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Abstract— Future opportunistic vehicular networks offers viable means for collaborative data
dissemination by high-capacity device-to-device communication. This is a highly challenging
problem because a) mobile data items are heterogeneous in size and lifetime; b) mobile users
have different interests to different data; and c) dissemination participants have limited storages.
We study collaborative data dissemination under these realistic opportunistic vehicular network
conditions and formulate the optimal data dissemination as a submodular function maximisation
problem with multiple linear storage constraints. We then propose a heuristic algorithm to solve
this challenging problem, and provide its theoretical performance bound. The effectiveness of
our approach is demonstrated through simulation using real vehicular traces.

1. INTRODUCTION

Mobile Internet access is getting increasingly popular for providing various services and applications
including video, audio and images. Cisco forecasts that mobile traffic will be growing at an annual
rate of 131% in 2011, and will reach over 6.3 exabytes per month in 2015 [1]. Two-thirds of
the world’s mobile data traffic will be video by 2015. Mobile cellular networks provide the most
popular method of mobile access today. With the increase of mobile services and user demands,
however, cellular networks will very likely be overloaded and congested in the near future. To cope
with this explosive growth in traffic demands, offloading mobile data from the overloaded cellular
networks to WiFi networks is currently considered [2,3]. The development of opportunistic vehicular
networks offers a viable alternative to mobile data offloading. With an increasing number of vehicles
equipped with devices to provide device-to-device communication capacities, large scale vehicular
ad hoc networks will soon be available. Many applications in vehicular networks will then appear,
including high speed Internet access and multimedia content sharing [4]. Since a vehicular network
is highly mobile and sometimes sparse, it is hard to maintain a connected network to distribute the
content. However, opportunistic contact between vehicles offers high bandwidth communication
capacity for content dissemination, known as opportunistic vehicular content dissemination [5].

Collaborative data dissemination in opportunistic vehicular networks is highly challenging for
several reasons: 1) the network contains heterogeneous vehicles, in terms of data preference, 2) the
data items are multi-types of different delay sensitivities and sizes, and 3) the data dissemina-
tion participants’ storages are limited in size. The existing works [6–8] did not consider these
realistic conditions. We study collaborative data dissemination in realistic opportunistic vehicu-
lar networks, and our contribution is threefold: a) formulate the optimal data dissemination with
heterogeneous data items and vehicles of limited storage as a submodular function maximisation
with linear constraints; b) propose a heuristic algorithm to solve this NP-hard problem and derive
the performance bound of this algorithm; and c) demonstrate the effectiveness of our algorithm in
challenging opportunistic vehicular network environments through real trace-driven simulations.

2. PROBLEM FORMULATION

In an opportunistic data dissemination system, the service provider chooses some vehicles that
are willing to participate in data dissemination, and transmit data to the chosen vehicles. These
vehicles then further propagate the data to other users that subscribe the data by device-to-device
opportunistic communication. As illustrated in Figure 1, there are two types of vehicles in the
system, data dissemination participator and data subscriber. A participator may store more than
one data item, depending on the buffer and data sizes, and a subscriber may be interested in different
data items. In general, there are N + H vehicles in the system, labelled as i ∈ {1, 2, · · · , N + H},
while the traffics of I different data items are labelled as I. For any k ∈ I, its data length is lk.
As the storage in each vehicle is limited, user s can at most buffer Ls size of data items. We use H
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Figure 1: Collaborative data dissemination in the opportunistic vehicular network.

to denote the set of vehicles that are willing to participate the data dissemination, and N for the
other subscriber vehicles, where |H| = H and |N | = N . Any subscriber in N may be interested in
a data item, and obtains it through device-to-device communication from the participators. Thus,
we associate subscriber i is with a vector wi = [wi,1 wi,2 · · ·wi,I ]T, where wi,k defines the user’s
interest in data item k and wi,k = 0 means that user i is completely not interested in data k.
Without loss of generality,

∑I
k=0 wi,k = 1 for ∀i. Vehicles can communicate with each other only

when they move to within the transmission range, which is called a communication contact. The
communication contact between vehicles i and j is assumed to obey the Poisson process with a
contact rate γi,j . Poisson distributed contact rate has been validated to fit well to real vehicular
traces and is widely used to model opportunistic vehicular systems [9–11].

