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Kernel-Based Nonlinear Beamforming Construction
Using Orthogonal Forward Selection with Fisher

Ratio Class Separability Measure
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Abstract— This letter shows that the wireless communication system
capacity is greatly enhanced by employing nonlinear beamforming and
the optimal Bayesian beamformer outperforms the standard linear beam-
former significantly in terms of a reduced bit error rate, at a cost of in-
creased complexity. Block-data adaptive implementation of the Bayesian
beamformer is realized based on an orthogonal forward selection proce-
dure with Fisher ratio for class separability measure.
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I. INTRODUCTION

Spatial processing with adaptive antenna array has shown real
promise for substantial capacity enhancement in mobile com-
munication [1]–[5]. Adaptive beamforming can separate signals
transmitted on the same carrier frequency, provided that they are
separated in the spatial domain. The beamforming processing is
classically done by forming a linear combination of the signals
received from the different elements of an antenna array. We
refer to this classical beamforming as linear beamforming. Re-
cent work [6] has investigated a linear beamforming technique
based directly on minimizing the system bit error rate (BER) and
developed an adaptive algorithm for realizing the linear min-
imum BER (LMBER) beamforming. The results in [6] have
demonstrated that the LMBER beamforming provides consider-
able performance gains in terms of a reduced BER over the usual
linear minimum mean square error (LMMSE) beamforming.

The spatial separation in angles of arrival between the desired
signal and the closest interfering signal determines the system
performance and hence capacity. When this separation is be-
low certain threshold, linear beamforming ultimately fails be-
cause the system becomes linear inseparable, a situation that is
similar to the single-user channel equalization [7],[8]. For the
sake of notational simplicity and for highlighting the basic con-
cepts, we assume that the modulation scheme is binary phase
shift keying (BPSK), the channel is non-dispersive with additive
white Gaussian noise, and narrow-band beamforming is consid-
ered. We derive the optimal solution for nonlinear beamforming,
which we refer to as the Bayesian beamforming solution. Block-
data kernel-based adaptive beamformer is proposed to realize
the optimal Bayesian beamformer solution using an orthogonal
forward selection (OFS) procedure with Fisher ratio for class
separability measure [9]. The proposed nonlinear beamformer
construction algorithm is compared with the state-of-art sparse
kernel modeling based on the relevance vector machine (RVM)
for classification [10],[8].

Manuscript received May 1, 2003; revised July 31, 2003.
The authors are with School of Electronics and Computer Science, University

of Southampton, Southampton SO17 1BJ, U.K.

II. SYSTEM MODEL

It is assumed that the system consists of
�

users (sources),
and each user transmits a BPSK signal on the same carrier fre-
quency �������	� . The baseband signal of user 
 is given by�������� ��� ����������������������� �"!$#&%$'(�)%+* 
 * � � (1)

where the complex-valued � � is the channel coefficient for user 

multiplying by the transmitted signal amplitude of user 
 (there-
fore , � � , - denotes user 
 received signal power) and �.������� is the� -th bit of user 
 . Without the loss of generality, source 1 is
assumed to be the desired user and the rest of the sources are
interfering users. The linear antenna array is considered which
consists of / uniformly spaced elements, and signals at the / -
element antenna array are given by

0213����� � 45 �7698 ��������;:�<>=?�A@ �)B 13�DCE�F���HGJIK13����� �ML021�������GJIK13����� (2)

for %N*POQ* / , where B 1 �RC � � is the relative time delay at elementO for source 
 , C�� is the direction of arrival for source 
 , and IS1������
is a complex-valued white Gaussian noise with zero mean andTVU , I 1 ����� , -�W��X�ZYK-[ . The desired signal to noise ratio is defined
as SNR �\, � 8 , -E]Z�$YK-[ , and the desired signal to interferer 
 ratio
is given by SIR � �^, � 8 , -_]�, � � , - for 
`�a� �.bcb.b�� � . In vector
form, the array input can be written asd)����� � U 0 8 �����ebcb.b�0gfh����� Wjik� Ld)�����	G�lm����� �onNp �����	Gqlr�����

