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Abstract—Joint channel estimation (CE) and turbo multi-
user detection (MUD)/decoding for space-division multiple-access
based orthogonal frequency-division multiplexing communication
has to consider both the decision-directed CE optimisation on a
continuous search space and the MUD optimisation on a discrete
search space, and it iteratively exchanges the estimated channel
information and the detected data between the channel estimator
and the turbo MUD/decoder to gradually improve the accuracy
of both the CE and the MUD. We evaluate the capabilities of a
group of evolutionary algorithms (EAs) to achieve optimal or near
optimal solutions with affordable complexity in this challenging
application. Our study confirms that the EA assisted joint CE and
turbo MUD/decoder is capable of approaching both the Cramér-
Rao lower bound of the optimal channel estimation and the bit
error ratio performance of the idealised optimal turbo maximum
likelihood (ML) MUD/decoder associated with the perfect channel
state information, respectively, despite only imposing a fraction
of the complexity of the idealised turbo ML-MUD/decoder.

Keywords—Genetic algorithm, repeated weighted boosting
search, particle swarm optimisation, differential evolution algorithm

I. INTRODUCTION

Evolutionary algorithms (EAs) have found ever-increasing
applications in all walks of engineering, where attaining op-
timal designs at affordable computational costs are critical.
Popular EAs include genetic algorithms (GAs) [1], [2], re-
peated weighted boosting search (RWBS) [3], [4], particle
swarm optimisation (PSO) [5], [6], and differential evolution
algorithm (DEA) [7], [8]. There are many other popular EAs,
e.g. ant colony optimisation [9], [10], but given a limited space,
only the above four algorithms are included. Vast amounts of
empirical results have demonstrated that appropriately tuned
EAs are capable of attaining the optimal or near optimal
solutions even for the most challenging optimisation problems,
with affordable computational complexity. Moreover, theoret-
ical analysis of EAs has made significant progresses [11]. We
now know that many NP-hard problems can be turned into the
so-called EA-easy class [11], namely, they can be solved by a
well-tuned EA algorithm with a complexity at most polynomial
in the problem size, instead of at least exponential in the
problem size. Empirical experience and theoretical analysis
all suggest that whether a particular NP-hard problem can be
turned into an EA-easy one by a given EA critically depends
on whether the algorithmic parameter settings of this EA are
appropriately matched to the given problem.

Orthogonal frequency-division multiplexing (OFDM) [12],
[13] has found its way into many wireless network standards,
owing to its virtues of resilience to frequency selective fading
and low-complexity hardware implementations with the aid of
inverse fast Fourier transform (IFFT) and fast Fourier trans-
form (FFT). To increase the achievable system capacity, space-

division multiple-access (SDMA) systems are conceived [14],
[15], where several users, roaming in different geographical
locations and sharing the same bandwidth and time slots, are
differentiated by their user-specific channel impulse responses
(CIRs). In the uplink (UL) of an SDMA induced multi-user
OFDM (SDMA/OFDM) system [16], [17], the transmitted
signals of several single-antenna mobile stations (MSs) are
received by an array of antennas at the base station (BS), where
a powerful turbo soft-in soft-out (SISO) multi-user detection
(MUD) and decoding technique [18] is invoked for recovering
the information sequences of the different MSs, based on the
estimates of their user-specific CIRs. A turbo MUD/decoder
can exploit the error correction capability of the channel code
by exchanging extrinsic information between the MUD and
the channel decoder [18]. Naturally, its performance critically
depends on the accuracy of the CIR estimates, and this
motivates intensive efforts to develop an iterative blind joint
channel estimation (CE) and turbo MUD/decoding structure
[19], within which the turbo MUD/decoder can feed back more
reliable detected data to assist the decision-directed channel
estimator, and likewise, more accurate channel estimates will
result in a more accurate MUD/decoder.

Joint CE and MUD/decoding for SDMA/OFDM systems
represents an ideal benchmark application for evaluating vari-
ous EAs. Firstly, turbo MUD/decoding optimisation given the
channel state information (CSI) is NP-hard, and the optimal
maximum likelihood (ML) solution is computationally pro-
hibitive in general. Furthermore, within the joint optimisation
of iterative CE and MUD/decoding, the CE optimisation is
defined on a continuous search space while the MUD op-
timisation is defined on a discrete search space. Thus, both
discrete and continuous EAs are required. We evaluate the
four EAs, GA, RWBS, PSO and DEA, under the challenging
framework of joint CE and MUD/decoding, in terms of achiev-
able performance, computational complexity and convergence
characteristics. Continuous EAs are employed in solving the
associated CE optimisation, while the corresponding discrete
binary EAs are employed to find the ML or near ML solution
for the turbo MUD/decoding. We demonstrate the power and
efficiency of the EA aided joint CE and turbo MUD/decoder
in an extensive simulation study. Our results confirm that the
channel estimate and the bit error ratio (BER) performance of
the EA assisted iterative CE and turbo MUD/decoder scheme
approach the Cramér-Rao lower bound (CRLB) of the optimal
channel estimation [20] and the optimal ML MUD/decoding
performance, respectively, with a computational complexity
that is a fraction of the NP-hard optimal ML complexity.

II. MULTI-USER SDMA/OFDM SYSTEM

The multi-user SDMA/OFDM system considered supports
U single-antenna MSs simultaneously transmitting in the UL



to the BS employing an array of Q receiving antennas. The
quadrature amplitude modulation (QAM) [21] is adopted.

A. System model

The bit sequence bu of user u, 1 ≤ u ≤ U , is encoded
by a channel encoder. The bit stream after the encoder is
passed through an interleave to yield a coded bit stream, which
is then modulated every A = log2 M bits as a unit into a
stream of M -QAM symbols. The modulated data are serial to
parallel converted and the pilot symbols are added to yield the
frequency domain (FD) representation of the OFDM symbol
Xu[s, k], 1 ≤ k ≤ K, where K is the number of subcarriers
and s is the OFDM symbol index. The parallel modulated
data are fed to a K-point IFFT modulator to generate the
time-domain (TD) signal xu[s, k]. After concatenating the
cyclic-prefix (CP) of Kcp samples, the resulting sequence is
transmitted. The length of the CP is chosen as Kcp ≥ Lcir,
where Lcir is the length of the CIRs.

