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Abstract

This paper considers sparse regression modelling using a generalised kernel model in which each kernel regressor has its individually

tuned centre vector and diagonal covariance matrix. An orthogonal least squares forward selection procedure is employed to select the

regressors one by one, so as to determine the model structure. After the regressor selection, the corresponding model weight parameters

are calculated from the Lagrange dual problem of the original regression problem with the regularised �-insensitive loss function. Unlike

the support vector regression, this stage of the procedure involves neither reproducing kernel Hilbert space nor Mercer decomposition

concepts. As the regressors used are not restricted to be positioned at training input points and each regressor has its own diagonal

covariance matrix, sparser representation can be obtained. Experiments involving one simulated example and three real data sets are

used to demonstrate the effectiveness of the proposed novel regression modelling approach.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Objective of modelling from data is not that a model
should fit well to the training data. Rather, the goodness of
a model is characterised by its generalisation capability,
and the model should be easy to interpret and to extract
knowledge from. All these vital properties depend on
crucially the ability of a modelling process to obtain
appropriately sparse representations. Forward selection
using the orthogonal least squares (OLS) algorithm
[7–10,13] is a simple and efficient method that is capable
of producing parsimonious linear-in-the-weights nonlinear
models with excellent generalisation performance. Alter-
natively, the state-of-the-art sparse kernel modelling
techniques, such as the support vector machine (SVM)
[31,18,26–29,14,6,15], have become popular in data model-

ling applications. Originated from maximum margin linear
classification, one of the main features of the SVM is to use
hyperplane. Specifically, the training data are mapped to a
high dimensional space where they can be approximated by
a hyperplane. In classification, this hyperplane is adjusted
to obtain the maximum classification margin. In regression,
the gradient of this hyperplane is kept as small as possible.
More precisely, in a SVM regression problem, the
parameter of the hyperplane is obtained by minimising
the cost consisting of the linear �-insensitive loss function
and the squared gradient of the hyperplane [18].
With the aid of the reproducing kernel Hilbert space

through Mercer theorem [2], Mercer kernel can be used,
and the required mapping from the input space to the high
dimensional space is given implicitly by this kernel
function. A common feature of the SVM regression
modelling techniques as well as the OLS kernel modelling
methods [7–10,13] is that the kernel centres are placed at
the training input data and a fixed common kernel variance
is used for all the regressor kernels. The value of this
common kernel variance obviously has a critical influence
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on the sparsity and generalisation capability of the
resulting model, and it has to be determined via cross
validation. If the positions of kernel regressors are more
flexible and different kernel regressors can have their own
diagonal covariance matrices, a better system model can be
established. However, putting kernel function at a position
not occupied by a train data point or giving different kernel
regressors at different positions different covariance
matrices are not allowed for the SVM methods that use
Mercer theorem. Also this ‘‘generalised’’ kernel model will
change the ‘‘linear’’ learning problem associated with the
SVM-type models to a nonlinear one.

Unlike the SVM formulation, the method proposed in
this paper minimises the cost consisting of the linear �-
insensitive loss function and the squared weights of the
regressors. This formulation allows the use of non-Mercer
kernels. Specifically, the ‘‘generalised’’ kernel function is
used in which each kernel regressor has its tunable centre
vector and diagonal covariance matrix. To arrive at a sparse
representation, the OLS forward selection procedure is
adopted to select regressors one by one by incrementally
minimising the training mean square error (MSE). Unlike
the standard OLS algorithm [7], however, at each stage of
selection the optimisation is with respect to the kernel centre
vector and diagonal covariance matrix, and the determina-
tion of these kernel parameters is performed using a guided
random search algorithm called the repeated weighted
boosting search (RWBS) algorithm [12], which has its root
from boosting optimisation [30,16,5,25]. Thus, regression
modelling is carried out by a ‘‘kernel hunting’’. The
‘‘support vectors’’ are selected by the OLS criterion and,
unlike the SVM, the number of regressors is not controlled
by the � value of the �-insensitive loss function. After the
selection of a parsimonious model representation, the kernel
weights are then calculated from the Lagrange dual of the
original minimisation problem. This proposed generalised
kernel regression modelling approach has the potential of
improving modelling capacity and producing sparser final
models, compared with the standard SVM algorithm. The
advantages of the proposed method are illustrated using a
simulated example and three real-data sets.