Let X = (xs,k), s ∈ H, k ∈ I, be the storage allocation policy, in which xs,k ∈ {0, 1} and xs,k = 1
indicates that participator s stores item k in its buffer. A lifetime Tk is assigned to each item k, and
all the users will discard this data at deadline Tk. If subscribers do not receive a required item from
dissemination participators after the lifetime is expired, they will try to get it directly from the
service provider. Therefore, we should maximise the expectation of the disseminated data size in all
the subscribers, and this objective function can be expressed as U(X) =

∑
k∈I lk

∑
i∈N di,k, where

di,k is the probability that user i receives data k before deadline Tk. As more than one participator
may store item k, we define the dissemination opportunity metric for s ∈ H, i ∈ N and k ∈ I,
as ts,i,k, which is the probability that user i obtains content k from participator s. Because the
contact rate between s and i follows the Poisson distribution with rate γs,i and the contact event is
independent of user interests, we model the dissemination opportunity as the Poisson process with
rate γs,iwi,k. Hence, ts,i,k = 1 − e−xs,kγs,iwi,kTk and di,k = 1 −

∏
s∈H(1 − ts,i,k). The expectation of

the total disseminated data size can then be written as:

U(X) =
∑

k∈I
lk

∑
i∈N

(
1 − e−wi,kTk

P

s∈H xs,kγs,i

)
. (1)

For the subset of H× I, A ⊆ H× I, we define the storage allocation policy X as

X = F (A), s.t. xs,k = 1 if (s, k) ∈ A and xs,k = 0 if (s, k) /∈ A.

Since F (A) is a bijection, the utility function U(X) over the subset A ⊆ H× I is
⌢

U(A) = U(F (A)) =
∑

k∈I
lk

∑
i∈N

(
1 − e−wi,kTk

P

s:(s,k)∈A γs,i

)
. (2)

Thus, maximising the system’s expected disseminated data size for all the items and over all the
subscribers can be specified as the following optimisation problem

max U(X) or max
⌢

U(A), s.t. xs,k ∈ {0, 1},∀s ∈ H, k ∈ I, and
∑

k∈I
lkxs,k ≤ Ls,∀s ∈ H, (3)

where
∑

k∈I xs,klk ≤ Ls is the buffer size constraint of dissemination participator s.

3. DATA DISSEMINATION ALGORITHM

Submodularity is found in various problems [12–14]. A function f defined on subsets of the universe
C is called submodular, if and only if f(A ∪ x) − f(A) ≥ f(B ∪ x) − f(B) holds for ∀A ⊆ B ⊆ C
and ∀x ∈ C\B. Due to space limitation, we offer the following theorem without proof.
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Theorem 1. The system utility function
⌢

U(A) is a submodular function on 2H×I , and the problem
(3) is NP-complete.

Thus, the problem (3) is an NP-hard submodular function maximisation with multiple linear
constraints (MLCs). The computer science community has studied this type of optimisation [12,15].
In [12], an algorithm is proposed to solve this problem by an approximation, but it has a very
high complexity. Taking the system with 5 participators and 10 data items as an example, the
computation time for the first step of Rounding Procedure in [12] is more than 1015. We propose
a greedy based heuristic algorithm to solve this problem by allocating storage one by one.

When one more copy of an item is stored in a participator, which meets the constraints, the
objective function is enhanced. The gain in the objective function is generally different for different
choices of item and participator. As our first greedy strategy, we select the items and participators
that maximise the gain on the objective function at each stage, that is, select (s0, k0) as

(s0, k0) = arg max
(s,k)∈P

(
⌢

U(A ∪ (s, k)) −
⌢

U(A)
)
, (4)

where A is the set of chosen data items and participators, and P is the set of possible solutions
that satisfy the storage constraint. The length of each data is also important because, although an
item may offer a large gain, it may also have a huge length such that other items cannot be stored.
Our second greedy strategy is to calculate the gain per unit data length for each choice of item and
participator, and select the pair that maximises this per-unit-length gain, that is, select

(s0, k0) = arg max
(s,k)∈P

⌢

U(A ∪ (s, k)) −
⌢

U(A)
lk

. (5)

Our heuristic algorithm, listed in Algorithm 1, performs both these two greedy strategies and
chooses the better result from the two solutions. Algorithm 1 is a pseudo-polynomial-time algorithm
with the complexity O(H3I2N), which is acceptable in practice. We analyse the performance bound
of this algorithm in the following theorem. Space limitation precludes the proof.

Theorem 2. Denote the optimal solution of the problem (3) by OPT = arg max
A∈Q

⌢

U(A), where

Q ⊆ 2H×I is the feasible solution set. The solution obtained by Algorithm 1, OPT∗, satisfies

⌢

U(OPT∗) ≥ 1
2

(
1 − e−

L−µ

L

)
⌢

U(OPT), where L =
∑

s∈H
Ls and µ = (H − 1) · max

k∈I
lk.