At the BS, the received signals yq, 1 ≤ q ≤ Q, are parallel
to serial converted and the CPs are discarded. The resulting
signals are fed into the K-point FFT receiver. The signal
received by the q-th receive antenna in the k-th subcarrier of
the s-th OFDM symbol is expressed by [13]

Yq[s, k] =

U∑

u=1

Hu
q [s, k]Xu[s, k] + Wq[s, k], (1)

where Hu
q [s, k] is the FD channel transfer function (FD-CHTF)

coefficient of the link between the u-th user and the q-th
receiver antenna in the k-th subcarrier of the s-th OFDM
symbol, while Wq[s, k] is the FD additive white Gaussian noise
(AWGN) having the power of No = 2σ2

n. Let hu
q [s] ∈ C

Lcir×1

be the CIR vector between the u-th user and the q-th receive
antenna during the s-th OFDM symbol period, which contains
the Lcir CIR coefficients. The FD-CHTF vector, defined by

Hu
q [s] =

[
Hu

q [s, 1] Hu
q [s, 2] · · ·Hu

q [s,K]
]T

= Fhu
q [s], (2)

is the K-point FFT of hu
q [s], where F ∈ C

K×Lcir denotes

the FFT matrix [13]. Let Yq[s] ∈ C
K×1 host the subcarrier

related signals Yq[s, k] be

Yq[s] =
[
Yq[s, 1] Yq[s, 2] · · ·Yq[s,K]

]T
, 1 ≤ q ≤ Q, (3)

and arrange each user’s data in a diagonal matrix

Xu[s] =diag{Xu[s, 1], · · · ,Xu[s,K]}, 1 ≤ u ≤ U. (4)

Further define the CIR vector hq[s] ∈ C
ULcir×1 as

hq[s] =
[(

h1
q[s]

)T (
h2

q[s]
)T · · ·

(
hU

q [s]
)T]T

, 1 ≤ q ≤ Q. (5)

The basic operations of the BS receiver are: given {Yq[s]}Q
q=1,

find {hq[s]}Q
q=1 as well as {Xu[s]}U

u=1 and hence recover the

transmitted users’ information bit streams {bu}U
u=1.

B. Optimisation in joint CE and MUD

The joint ML CE and MUD is defined as

(
ĥ[s], X̂[s]

)
=arg

{
min

h[s],X[s]
J
(
h[s],X[s]

)}
, (6)

where the cost function (CF) is given by

J
(
h[s],X[s]

)
=

Q∑

q=1

‖Yq[s] − X
T[s]Fhq[s]‖2, (7)

with the block-diagonal matrix F ∈ C
UK×ULcir given by

F =diag{F,F, · · ·F︸ ︷︷ ︸
U

}, (8)

while

h[s] =
[
hT

1 [s] hT
2 [s] · · ·hT

Q[s]
]T

, (9)

X[s] =
[
X1[s] X2[s] · · ·XU [s]

]T
. (10)

The joint ML optimisation (6) can be solved by an iterative
search loop carried out first over the continuous space of
possible channels h[s] and then over the discrete set of all
the possible transmitted data X[s]. The CE can be performed

given the detected data X̂[s] fed back from the MUD/decoder,
while the MUD can be carried out with the estimated CIRs
ĥ[s] provided by the channel estimator. The iterative proce-
dure between the channel estimator and the MUD gradually
improves the both solutions, and a few iterations are required
to approach the joint ML solution (6).

1) ML CE: Since the CIRs hq[s], 1 ≤ q ≤ Q, only relate to

the received signals Yq[s], the ML CE solution ĥ[s] is obtained
as the solutions of the Q smaller minimisation problems

ĥq[s] = arg
{

min
hq[s]

Jce

(
hq[s]

)}
, 1 ≤ q ≤ Q, (11)

in which the CF is expressed as

Jce

(
hq[s]

)
=‖Yq[s] − X̂

T
[s]Fhq[s]‖2. (12)

As hq[s] ∈ C
ULcir×1, the search space for each optimisation

defined in (11) is a continuous
(
2ULcir

)
-dimensional space.

We will omit the OFDM symbol index [s] in the sequel.

2) ML MUD: Define the received data vector of the Q
antennas and the transmitted signal vector of the U users as

Y[s, k] =
[
Y1[s, k] Y2[s, k] · · ·YQ[s, k]

]T
, (13)

X[s, k] =
[
X1[s, k] X2[s, k] · · ·XU [s, k]

]T
, (14)

respectively. Further denote the FD-CHTF matrix linking
X[s, k] to Y[s, k] as H[s, k] ∈ C

Q×U . Since the M -QAM has
a finite alphabet S of size |S| = M , there are MU candidate
solutions for X[s, k]. The ML MUD exhaustively searches the
full discrete space of SU to find the solution

X̂[s, k] = arg min
X[s,k]∈SU

Jmud(X[s, k]), (15)

where the MUD optimisation CF is expressed as

Jmud(X[s, k]) = ‖Y[s, k] − Ĥ[s, k]X[s, k]‖2. (16)

Since each Xu[s, k] contains A = log2 M bits, the
bit-stream representation of Xu[s, k] is bu[s, k] =[
bu
1 [s, k] bu

2 [s, k] · · · bu
A[s, k]

]T
, where bu

i [s, k] ∈ {0, 1}.
Thus, the bit-stream representation for X[s, k] is

b[s, k] =
[
b1
1[s, k] · · · b1

A[s, k] · · · bU
1 [s, k] · · · bU

A[s, k]
]T

. (17)

For notational simplification, the MUD CF is equivalently
denoted as Jmud(b[s, k]) = Jmud(X[s, k]). Also the OFDM
index and the subcarrier index [s, k] will be omitted.



III. EVOLUTIONARY ALGORITHMS

The continuous GA aided CE (CGA-CE), CRWBS aided
CE (CRWBS-CE), CPSO aided CE (CPSO-CE) and CDEA
aided CE (CDEA-CE) are used to assist the CE opti-
misation, while the discrete-binary (DB) GA aided MUD
(DBGA-MUD), DBRWBS aided MUD (DBRWBS-MUD),
DBPSO aided MUD (DBPSO-MUD) and DBDEA aided MUD
(DBDEA-MUD) are used to assist the MUD optimisation.