The remaining of the paper is organised as follows.
Section 2 reviews the standard kernel regression modelling,
which positions the kernel centres at the training input data
points and adopts a single common variance for every
kernel regressors. The classical SVM formulation is first
summarised. An alternative Lagrange dual problem of the
general SVM problem is then considered, which does not
restrict to the use of Mercer kernels. This method will be
referred to as the extended SVM (ESVM). Unlike the
standard SVM method, the solution obtained by the
ESVM is not sparse. To derive a sparse representation,
the standard OLS algorithm [7] is used to select a
parsimonious model, and this is followed by solving the
corresponding sparse ESVM problem to yield the model
weight parameters. This method will be referred to as the
sparse extended SVM (SESVM). The main contribution of

this paper is presented in Section 3, where the generalised
kernel regression modelling is considered. A new OLS
forward selection procedure is proposed, which uses the
RWBS algorithm [12] to determine the kernel centres and
diagonal covariance matrices. This guarantees a sparse
representation. Again, the kernel weights are solved from a
similar ESVM problem after obtaining a sparse representa-
tion. This proposed new method will be called the
generalised sparse extended SVM (GSESVM) for the
purpose of comparison with the methods of Section 2.
Section 4 provides the results of our modelling experi-
ments, while Section 5 summarises our conclusions.

2. Standard kernel regression modelling

The task of kernel regression modelling is to construct a
kernel model from the given training data set fxi; yig

N
i¼1,

where xi is the ith training input vector of dimension m, yi

is the desired output for the input xi and N the number of
training data. The SVM method solves this problem by
using the following strategy.

2.1. Support vector machine regression problem

The minimisation problem of the SVM method using the
linear �-insensitive loss function [18] can be stated as below:

min Jðw; n�; nÞ ¼ min
1

2
w̄Tw̄þ C

XN

i¼1

x�i þ
XN

i¼1

xi

 !( )
,

(1)

subject to

yi � w̄TuðxiÞ � bp�þ x�i ; 1pipN;

w̄TuðxiÞ þ b� yip�þ xi; 1pipN;

x�i X0; 1pipN;

xiX0; 1pipN;

8>>>><
>>>>:

(2)

where uðxÞ is the selected mapping from the input space
to the high-dimensional space, y ¼ w̄TuðxÞ þ b is the
linear regression function (hyperplane) in the high-dimen-
sional space with w̄ as its gradient, C is a pre-specified value
that defines regularisation, n ¼ ½x1 x2 � � � xN �

T and n� ¼

½x�1 x�2 � � � x
�
N �

T are stack variables representing upper and
lower constraints on the system outputs, and � is a given
value that defines the �-insensitive loss function.
Let us define the Mercer kernel

kðxi; xjÞ ¼ huðxiÞ;uðxjÞi (3)

with h�; �i denoting the inner product in the high-
dimensional space. It is well known that the dual problem
of Eqs. (1) and (2) is:

max L̄ða�; aÞ ¼ max ��
XN

i¼1

ða�i þ aiÞ þ
XN

i¼1

yiða
�
i � aiÞ

(

�
1

2

XN

i¼1

XN

j¼1

ða�i � aiÞða�j � ajÞkðxi; xjÞ

)
, ð4Þ
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subject to

PN
i¼1ða

�
i � aiÞ ¼ 0;

0pa�i pC; 1pipN ;

0paipC; 1pipN :

8><
>: (5)

After obtaining the Lagrange multipliers, a ¼ ½a1 a2 � � �
aN �

T and a� ¼ ½a�1 a�2 � � � a
�
N �

T, and the bias term b, the
regression model is given by

ŷðxÞ ¼
XN

i¼1

ða�i � aiÞkðxi;xÞ þ b. (6)

It is well known that the use of the �-insensitive cost function
leads to a more robust parameter estimate, compared
with the conventional least squares cost function. The
choice of the �-insensitive loss function is also attractive
because many of the ‘‘weights’’ a�i � ai become zero, leading
to a sparse solution in (6). One of the most common
choices of kernel function is the Gaussian function of the
form:

kðxi; xÞ ¼ exp �
kx� xik

2

2s2

� �
. (7)

The common kernel variance s2 is not provided by the
algorithm and has to be determined by other means, such as
via cross validation.

