayleigh fading one with the normalized Doppler frequen
y fd = 7:69�10�7. Transmission is organized into frames, and a frame 
onsists of 37 train-ing bits and 112 data bits. De
ision-dire
ted adaptation is employed duringdata transmission. The 
hannel is assumed to be frame faded, that is, the
hannel is kept 
onstant within a frame. A typi
al set of the 
hannel taps
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Fig. 10. Comparison of bit error rates of various linear dete
tors for user 1 ofExample 3. SNR1 = 16 dB with varying SIR.
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Fig. 11. A typi
al set of 
hannel fading paths for Example 4.is shown in Fig. 11. Linear dete
tor for user 1 is 
onsidered. Fig. 12 depi
tsthe performan
e of the two adaptive algorithms, the LBER and LMS, in
omparison with the ben
hmark of the theoreti
al MMSE performan
e.6 Extension to the nonlinear multiuser dete
torIf we are not restri
ting to the 
lass of linear dete
tor, then the optimaldete
tor for the system model des
ribed in Se
tion 2 
an easily be shown tobe the following Bayesian dete
tor [22℄yB(k) = fB(r(k)) = NbXj=1 �jb(j)i exp��kr(k)� �rjk22�2n � (42)where �rj 2 R and �j is a positive 
onstant in
orporating a priori probabilityof �rj . Sin
e all the states in R are equiprobable, all the �j have the samevalue. The hard de
ision is made by quantizing yB(k) a

ording to the rule(9). Although this Bayesian dete
tor provides the best performan
e, it is
omputationally very expensive. Furthermore, the set of the 
hannel states�rj are unknown and have to be learned by some means.Consider the general nonlinear dete
tor for user i, whi
h has the formy(k) = f(r(k);w) (43)
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Fig. 12. Performan
e 
omparison of three user-1 dete
tors for Example 4. For thetwo adaptive algorithms, w(0) = wMF.where the dete
tor map f is realized for example by a neural network andthe ve
tor w 
onsists of all the adjustable parameters of the dete
tor. Classi-
ally, adaptive training of su
h a nonlinear stru
ture is based on the MMSEprin
iple and typi
ally implemented using the LMS algorithmy(k) = f(r(k);w(k � 1))w(k) = w(k � 1) + �(bi(k)� y(k))�f(r(k);w(k�1))�w � (44)However, the true performan
e 
riterion should be the BER, and we 
onsiderhow to 
onstru
t an adaptive MBER algorithm.By linearizing the dete
tor (43) around �r(k), it 
an be approximated asy(k) � �y(k) + e(k) (45)where �y(k) = f(�r(k);w) (46)
an only take the value from the setY 4= f�yj = f(�rj ;w); 1 � j � Nbg (47)and e(k) = ��f(�r(k);w)�r �T n(k) (48)



is Gaussian with zero mean and varian
e�2n(w) = �2nNb NbXj=1 ��f(�rj ;w)�r �T �f(�rj ;w)�r (49)The p.d.f. of y(k) 
an then be approximated bypy(y) � 1Nbp2��2n(w) NbXj=1 exp�� (y � �yj)22�2n(w) � (50)and the BER of the dete
tor is approximatelyPE(w) � 1Nb NbXj=1Q(gj(w)) (51)where gj(w) = sgn(b(j)i )�yj�n(w) = sgn(b(j)i )f(�rj ;w)�n(w) : (52)Using the kernel density estimate (35) with a 
onstant �2n to approximatethe density (50) naturally leads to the ALBER algorithmy(k) = f(r(k);w(k � 1))w(k) = w(k � 1) + � sgn(bi(k))p2��n exp��y2(k)2�2n � �f(r(k);w(k�1))�w ) (53)for training the nonlinear dete
tor (43). The derivative �f�w depends on theparti
ular dete
tor map employed. For example, 
onsider the radial basisfun
tion (RBF) dete
tor of the formy(k) = fRBF (r(k);w) = n
Xj=1 �j exp��kr(k)� 
jk2~�j � : (54)The parameter ve
tor w 
ontains all the RBF weights �j , widths ~�j and
enters 
j . The dimension of w is therefore n
 � (M + 2). The derivatives�fRBF�w are given in the forms�fRBF��j = exp��kr(k)�
jk2~�j ��fRBF�~�j = �j exp��kr(k)�
jk2~�j � kr(k)�
jk2~�2j�fRBF�
j = 2�j exp��kr(k)�
jk2~�j � r(k)�
j~�j
9>>>>>=>>>>>; 1 � j � n
: (55)Example 5. The settings of this example are identi
al to Example 2, ex
eptthat this time the dete
tor for user 2 is 
onsidered. For user 2, R(+) and
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Fig. 13. Linear and nonlinear dete
tor bit error rates for user 2 of Example 5.SNRi, 1 � i � 4, are identi
al. The RBF dete
tor has 64 
enters.R(�) are almost linearly inseparable, and a linear dete
tor has poor BERperforman
e, as is shown in Fig. 13. For this example, the linear MMSEsolution and the linear MBER one produ
e the same BER. The BERs ofthe optimal Bayesian dete
tor is also shown in Fig. 13. Note that in thisexample the number of 
hannel states Nb = 256, and the Bayesian dete
toris highly 
omplex. The performan
e of the 64-
enter RBF dete
tor trainedby the ALBER algorithm (53) is depi
ted in Fig. 13. It 
an be seen that theperforman
e of this ALBER RBF dete
tor is very 
lose to the full optimalBayesian performan
e. Interestingly, in the simulation it is observed that thesame 64-
enter RBF dete
tor under the identi
al 
onditions but trained bythe LMS algorithm (44), although 
onverged well in the MSE, often resultsin a BER near 0.5. This 
on�rms with the results given in [16℄,[17℄.7 Con
lusionsAdaptive multiuser dete
tion has been 
onsidered based on the prin
iple ofminimizing the BER. It has 
learly been demonstrated that, even for thelinear dete
tor, the MBER solution 
an be 
onsiderably better than the 
las-si
al MMSE solution at least for 
ertain situations. A fully adaptive MBERapproa
h has been developed for training the linear dete
tor. In parti
ular,the ALBER algorithm has a 
omputational 
omplexity similar to that of thevery simple LMS algorithm. Furthermore, it has been shown how to extendthe adaptive MBER approa
h to the nonlinear multiuser dete
tor.A
knowledgementFigs. 2, 10, 11 and 12 were provided by Mr. A.K. Samingan.
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