A. GA for iterative CE and MUD

1) CGA-CE: It evolves the population of the Ps candidate
solutions, representing the estimates of hq. The ps-th individ-
ual of the population in the g-th generation is expressed as

ĥq,g,ps
=

[
ĥ1

q,g,ps,1 · · · ĥ1
q,g,ps,Lcir

· · · ĥU
q,g,ps,Lcir

]T
. (18)

{
ĥq,g,ps

}Ps

ps=1
for g = 1 are randomly generate in the search

space (−1− j, +1+ j)ULcir , where j =
√
−1 is the imaginary

axis. The fitness of ĥq,g,ps
is related to its CF by

f
(
ĥq,g,ps

)
=J−1

ce

(
ĥq,g,ps

)
= ‖Yq − X̂

T
Fĥq,g,ps

‖−2. (19)

With the roulette wheel selection, the selection ratio rs deter-
mines the fraction of the Ps individuals that survive. Denote
two randomly selected parents for crossover as





ĥq,g,mum =
[
ĥ1

q,g,mum,1 · · · ĥu∗

q,g,mum,l∗−1

ĥu∗

q,g,mum,l∗ ĥu∗

q,g,mum,l∗+1 · · · ĥU
q,g,mum,Lcir

]T
,

ĥq,g,dad =
[
ĥ1

q,g,dad,1 · · · ĥu∗

q,g,dad,l∗−1

ĥu∗

q,g,dad,l∗ ĥu∗

q,g,dad,l∗+1 · · · ĥU
q,g,dad,Lcir

]T
,

(20)

respectively, where the integers, u∗ and l∗, are randomly and
uniformly selected within {1, 2, · · · , U} and {1, 2, · · · , Lcir},
respectively. The two new offsprings are produced as





ĥq,g,os1 =
[
ĥ1

q,g,mum,1 · · · ĥu∗

q,g,mum,l∗−1

ĥu∗

q,g,os1,l∗ ĥu∗

q,g,os1,l∗+1 · · · ĥU
q,g,os1,Lcir

]T
,

ĥq,g,os2 =
[
ĥ1

q,g,dad,1 · · · ĥu∗

q,g,dad,l∗−1

ĥu∗

q,g,os2,l∗ ĥu∗

q,g,os2,l∗+1 · · · ĥU
q,g,os2,Lcir

]T
,

(21)

where for l∗ ≤ l ≤ Lcir
{

ĥu∗

q,g,os1,l = ĥu∗

q,g,mum,l − β
(
ĥu∗

q,g,mum,l − ĥu∗

q,g,dad,l

)
,

ĥu∗

q,g,os2,l = ĥu∗

q,g,dad,l + β
(
ĥu∗

q,g,mum,l − ĥu∗

q,g,dad,l

)
,

(22)

and β is a random value chosen in the range of (0, 1). Assume

that a gene ĥu
q,g,ps,l of the individual ĥu

q,g,ps
is randomly

chosen for the mutation, which is given by

h̆u
q,g,ps,l = ĥu

q,g,ps,l + γ(αm + jβm), (23)

where αm and βm are randomly generated within the range
(−1, 1), while γ is the mutation parameter. How many genes
will mutate is governed by the mutation probability Mb.
The optimisation procedure is terminated when a pre-defined
maximum number of generations, Gmax, is reached.

2) DBGA-MUD: The ps-th individual of the population in
the g-th generation is expressed as

b̂g,ps
=

[̂
b1
g,ps,1 · · · b̂1

g,ps,A · · · b̂U
g,ps,1 · · · b̂U

g,ps,A

]T
, (24)

which is related to a modulated signal X̂g,ps
that is a candidate

solution of the MUD optimisation (15). The Ps binary-valued

initial individuals
{
b̂1,ps

}Ps

ps=1
are randomly generated. The

fitness of b̂g,ps
is related to its CF by

f
(
b̂g,ps

)
=J−1

mud

(
b̂g,ps

)
= ‖Y − ĤX̂g,ps

‖−2. (25)

The selection ratio rs specifies the percentage of the Ps

individuals that form the mating pool, and the roulette wheel
selection is adopted, while the uniform crossover is used.
Given the mutation probability Mb, ⌊MbPsUA⌋ bits are
randomly selected from the total of PsUA bits in the Ps

individuals for mutation, where ⌊•⌋ denotes the integer floor.

B. RWBS for iterative CE and MUD

1) CRWBS-CE: The outer generation loop begins with

initialising the population
{
ĥq,g,ps

}Ps

ps=1
according to:

ĥq,g,1 =ĥq,g−1,best, (26)

ĥq,g,ps
=ĥq,g−1,best + γ

(
Gv + jGv

)
, 2 ≤ ps ≤ Ps, (27)

where Gv denotes the (ULcir)-dimensional random vector
whose elements follow the normal distribution with zero mean
and unit variance, ĥq,g−1,best denotes the best individual found
in the previous generation, and γ is the mutation rate. The

estimate ĥq,0,best can be either randomly generated or chosen
as the initial training based channel estimate. The CF values as-

sociated with the population are given by Jg,ps
= Jce

(
ĥq,g,ps

)
,

1 ≤ ps ≤ Ps, and each individual ĥq,g,ps
is initially assigned

an equal weight δps
(0) = 1

Ps
, for 1 ≤ ps ≤ Ps.