(3)
where

TsU lr������lQt&����� Wu�v�$YK-[>w f with w f denoting the /Xxq/
identity matrix, the system matrix is defined byny� U � 8�z�8 � - z - bcb.b � 4 z 4 W � (4)

with the steering vector for source 
 being zE� � U :�<>=S�7@ �)B 8Z�RC������:�<>=	�7@ �)B - �RC � ���{bcb.b�:�<>=	�A@ �)B f��RC � ��� W i , and the bit vector p ����� �U � 8 �����9� - �����{b.bcb�� 4 ����� W i .
Traditionally, a linear beamformer is used, whose output is

given by | ����� �o} t d)����� (5)

where } is the complex-valued beamformer weight vector. The
decision for the transmitted bit � 8 ����� is made according to~�.8$����� �M� G&%Z� |Z� ����� ������ %Z� |Z� ����� *���� (6)

where
|�� ����� ��� U | ����� W denotes the real part of

| ����� . The clas-
sical LMMSE beamforming solution is given by }s���������
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Recently we have developed the LMBER beamforming solution
[6]. For the linear beamformer to work adequately, the system
must be linearly separable in the noise-free case. When the min-
imum spatial separation in angles of arrival between the desired
user and interfering users is below certain threshold, the system
inevitably becomes linearly inseparable. In such a situation, the
linear bermformer exhibits a high irreducible BER floor, and a
nonlinear processing has to be adopted.

III. BAYESIAN BEAMFORMING SOLUTION

Given the observation vector d)����� , the optimal solution to the
beamforming problem is the maximum a posteriori probability
solution, which we derive as follows. Denote the �	� �v� 4
possible sequences of p ����� as p�
 , %u*�e* � � . Further denote
the first element of p 
 , corresponding to the desired user, as� 
�� 8 . Obviously Ld)����� only takes values from the signal state set

defined as: ���� ! Ld 
&� nNp�
 � % *�� * � � ' . The state set �
can be divided into two subsets conditioned on �_8E����� :���������� ! Ld �����
 � � �c%+*��&* ��� � � � 8 ����� � #&%Z' (7)

where � � � �!����]Z� . The posterior probabilities or decision vari-
ables for � 8 ����� � #&% given d)����� are" ����� ����� � #%$'&5 
 6Q8 ( �)���
� ���SY -[ � f :�<>=+* �-, d)����� � Ld �����
 , -�$Y -[ . (8)

where
( �����
 � 8#/$0& are a priori probabilities of Ld �����
 and , d , - �dSt d . The optimal decision is given by~�c8������ � � G&%Z�1" �32�� �����546" � � � �������� %Z� otherwise 7 (9)

Let we redefine a single decision variable as|98 ����� � # &5
 698;: 
 :�<>==< � , d)����� � Ld 
 , -�ZY -[ > (10)

where : 
� sgn ��� 
�� 8 � ] � � � � ���SY -[ � f � . Then the optimal deci-
sion (9) is equivalent to~�.8������ � � G&%�� |98 �����?4P���� %�� | 8 �����?@P� 7 (11)

IV. BLOCK-DATA KERNEL-BASED NONLINEAR

BEAMFORMER CONSTRUCTION

Given a block of � training data !cd)���������_8������H' # A 698 , consider
the nonlinear beamformer of the form| �Rd	� � #5 1 6Q8�B 1DC21 �Rd	� (12)

where B 1 are the real-valued weights and C 1��Dd	� � C �Rdh��d)�DO���� are
chosen kernel basis functions. In our application, C �FE;��E$� can be
chosen as the Gaussian kernel function of the formC �Rdh��d)�DO���� � :�<>= < �-, d � d)�DO�� , -��G - > (13)

where the kernel variance G - is related to the noise varianceYK-[ . The RVM method [10],[8] can be applied to construct a
sparse beamformer of �IHKJML terms from (12). A drawback of the
RVM method is its high computational complexity. The algo-
rithm contains two loops, with the inner loop for updating the
kernel weights and the outer loop for the associated hyperpa-
rameters. Both loops involves expensive nonlinear optimization.
Furthermore, the RVM method starts with the full model set and
removes those kernel terms that have large values in their asso-
ciated hyperparameters. Because the Hessian matrix associated
with the full model set is typically ill-conditioned and may even
be non invertible, the RVM method is inherently ill-conditioned
and its iterative procedure generally converges with slow rate
and may suffer from numerical instability.

An alternative way of constructing a sparse kernel model from
the full model (12) is the OFS procedure based on Fisher ratio
class separability measure [9], which is computationally attrac-
tive and numerically robust. Define the modeling residual asN ����� �O ����� � | ����� � � 8 ����� � | �Rd)������� . Then the kernel model
(12) over the training data set can be collected together asP �RQTS GVU (14)

where the target vector
P � U O ��%_�{bcb.b O � � � W i � U �.8���%_�{bcb.bH�.8�� � � W i ,

the regression matrix QX� U W 8 b.b.b W # W withW � � U Cg� �3%_�Kb.b.b C2� � � � W i � U C �Rd)��%_����d)� 
 ���Kb.b.b C �Rd)� � ����d)� 
 ��� W i �
(15)

for %q* 
 * � , the kernel weight vector S � U B 8Qbcb.b B # W i ,
and the residual vector U � U N �3%E�{b.bcb N � � � W i . Let an orthogonal
decomposition of the regression matrix Q be QX�!XZY , where

Y �\[]]]]^
%`_h8 � - b.bcb _�8 � #� % . . .