4. SIMULATION RESULTS

The performance of our Heuristic Algorithm is compared with the following schemes: 1) Ran-
dom Algorithm, in which each participator chooses the data items randomly to fill its buffer until
no more item can be stored; 2) Homogeneous Algorithm [8], where the system allocates the
buffer based on the assumption that all participators have the same storage size and the lengths
of all data items are identical; and 3) SFM Algorithm [12], which uses some approximation al-
gorithms to maximise a submodular set function subject to MLCs. Our evaluation was conducted
on two realistic vehicular mobility traces, Shanghai trace [16] and Beijing trace, which record the
positions of vehicles carrying GPS devices. In Beijing trace, we utilised the GPS devices to collect
the taxi locations and timestamps of 2700 participating taxis, and used GPRS modules to report
the records every one minute for moving taxis. In the simulation, a node updated its contact rates
with other nodes in real-time, based on the up-to-date contact counts since the network started,
and we used halftime of the trace to obtain the contact rates of each node pairs. We randomly
chose 10% of the vehicles as the participators and used the rest as the subscribers. We set the
number of data items as 35 in Shanghai trace and 50 in Beijing trace. The sizes of data items were
generated randomly and uniformly in the range of [50 kB, 150 kB], while the data lifetimes followed
the uniform distribution in [0, 2Ta s], where Ta is the average data lifetime. The participator buffer
sizes were randomly and uniformly generated in [0, 2la kB], where la is the average buffer size. User
interests to different data items followed the exponential distribution with an expectation of 20.

The results for Shanghai trace are shown in Figure 2, where the dashed curve indicates the
theoretical disseminated data size calculated by each algorithm and the solid curve is obtained
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Algorithm 1 Heuristic algorithm for data dissemination.
1: Initialise m = 0 and A0 = ∅;
2: while m = 0 or

⌢

U(Am) −
⌢

U(Am−1) > 0 do

3: m = m + 1; (sm, km) = arg max
(s,k)∈P

(
⌢

U(Am−1 ∪ {(s, k)}) −
⌢

U(Am−1)
)
; Am = Am−1 ∪ {(sm, km)};

4: end while
5: Initialise j = 0 and B0 = ∅;
6: while j = 0 or

⌢

U(Bj) −
⌢

U(Bj−1) > 0 do

7: j = j + 1; (sj , kj) = arg max
(s,k)∈P

⌢
U (Bj−1∪{(s,k)})−

⌢
U (Bj−1)

lk
; Bj = Bj−1 ∪ {(sj , kj)};

8: end while
9: if

⌢

U(Am) >
⌢

U(Bj) then
10: OPT∗ = Am;
11: else
12: OPT∗ = Bj ;
13: end if
14: Return OPT∗ and

⌢

U(OPT∗);

by simulating the system with the buffer allocation strategy of each algorithm. The accuracy of
our formulated problem is validated by the fact that the theoretical and simulation results are
very close. Figure 2 (a) shows that, with a fixed average data lifetime and different average buffer
sizes, our Heuristic algorithm achieves almost the same performance of the SFM algorithm, and
it outperforms the Random and Homogeneous algorithms considerably. The results under a fixed
average buffer size and different average data lifetimes are shown in Figure 2 (b). It can be seen
that, for the average lifetime larger than 10000 s, our Heuristic algorithm even achieves about 2% to
9% higher data amount than the SFM algorithm. Moreover, our Heuristic algorithm dramatically
outperforms the Random and Homogeneous algorithms. The results using Beijing trace are shown
in Figure 3. Again, the simulation results agree with the theoretical results, and similar observations
to those for Shanghai trace can be drawn. For Beijing trace, our Heuristic algorithm achieves a
slightly better performance than the SFM algorithm.

The above results confirm that our Heuristic algorithm performs much better than the Homoge-
neous algorithm, which does not consider the heterogeneous features of data length and buffer size,
and the Random algorithm. Most significantly, our Heuristic algorithm achieves almost the same or
slightly better performance in comparison with the SFM algorithm, which is not very piratical due
to its very high computational complexity. This demonstrates the effectiveness of our approach.

5. CONCLUSIONS

We have studied the collaborative mobile data dissemination in a realistic opportunistic vehicular
network environment, where the network is heterogeneous, in terms of the disseminated data being
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Figure 2: Results of different algorithms for Shanghai trace with (a) the fixed average data lifetime of 10000 s
and variable average buffer size, and (b) the fixed buffer size of 100 kB and variable average data lifetime,
where dashed curves are theoretical results and solid curves are simulation results.
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Figure 3: Results of different algorithms for Beijing trace with (a) the fixed average data lifetime of 40000 s
and variable average buffer size, and (b) the fixed average buffer size of 300 kB and variable average data
lifetime, where dashed curves are theoretical results and solid curves are simulation results.

multi types with different delay sensitivities and lengths as well as the participators’ storages being
limited with difference sizes. By formulating this challenging problem as a submodular function
maximisation, we have designed an efficient heuristic algorithm to allocate the buffer. Simulation
results have demonstrated that our algorithm achieves almost the same performance as the very
high-complexity SFM algorithm, traditionally used to solve this type of challenging problems.
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