In the inner weighted boosting search (WBS) loop, the

best and worst individuals, ĥq,g,pbest
and ĥq,g,pworst

, are
first found, where pbest = arg min

1≤ps≤Ps

Jg,ps
and pworst =

arg max
1≤ps≤Ps

Jg,ps
. With the normalised the CF values

J̄g,ps
= Jg,ps

/ Ps∑

j=1

Jg,j , 1 ≤ ps ≤ Ps, (28)

the weighting factor β(t) is computed according to

β(t) =
η(t)

1 − η(t)
with η(t) =

Ps∑

ps=1

δps
(t − 1)J̄g,ps

, (29)

where t is the the WBS index, Then the weights are adapted:

δ̃ps
(t)=

{
δps

(t − 1)
(
β(t)

)J̄g,ps, β(t) ≤ 1,

δps
(t − 1)

(
β(t)

)1−J̄g,ps, β(t) > 1,
1 ≤ ps ≤ Ps, (30)

δps
(t) = δ̃ps

(t)
/ Ps∑

j=1

δ̃j(t), 1 ≤ ps ≤ Ps. (31)

Two new individuals are generated by the convex combination
and the associated reflection operation, respectively, as

ĥq,g,Ps+1 =

Ps∑

ps=1

δps
(t)ĥq,g,ps

, (32)

ĥq,g,Ps+2 = ĥq,g,pbest
+

(
ĥq,g,pbest

− ĥq,g,Ps+1

)
. (33)



ĥq,g,pworst
in the population is then replaced by ĥq,g,p∗

, where

p∗ = arg min
i=Ps+1,Ps+2

Jce

(
ĥq,g,i

)
.

The inner WBS iterative procedure is terminated when the
maximum number of WBS iterations Twbs has been reached.
The outer generation procedure is stopped when the maximum
number of generations Gmax has been reached.

2) DBRWBS-MUD: The outer generation loop begins

with initialising the population
{
b̂g,ps

}Ps

ps=1
as: set b̂g,1 =

b̂g−1,best, while the remaining Ps − 1 individuals b̂g,ps
,

2 ≤ ps ≤ Ps, are generated by randomly muting a certain

percentage of the bits in b̂g−1,best, the best individual found
in the previous generation. The percentage of bits muted are
governed by the mutation probability Mb. The initial binary-

valued b̂0,best can either be randomly generated or as the linear
minimum mean square error (MMSE) MUD solution [22].

The operations of the DBRWBS-MUD are similar to
those of the CRWBS-CE, except for the population updating.
Specifically, given that the Ps individuals’ weights δps

(t) with
1 ≤ ps ≤ Ps have been acquired, define

{
∆δ0(t) = 0,

∆δps
(t)=∆δps−1(t)+δps

(t), 1 ≤ ps ≤ Ps.
(34)

Then the four new individuals b̂g,Ps+i, 1 ≤ i ≤ 4, are
generated as follows: for 1 ≤ a ≤ A and 1 ≤ u ≤ U ,

b̂u
g,Ps+i,a =b̂u

g,ps,a, if ∆δps−1(t)< rand(0, 1)≤ ∆δps
(t), (35)

where rand(0, 1) denotes the random number generator which
randomly returns a value from the interval [0, 1). The newly
generated individuals replace the worst individuals in the
population, whose CF values are larger than them.

C. PSO for iterative CE and MUD

1) CPSO-CE: The initial individuals
{
ĥq,1,ps

}Ps

ps=1
are

randomly generated in the search space (−1− j, +1+ j)ULcir ,

and the initial velocities
{
vq,1,ps

}Ps

ps=1
are also randomly

generated in the velocity space (−1 − j, + 1 + j)ULcir . Each

particle ĥq,g,ps
remembers its best position visited so far,

which defines its cognitive information, denoted as ĥci
q,g,ps

.
Every particle also knows the best position visited so far
among the entire swarm, which defines the social information,

denoted by ĥsi
q,g . The cognitive information

{
ĥci

q,g,ps

}Ps

ps=1
and

the social information ĥsi
q,g are updated at each generation. The

velocities and positions are updated according to

vq,g+1,ps
=ωvq,g,ps

+ c1rand(0, 1)
(
ĥci

q,g,ps
− ĥq,g,ps

)

+ c2rand(0, 1)
(
ĥsi

q,g − ĥq,g,ps

)
, (36)

ĥq,g+1,ps
=ĥq,g,ps

+ vq,g+1,ps
, (37)

for 1 ≤ ps ≤ Ps, where ω is the inertia weight, while c1 and
c2 are the cognitive learning rate and the social learning rate,
respectively. The optimisation procedure is terminated when
the maximum number of generations Gmax is reached.

2) DBPSO-MUD: Each individual b̂g,ps
, as defined in (24),

is associated with the velocity

vg,ps
=

[
v1

g,ps,1 · · · v1
g,ps,A · · · vU

g,ps,1 · · · vU
g,ps,A

]T
, (38)

where vg,ps
∈ (0, 1)UA [23]. Associated with b̂g,ps

are the
two bit-changing probability vectors given respectively by

v0
g,ps

=
[
v1,0

g,ps,1 · · · v1,0
g,ps,A · · · vU,0

g,ps,1 · · · vU,0
g,ps,A

]T
, (39)

v1
g,ps

=
[
v1,1

g,ps,1 · · · v1,1
g,ps,A · · · vU,1

g,ps,1 · · · vU,1
g,ps,A

]T
, (40)

where vu,0
g,ps,l is the probability of the bit b̂u

g,ps,l to change

to 0, while vu,1
g,ps,l is the probability of b̂u

g,ps,l to change to 1.

The initial
{
b̂1,ps

}Ps

ps=1
are randomly generated, and the initial

{
v0

1,ps

}Ps

ps=1
and

{
v1

1,ps

}Ps

ps=1
are also randomly generated

over the probability space [0, 1]UA. At each generation, the

cognitive information
{
b̂ci

g,ps

}Ps

ps=1
and the social information

b̂si
g are updated. The two sets of the bit-changing probability

vectors are updated according to [24]

v0
g+1,ps

=ωv0
g,ps

+ c1rand(0, 1)
(
1UA − 2b̂ci

g,ps

)

+ c2rand(0, 1)
(
1UA − 2b̂si

g

)
, (41)

v1
g+1,ps

=ωv1
g,ps

+ c1rand(0, 1)
(
2b̂ci

g,ps
− 1UA

)

+ c2rand(0, 1)
(
2b̂si

g − 1UA

)
, (42)

for 1 ≤ ps ≤ Ps, where 1UA is the UA-dimensional vector
with all elements equal to 1. The intermediate velocity of the

bit b̂u
g,ps,l, 1 ≤ l ≤ A and 1 ≤ u ≤ U , is defined as [24]

ṽu
g+1,ps,l =

{
vu,1

g+1,ps,l, if b̂u
g,ps,l = 0,

vu,0
g+1,ps,l, if b̂u

g,ps,l = 1,
(43)

and the velocity associated with b̂u
g,ps,l is then given by [23]

vu
g+1,ps,l =

1

1 + e−ṽu
g+1,ps,l

. (44)

Next, the individuals are updated as follows

b̂u
g+1,ps,l =

{
b̂u
g,ps,l, if rand(0, 1) ≤ vu

g+1,ps,l,

1−b̂u
g,ps,l, if rand(0, 1) > vu

g+1,ps,l,
(45)

for 1 ≤ ps ≤ Ps, 1 ≤ u ≤ U , and 1 ≤ l ≤ A.