...
...

. . .
. . . _ # � 8 � #� bcb.b � %

acbbbbd (16)

and

X � U e 8 e - bcb.b e # W{� []]]^
f 8 � 8 f 8 � - bcb.bgf 8 � #f - � 8 f - � - bcb.bgf - � #

...
...

...
...f # � 8hf # � - bcb.bif # � #

a bbbd (17)

with orthogonal columns that satisfy
e i� e 
 � � if 
	j� � . The

kernel model (14) can alternatively be expressed asP �kX�l GmU (18)

where l � U n 89bcb.b n # W i satisfies the triangular system YoSP�kl .
A sparse �IHKJpL -term model can be selected by incrementally

maximizing a class separability measure in an OFS procedure
[9]. Define the two class sets q � � !cd)����� � O ����� � #&%$' ,
and let the numbers of points in q � be � � , respectively, with� 2 G � � ��� . The means and variances of training samples
belonging to classes q � in the direction of basis

e 1 are given by� 2 � 1 � %� 2 #5 �A6Q8�r � O � 
 � � %E�sf$� � 1
Y -2 � 1 � %� 2 #5 �A6Q8�r � O � 
 � � %E�K�Kf$� � 1 � � 2 � 1D� - (19)
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and � � � 1 � %� � #5 �7698 r � O � 
 �	G�%_� f$� � 1
Y -� � 1 � %� � #5 �7698 r � O � 
 �	G�%_�K�Df$� � 1 � � � � 1D� - � (20)

respectively, where r �R0{� � % for 0 � � and r �D0g� � � for 0 j� � .
Fisher ratio, defined as the ratio of the interclass difference and
the intraclass spread, in the direction of

e 1 is given by [11]:� 1 � �R� 2 � 1 � � � � 1D� -Y -2 � 1 G Y -� � 1 7 (21)

Base on this Fisher ratio, significant kernel terms can be selected
in an OFS procedure. At the O th stage, a term is chosen as theO th term in the selected model if it produces the largest

� 1 among
the candidate terms

e � , O�* 
 * � . The procedure is terminated
with a sparse �IHKJML -term model when� #������� #��	�
�1A698 � 1 @ ( (22)

where the threshold
(

determines the sparsity of the selected
model. We have found out empirically that the appropriate val-
ues for

(
is in the range of 0.005 to 0.01. The least square solu-

tion for the corresponding sparse model weight vector S # �	�
� is
readily available given the least square solution of l # �	�
� .

The modified Gram-Schmidt orthogonalization procedure
[12] is first summarized. Denote

W ��� �� � W � , % * 
 * � . ForO � %�� � �.b.bcb�� � � % :e 1 � W � 1 � 8 �1 ��1 � � � e i1 W � 1 � 8 �� ] � e i1 e 1 � ��O�Go%+* 
 * � �W � 1 �� � W � 1 � 8 �� � �1 � � e 13�QO�Go%+* 
 * �=7
� ������ (23)

The last stage is simply
e # � W � # � 8 �# . The elements of l are

computed by transforming
P ��� � � P in a similar way:n 1 � e i1 P � 1 � 8 � ] � e i1 e 1 �)�P � 1 � � P � 1 � 8 � � n 1 e 13� � %+*�OQ* �=7 (24)

Next define Q � 1 � 8 � ��� e 8Qbcb.b e 1 � 8 W � 1 � 8 �1 b.bcb W � 1 � 8 �# � and give

a very small positive number ��� . With the notation
W � 1 � 8 �
 �U C � 1 � 8 �8 � 
 C � 1 � 8 �- � 
 b.bcb C � 1 � 8 �# � 
 W i , the O th stage of the selection proce-

dure is given as follows.
Step 1. For O�*6�&* � :

Test–Conditioning number check. If � W � 1 � 8 �
 � i W � 1 � 8 �
 @ ��� ,
the � th candidate is not considered.
Compute

� � 
 �2 � 1 � %� 2 #5 �A6Q8�r � O � 
 � � %E� C � 1 � 8 �� � 
 �
�cY � 
 �2 � 1 � - � %� 2 #5 �7698 r � O � 
 � � %_� � C � 1 � 8 �� � 
 � � � 
 �2 � 1 � - �

� � 
 �� � 1 � %� � #5 �7698 r � O � 
 �	G�%_� C � 1 � 8 �� � 
 �
� Y � 
 �� � 1 � - � %� � #5 �7698 r � O � 
 �	G�%_� � C � 1 � 8 �� � 
 � � � 
 �� � 1 � -

and � � 
 �1 � � � � 
 �2 � 1 � � � 
 �� � 1 � -�cY � 
 �2 � 1 � - G �_Y � 
 �� � 1 � - 7
Let the index set � 
 be: ��
 � !_OQ* � * � and � passes Test ' .