D. DEA for iterative CE and MUD

1) CDEA-CE: The mean value of the crossover probability
Cr is initialised to µCr

= 0.5, while the location parameter
of the scaling factor λ is initialised to µλ = 0.5. The archive
of DEA contains Ps best solutions that the population has
explored, and is updated every generation by adding the ⌊Ps·p⌋
parent solutions that are in the top 100p% of high fitness,
where p is known as the greedy factor. If the archive size
exceeds Ps, some solutions are randomly removed from the
archive to keep the archive size at Ps. The mutation operation

perturbs each base population vector ĥq,g,ps
as follows

h̃q,g,ps
=ĥq,g,ps

+ λps

(
ĥ

p
q,g,best,r1

− ĥq,g,ps

)

+ λps

(
ĥq,g,r2

− ĥq,g,r3

)
, (46)

where the scaling factor λps
∈ (0, 1] is randomly generated for

each individual according to a normal distribution of mean µλ

and standard deviation 0.1, ĥ
p
q,g,best,r1

is a randomly selected



archive value, while r2 and r3 are two random values fetched
from {1, 2, · · · , (ps − 1), (ps + 1), · · · , Ps}. A trial vector

ȟq,g,ps
is generated by replacing certain elements of ĥq,g,ps

with the corresponding elements of h̃q,g,ps
according to

ȟu
q,g,ps,l =

{
h̃u

q,g,ps,l, rand(0, 1) ≤ Crps
,

ĥu
q,g,ps,l, otherwise,

(47)

where Crps
∈ [0, 1] is the crossover probability, which is

randomly generated for each individual according to a Cauchy
distribution with the location parameter µCr

and the scale

parameter 0.1. Whether the target vector ĥq,g,ps
or the trial

vector ȟq,g,ps
survives to the next generation is decided by

ĥq,(g+1),ps
=

{
ȟq,g,ps

, Jce(ȟq,g,ps
) ≤ Jce(ĥq,g,ps

),

ĥq,g,ps
, otherwise.

(48)

µCr
and µλ are self adapted according to [8]

µCr
=(1 − c) · µCr

+ c · meanA(SCr
), (49)

µλ =(1 − c) · µλ + c · meanL(Sλ), (50)

where c ∈ (0, 1] controls the rate of adaptation, meanA(·) and
meanL(·) denote the arithmetic-mean and Lehmer-mean [8]
operators, respectively, while SCr

and Sλ denote the sets of
successful crossover probabilities Cri

and scaling factors λi,
respectively. The optimisation procedure is terminated when
the maximum number of generations Gmax is reached.

2) DBDEA-MUD: The algorithm evolves the binary-valued

individuals b̂g,ps
as defined in (24). Specifically, the mutant

vector to the base vector b̂g,i is created according to

v̂g,i =b̂g,i ⊕
(
zb

i ⊗
(
b̂

p
g,best,r1

⊕ b̂g,i

))
⊕

(
zb

i ⊗
(
b̂g,r2

⊕ b̂g,r3

))
, (51)

where b̂
p
g,best,r1

is randomly chosen from the archive, b̂g,r2

and b̂g,r3
, r2 6= i and r3 6= i, are randomly selected from the

current population, and zb
i is a randomly generated (U × A)-

length binary vector known as the bit-scaling factor, while ⊕
denotes the bit-wise exclusive-OR and ⊗ denotes the bit-wise
exclusive-AND. The trial vector t̂g,ps

is generated by

t̂ug,ps,j =

{
v̂u

g,ps,j , rand(0, 1) ≤ Crps
or j = jrand,

b̂u
g,ps,j , otherwise,

(52)

where Crps
∈ [0, 1] is randomly generated by a normal dis-

tribution of mean µCr
and standard deviation 0.1, while jrand

is a randomly chosen integer in the range of {1, 2, · · · , Ps}.

By mapping the binary-valued t̂g,ps
onto the corresponding

M -QAM symbol vector X̂t
g,ps

, the selection is defined by

b̂g+1,ps
=

{
t̂g,ps

, Jmud

(
X̂t

g,ps

)
≤ Jmud

(
X̂b

g,ps

)
,

b̂g,ps
, otherwise.

(53)

IV. EA AIDED JOINT CE AND TURBO MUD/DECODER

The iterative SISO detector and SISO channel decoder [18]
is illustrated in Fig. 1, where the extrinsic information, which
are the associated a posteriori information subtracted out the
corresponding a priori information, are first interleaved/de-
interleaved and exchanged a number of times between the

+ −1

+
SISO

detector

Ld,po,b Ld,ex,b

Ld,pr,b
Lc,ex,b

c,po,L

decoder

channel

SISO

b

Lc,pr,b

Fig. 1. Schematic of two-stage iterative detector and decoder, where L

denotes the LLR, the subscripts d and c are associated with the detector and
the channel decoder, respectively, while the subscripts pr, po and ex represent
the a priori, a posteriori and extrinsic information, respectively.

detector and the decoder. The EA aided iterative CE and
turbo MUD/decoder scheme exploits this powerful “turbo”
iterative procedure in which the enhanced symbol estimates
are fed back to the decision-directed channel estimator for
improving the accuracy of the CE and more accurate channel
estimates in turn result in an increasingly more accurate turbo
MUD/decoder output. We now outline the operations of this
EA aided iterative CE and turbo MUD/decoder.

1) Initialisation. Obtain the initial training based channel esti-
mate, and start the iterative joint CE and turbo MUD/decoder
with the iteration index loop = 1.

2) Iterative CE and turbo MUD/decoder.

2.1). Given the channel estimate provided by the continuous
EA (CEA) aided channel estimator (if loop = 1, the training-
based channel estimate), the turbo MUD/decoder starts with
the iteration index Iter = 1.

3) Turbo MUD/decoder. The discrete-binary EA (DBEA)
aided MUD detects the users’ data.

3.1). The SISO MUD delivers the a posteriori information of
bit bu(i) in terms of log-likelihood ratio (LLR) as [18]

Lm,po,bu(i) = ln
Pr

{
X̂u

∣∣bu(i) = 0
}

Pr
{
X̂u

∣∣bu(i) = 1
} + ln

Pr
{
bu(i) = 0

}

Pr
{
bu(i) = 1

}

=Lm,e,bu(i) + Lm,pr,bu(i), (54)

where bu(i) is the i-th bit in the bit stream that maps to the
M -QAM symbol stream of user u. The second term in (54),
Lm,pr,bu(i), represents the a priori LLR of the interleaved and
encoded bits bu(i), while the first term in (54), Lm,e,bu(i), is
the extrinsic information delivered by the SISO MUD, based
on the received signal Y and the a priori information about
the encoded bits, except for the i-th bit of user u.

3.2). The extrinsic information provided by the SISO MUD is
de-interleaved and fed into the SISO channel decoder as its a
priori information, denoted as Lc,pr,bu(i). The SISO channel
decoder then delivers the a posteriori information of decoded
bits, in terms of LLRs Lc,po,bu(i), given by [18]

Lc,po,bu(i) =Lc,e,bu(i) + Lc,pr,bu(i). (55)

The extrinsic information output by the SISO decoder, denoted
by Lc,e,bu(i), will then be interleaved to provide the a priori
information for the next iteration of the SISO MUD.

3.3). If Iter < Itb, where Itb defines the maximum number
of turbo MUD/decoder iterations, set Iter = Iter + 1 and
go to 3.1). Otherwise, the turbo MUD/decoder has converged,
and the detected and decoded bit streams are encoded by
the channel encoder, interleaved by the interleaver and then
mapped to the corresponding M -QAM symbol streams, which
will be used by the CEA based channel estimator.



4) Decision-directed channel estimator.

4.1). The CEA aided channel estimator uses the re-encoded and

re-modulated data
{
X̂u

}U

u=1
to perform the CIR estimation.

The resulting CIR estimate ĥ is transformed to Ĥ by the FFT,
which will then be used by the turbo MUD/decoder so that
the iterative process can continue.

4.2). If loop < Ice, where Ice defines the maximum number
of joint CE and turbo MUD/decoder iterations, set loop =
loop+1 and go to 2.1). Otherwise, the iterative CE and turbo
MUD/decoder has converged.

Given the CSI, the computational complexity of the optimal
ML-MUD, denoted as CML

MUD, and the complexity of the EA
aided MUD, denoted as CEA

MUD, can be analysed. Similarly,
given the CSI, the complexity of the optimal turbo ML-
MUD/decoder, denoted by CML

turbo, and the complexity of the
EA assisted turbo MUD/decoder, denoted by CEA

turbo, can be
derived. We can further analyse the total complexity, denoted
as CEA

joint, of the EA assisted joint CE and turbo MUD/decoder.
Space limitation preclude the explicit presentation of the
results. In the following simulation study, we will demonstrate
that the EA assisted joint CE and turbo MUD/decoder is ca-
pable of approaching the optimal performance of the idealised
turbo ML-MUD/decoder associated with the perfect CSI, while
imposing a complexity that is only a fraction of the complexity
of the idealised turbo ML-MUD/decoder.

V. SIMULATION EXPERIMENTAL RESULTS

Our simulated SDMA/OFDM system’s parameters are
listed in Table I. A four-path Rayleigh fading channel model
was employed for each link. At the beginning of every frame,
which contained S = 100 OFDM symbols, a new channel tap
was generated for each path according to the complex-valued
white Gaussian process with its power specified by the square
of the corresponding average path gain. Within the frame,
each tap experienced independent Rayleigh fading having
the normalised Doppler frequency FD = 10−7. A half-rate
recursive systematic convolutional (RSC) code was employed
as the channel code. The values of the EAs’ algorithmic
parameters are listed in Table II. The first OFDM symbol of
each frame was employed as pilots for the initial training based
CE, yielding a training overhead of 1%. The system’s signal
to noise ratio (SNR) was specified by SNR = Eb/No in dB,
where Eb denoted the energy per bit and No was the power
spectral density of the channel AWGN.

TABLE I. SIMULATION SYSTEM’S PARAMETERS.

Encoder Type RSC

Code rate 1/2

Constraint length 3

Polynomial (g0, g1) = (7, 5)
Channel Number of paths Lcir 4

Delays {0, 1, 2, 3}
Average path gains {0,−5,−10,−15} (dB)

Taps: frame to frame Complex white Gaussian

Taps: within frame fading rate FD = 10−7

System MSs U 4

Receiver antennas Q 3

Modulation 16-QAM

Subcarriers K 64

Cyclic prefix Kcp 16

TABLE II. THE ALGORITHMIC PARAMETERS FOR THE EA ASSISTED

CE AND MUD

Scheme Parameter Value

CGA-CE Population size Ps 100

Selection ratio rs 0.5

Mutation parameter γ 0.01

Mutation probability Mb 0.2

DBGA-MUD Population size Ps 100

Selection ratio rs 0.5

Mutation probability Mb 0.15

CRWBS-CE Population size Ps 100

Mutation parameter γ 0.001

Weighted boosting search Twbs 40

DBRWBS-MUD Population size Ps 100

Mutation probability Mb 0.5

Weighted boosting search Twbs 40

CPSO-C Population size Ps 100

Cognition learning rate c1 2

Social learning rate c2 2

DBPSO-MUD Population size Ps 100

Cognition learning rate c1 0.1

Social learning rate c2 0.3

CDEA-CE Population size Ps 100

Greedy factor p 0.1

Adaptive update factor c 0.1

DBDEA-MUD Population size Ps 100

Greedy factor p 0.7

Adaptive update factor c 0.8

A. Efficiency and reliability of EAs

We first quantified the efficiency and reliability of the
CEA adided channel estimators and the DBEA based MUD
schemes over Ntot = 1000 independent simulation runs. The
perfect CSI was assumed when evaluating the DBEA assisted
MUD schemes, while the transmitted data were available
when evaluating the CEA aided CE schemes. There was no
information exchange between the MUD and the decoder,
i.e. Iter = 1. Moreover, the channel AWGN was absent,
that is, No = 0. For an EA aided CE scheme, we specified
a “successful” run as one in which the algorithm achieved