Step 2. Find:
� 1 � � � 
�� �1 � �"! <{! � � 
 �1 � �&� � 
 ' .

Then the ��1 th column of Q � 1 � 8 � is interchanged with the O th col-
umn of Q � 1 � 8 � , and the � 1 th column of Y is interchanged with
the O th column of Y up to the �DO � %E� th row. This selects the � 1 th
candidate as the O th kernel term in the subset model.

Step 3. Perform the orthogonalization as indicated in (23) to
derive the O th row of Y and to transform Q � 1 � 8 � into Q � 1 � . Cal-
culate

n 1 and update
P � 1 � 8 � into

P � 1 � in the way shown in (24).

V. A SIMULATION EXAMPLE

The example consisted of four signal sources and a two-
element antenna array. Fig. 1 shows the locations of the desired
source and three interfering sources graphically. The simulated
channel conditions were � � � %(G @(� , %N* 
 *$# , and all the four
users had equal signal power. The minimum spatial separation
was the difference in angles of arrival between the desired user
1 and the interferer 2, which was C *&%Z�(' . Fig. 2 compares the
BERs of the LMMSE, LMBER and Bayesian beamformers for
the two cases of C � %��)' and C � %_�*' , respectively. It is seen
from Fig. 2 (a) that for C � %Z�)' the LMMSE beamformer could
not achieve linear separability and exhibited a high BER floor,
but the LMBER beamformer achieved linear separability and
had a much better BER performance than the LMMSE beam-
former. The Bayesian beamformer provided the optimal perfor-
mance and had a 4 dB improvement in SNR at BER level of%c� �,+ , compared with the LMBER beamformer. When the spa-
tial separation was reduced to C � %_�)' , the system became in-
herently linearly inseparable, while the linear beamformer failed
in this situation, the Bayesian beamformer still performed ade-
quately, and this is demonstrated clearly in Fig. 2 (b).

The OFS algorithm with Fisher ratio and the RVM algorithm
were used to construct a RBF beamformer. The number of train-
ing data for each given SNR was � � %.-Z� . The Gaussian ker-
nel variance G>- was determined empirically, and the appropriate

λ/2

source source 
interferer desired

θ

interferer
source 

30

interferer
source 

45
o

o

θ < 30
o

2

3

4

1

Fig. 1. Locations of the desired and interfering sources with respect to the two-
element linear antenna array having /*021 spacing, where / is the wavelength.
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Fig. 2. Comparison of the bit error rates of three theoretical beamformers: (a)���������
and (b)

�	��
����
.

values for G - were found to be in the range of �ZY -[ to %_� Y -[ ,
depending on the SNR. The numbers of RBF centers or kernel
terms identified by the two algorithms over the given SNR val-
ues were similar, ranging from � HKJML � % # to 20 with the typical
value of �IHKJML � %� . The BERs of the RVM and OFS beam-
formers are compared in Fig. 3. It can be seen that both kernel-
based beamformers have similarly good performance with sim-
ilar model sparsity. The OFS algorithm based on Fisher ratio
however has considerably computational and numerical advan-
tages during the construction process.

VI. CONCLUSIONS

The optimal nonlinear beamforming assisted receiver has
been derived and it has been shown that this optimal Bayesian
beamformer outperforms the linear beamformer significantly in
terms of a reduced bit error rate. This demonstrates the potential
of system capacity enhancement by employing nonlinear beam-
forming. Block-data kernel-based adaptive implementation of
the optimal Bayesian beamformer is investigated using the OFS
algorithm based on Fisher ratio for class separability measure.
Empirical results have demonstrated that this construction al-
gorithm has excellent performance similar to that of the RVM
algorithm, but it is computationally much simpler and numeri-
cally much more robust.
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Fig. 3. Performance comparison of the Bayesian beamformer with the RBF
beamformers constructed by the RVM algorithm and the OFS with Fisher
ratio, respectively: (a)

������� �
and (b)

����
�� �
.
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