the target CF value Jce

(
ĥq,Gi

max,best

)
< 10−4 within the set

upper limit for the number of CF evaluations N
lim

CF−EV s =
Ps · Glim

max = 100 × 1000, where Gi
max denoted the number

of generations in the i-th simulation run. Otherwise, the run
was declared as a “failure” one. We collected the statistics of
the number of successful runs, denoted as Nsuc, the number
of failure runs, denoted as Nfai, the total number of CF
evaluations in the Nsuc successful runs, defined by N suc

CF−EV s,
and the total number of CF evaluations in the Nfai failure runs,
defined by N fai

CF−EV s, using the following symbolic algorithm:

for run = 1 : Ntot

if
(
Grun

max ≤ Glim
max

)
and

(
Jce

(
ĥq,Grun

max,best

)
< 10−4

)

Nsuc = Nsuc + 1
N suc

CF−EV s = N suc
CF−EV s + Ps · Grun

max
else
Nfai = Nfai + 1
N fai

CF−EV s = N fai
CF−EV s + Ps · Glim

max
end if

end for

After obtaining these statistics, the average number of CF
evaluations per run was given by

N
tot

CF−EV s =
(
N suc

CF−EV s + N fai
CF−EV s

)/
Ntot, (56)

while the average number of CF evaluations per successful run
was defined by

N
suc

CF−EV s = N suc
CF−EV s

/
Nsuc. (57)



Then the normalised average number of CF evaluations per

run or the ratio of N
tot

CF−EV s to N
lim

CF−EV s

R
tot

CF−EV s = N
tot

CF−EV s

/
N

lim

CF−EV s (58)

and the normalised average number of CF evaluations per

successful run or the ratio of N
suc

CF−EV s to N
lim

CF−EV s

R
suc

CF−EV s = N
suc

CF−EV s

/
N

lim

CF−EV s (59)

were used to quantify the efficiency of the EA aided CE

scheme. The smaller R
tot

CF−EV s or R
suc

CF−EV s, the more ef-
ficient the EA aided CE scheme. The reliability of the EA
aided channel estimator was measured by the failure ratio

Rfai = Nfai

/
Ntot. (60)

The smaller Rfai, the more reliable the EA aided CE scheme.
The efficiency and reliability of the four CEA assisted CE
schemes are illustrated in Fig. 2. It can be seen from Fig. 2
that the CDEA-CE outperformed the other three schemes and
it always arrived at the target CF value with the average com-
putational complexity of 15000 CF evaluations. The CRWBS-
CE came a close second and it always attained the target CF
value with the average computational complexity of 22000 CF
evaluations. The CGA-CE was the the worst CE candidate,
having the failure rate Rfai ≈ 7% and requiring the average
computational complexity of 90000 CF evaluations.
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Fig. 2. Histograms of the efficiency and reliability measures, in terms of

R
tot

CF−EV s, R
suc

CF−EV s and Rfai, for the four CEA assisted CE schemes.

A similar procedure was carried out to investigate the
efficiency and reliability of the four DBEA assisted MUDs by

setting Glim
max = 500 and N

lim

CF−EV s = MU = 164. A success-

ful detection run was confirmed, if
(
Grun

max ≤ Glim
max

)
and the

BER of the best individual X̂Grun
max,best attains zero. Otherwise,

the run was declared a failure. Note that N
lim

CF−EV s = MU

was the number of CF evaluations required by the optimal full
search ML MUD. Fig. 3 compares the efficiency and reliability
of the four DBEA assisted MUDs. Observe in Fig. 3 that the
DBGA-MUD was the “winning” MUD candidate with a zero
failure rate and requiring the lowest average number of CF
evaluations. The complexity of the DBGA-MUD was only
3.2% of the optimal ML-MUD’s complexity. The DBDEA-
MUD came a close second with an extremely low failure rate
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Fig. 3. Histograms of the efficiency and reliability measures, in terms of

R
tot

CF−EV s, R
suc

CF−EV s and Rfai, for the four DBEAs assisted MUDs.

and an average complexity that was 3.7% of the optimal ML-
MUD’s complexity. In terms of reliability, the DBRWBS-MUD
also performed well with an almost zero failure rate, while the
DBPSO-MUD had the highest failure rate.

B. EA aided joint CE and turbo MUD/decoder schemes

Figs. 4 and 5 compare the mean square error (MSE)
and BER performance, respectively, of all the four EA aided
iterative joint CE and turbo MUD/decoder schemes, when
fixing the number of the inner turbo iterations to Iter = 3, the
number of CF evaluations for EA aided CE to N ce

CF−EV s =
20000 (Gmax = 200), and the number of CF evaluations
for EA aided MUD to Nmud

CF−EV s = 10000 (Gmax = 100).
Observe from Fig. 4 that, with the loop = 5 outer iterations, the
MSEs of the two channel estimates associated with the RWBS
and DEA aided iterative joint CE and turbo MUD/decoder
schemes approached the CRLB for Eb/No ≥ 10 dB, but the
PSO and GA aided iterative joint CE and turbo MUD/decoder
schemes exhibited divergence. Similarly, from Fig. 5 it can be
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Fig. 4. Comparison of the MSE performance for the four EA aided iterative
joint CE and turbo MUD/decoder schemes recorded at the outer iterations
loop = 0 and loop = 5, respectively, when fixing the number of the inner
turbo iterations to Iter = 3, the number of CF evaluations for EA aided CE
to 20000, and the number of CF evaluations for EA aided MUD to 10000.
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Fig. 5. Comparison of the BER performance for the four EA aided iterative
joint CE and turbo MUD/decoder schemes recorded at the outer iterations
loop = 0 and loop = 5, respectively, when fixing the number of the inner
turbo iterations to Iter = 3, the number of CF evaluations for EA aided CE
to 20000, and the number of CF evaluations for EA aided MUD to 10000.

seen that, with the loop = 5 outer iterations, the RWBS and
DEA aided iterative joint CE and turbo MUD/decoder schemes
attained the optimal BER performance of the idealised turbo
ML-MUD/decoder, while the PSO and GA aided iterative joint
CE and turbo MUD/decoder schemes failed to find the optimal
solution of the idealised turbo ML-MUD/decoder.

From the results of Subsections V-A, we suspect that
the PSO and GA aided joint CE and turbo MUD/decoder
schemes may be less efficient in comparison with the RWBS
and DEA aided iterative joint CE and turbo MUD/decoder
schemes, and N ce

CF−EV s = 20000 and Nmud
CF−EV s = 10000

may not be sufficient for the PSO and GA aided schemes.
We therefore increased N ce

CF−EV s = 40000 (Gmax = 400)

and Nmud
CF−EV s = 20000 (Gmax = 200), and carried out

the simulation for all the four EA aided iterative joint CE
and turbo MUD/decoder schemes again. Figs. 6 and 7 show
the achievable MSE and BER performance, respectively, for
the four EA aided iterative joint CE and turbo MUD/decoder
schemes. It can readily be seen from Fig. 6 that the MSEs of
the four channel estimates associated with the four EA aided
joint CE and turbo MUD/decoder schemes all approached the
CRLB with the loop = 5 outer iterations for Eb/No ≥ 10 dB.
Furthermore, the four EA aided iterative joint CE and turbo
MUD/decoder schemes all attained the optimal BER perfor-
mance of the idealised turbo ML-MUD/decoder associated
with the perfect CSI, as can be seen from Fig. 7.

We now explicitly compare the computational complexity
of an EA assisted iterative joint CE and turbo MUD/decoder
scheme with the complexity of the idealised turbo ML-
MUD/decoder associated with the perfect CSI. Computational
complexity comparison results are given in Table III in the
three ratios CEA

MUD/CML
MUD, CEA

turbo/CML
turbo and CEA

joint/CML
turbo.

The ratio CEA
MUD/CML

MUD is the ratio of the complexity of
an EA aided MUD to that of the optimal full search ML
MUD. It can be seen from Table III that all the four EA
aided MUDs impose only 0.1% of the ML MUD’s complexity.
Recall that, given the CSI, a turbo MUD/decoder involves
Iter turbo iterations between the MUD and the channel
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decoder. The complexity of the RWBS and DEA assisted turbo
MUD/decoder algorithms is less than 3.5% of the complexity
of the turbo ML-MUD/decoder, while the complexity of the
GA and PSO aided turbo MUD/decoder algorithms is less
than 6.6% of the turbo ML-MUD/decoder’s complexity. The
difference is owing to the fact that the RWBS and DEA
appear to be more efficient requiring Nmud

CF−EV s = 10000
compared with Nmud

CF−EV s = 20000 needed by the GA and
PSO. Note that an EA aided iterative joint CE and turbo
MUD/decoder involves loop outer iterations between the EA
aided decision-directed channel estimator and the EA assisted
turbo MUD/decoder, and it performs blind joint CE and data
detection. Comparing its complexity with the complexity of
the idealised turbo ML-MUD/decoder, which is given with the
perfect CSI, is really “unfair”. Even so, from Table III, we can



TABLE III. COMPUTATIONAL COMPLEXITY COMPARISON IN TERMS OF THE RATIO OF THE COMPLEXITY OF AN EA ASSISTED ITERATIVE JOINT CE
AND TURBO MUD/DECODER TO THE COMPLEXITY OF THE IDEALISED TURBO ML-MUD/DECODER ASSOCIATED WITH THE PERFECT CHANNEL STATE

INFORMATION.

Scheme Operation CEA
MUD/CML

MUD CEA
turbo/CML

turbo CEA
joint/CML

turbo

GA assisted joint CE multiplications 0.10% 5.69% 62.24%

and turbo MUD/decoder additions 0.10% 7.45% 91.41%

RWBS assisted joint CE multiplications 0.10% 3.00% 31.27%

and turbo MUD/decoder additions 0.10% 3.88% 45.86%

PSO assisted joint CE multiplications 0.10% 5.69% 62.24%

and turbo MUD/decoder additions 0.10% 7.45% 91.41%

DE assisted joint CE multiplications 0.10% 3.00% 31.27%

and turbo MUD/decoder additions 0.10% 3.88% 45.86%

see that the total complexity of the RWBS and DEA assisted
joint CE and turbo MUD/decoder schemes is less than 39%
of the idealised turbo ML-MUD/decoder’s complexity, while
the GA and PSO assisted joint CE and turbo MUD/decoder
schemes impose the total complexity that is less than 77% of
the idealised turbo ML-MUD/decoder’s complexity.

VI. CONCLUSIONS

In this paper, the four evolutionary algorithms, the GA,
RWBS, PSO and DEA, have been applied to the challenging
application of joint blind channel estimation and turbo multi-
user detection/decoding for SDMA/OFDM communication
systems. Extensive analysis and simulation study have been
carried out to demonstrate that, by iteratively exchanging
the information between a continuous EA aided decision-
directed channel estimator and a discrete binary EA assisted
turbo MUD/decoder, an EA aided joint blind CE and turbo
MUD/decoder is capable of approaching both the Cramér-
Rao lower bound associated with optimal channel estimate
and the bit error rate of the idealised optimal turbo ML-
MUD/decoder associated with the perfect channel state infor-
mation, despite of only imposing a fraction of the complexity
of the idealised turbo ML-MUD/decoder. Our study thus
has provided benchmarking empirical results to support the
capabilities of EAs for finding global or near global optimal
designs in challenging practical applications with affordable
computational complexity, and it compliments well the current
intensive efforts of the computational intelligence community
to better understand EAs.
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