2.2. Dual of the minimisation problem with e-insensitive loss

function and squared regressor weights

Consider the modelling of the training data set fxi; yig
N
i¼1

with the regression model

ŷðxÞ ¼
XN

i¼1

wihiðxÞ þ b, (8)

where wi is the ith model weight, and hiðxÞ is the ith kernel
regressor centred at the training input xi. By adopting the
combined cost function of the �-insensitive loss function
and the squared regressor weights, the following minimisa-
tion problem can be established:

min Jðw; n�; nÞ ¼ min
1

2
wTwþ C

XN

i¼1

x�i þ
XN

i¼1

xi

 !( )
,

(9)

subject to

yi �
PN

j¼1wjhjðxiÞ � bp�þ x�i ; 1pipN;PN
j¼1wjhjðxiÞ þ b� yip�þ xi; 1pipN;

x�i X0; 1pipN;

xiX0; 1pipN:

8>>>><
>>>>:

(10)

Although the optimisation problem (9) and (10) appears to
have the same form as that of (1) and (2), these two
problems are different. Let us define w ¼ ½w1 w2 � � � wN �

T

and

hðxiÞ ¼ ½h1ðxiÞ h2ðxiÞ � � � hN ðxiÞ�
T. (11)

The Lagrangian of the minimisation problem (9) and (10)
can be written as

Lðw; n�; n; a�; a; c�; cÞ

¼
1

2
wTwþ C

XN

i¼1

ðx�i þ xiÞ �
XN

i¼1

ðg�i x
�
i þ gixiÞ

�
XN

i¼1

aiðyi � wThðxiÞ � bþ �þ xiÞ

�
XN

i¼1

a�i ðw
ThðxiÞ þ b� yi þ �þ x�i Þ, ð12Þ

where a¼½a1 a2 � � � aN �
T, a� ¼ ½a�1 a�2 � � � a

�
N �

T, c ¼ ½g1
g2 � � � gN �

T and c� ¼ ½g�1 g�2 � � � g
�
N �

T are the Lagrange
multipliers. From the Kuhn–Tucker conditions, we have

qL

qw
¼ w�

XN

i¼1

ða�i � aiÞhðxiÞ ¼ 0, (13)

qL

qn�
¼ ½C C � � � C�T � a� � c� ¼ 0, (14)

qL

qn
¼ ½C C � � � C�T � a� c ¼ 0, (15)

qL

qb
¼
XN

i¼1

ða�i � aiÞ ¼ 0. (16)

Substituting the Kuhn–Tucker conditions into Lagrangian
(12) leads to the dual problem of the primal problem (9)
and (10):

max L̄ða�; aÞ ¼ max ��
XN

i¼1

ða�i þ aiÞ þ
XN

i¼1

yiða
�
i � aiÞ

(

�
1

2

XN

i¼1

XN

j¼1

ða�i � aiÞða�j � ajÞh
TðxiÞhðxjÞ

)
,

ð17Þ

subject to

PN
i¼1ða

�
i � aiÞ ¼ 0;

0pa�i pC; 1pipN;

0paipC; 1pipN:

8><
>: (18)

After obtaining a� and a, we can calculate the model
weights from (13) as

w ¼
XN

i¼1

ða�i � aiÞhðxiÞ. (19)

The key difference between the minimisation problem (9)
and (10) and the SVM one given in (1) and (2) is that here
regularisation directly controls the kernel weights, but not
the gradient of the unseen hyperplane as is in the case of (1)
and (2). Thus, this approach does not impose any
restriction on the kernel function used. We refer to this
approach as the ESVM method to contrast with the SVM
method discussed in Section 2.1.

ARTICLE IN PRESS
X.X. Wang et al. / Neurocomputing 70 (2006) 462–474464



Aut
ho

r's
   

pe
rs

on
al

   
co

py

2.3. Construction of sparse ESVM models

One drawback of the aforementioned ESVM method is
that solution (19) is generally non-sparse. To obtain a sparse
model, we propose first to use the OLS algorithm [7] to
select a parsimonious subset model from the full regression
model (8). Without the loss of generality, we will assume the
bias term b ¼ 0 in model (8). In fact, this bias term can be
regarded as a constant regressor. The regression model (8)
over the training set can be expressed as

y ¼ Hwþ e, (20)

where y ¼ ½y1 y2 � � � yN �
T, e ¼ ½e1 e2 � � � eN �

T with ei ¼

yi � wThðxiÞ denoting the modelling error at the input xi,
and

H ¼ ½h1 h2 � � � hN � (21)

is the regression matrix with the regressor columns or model
bases defined by

hi ¼ ½hiðx1Þ hiðx2Þ � � � hiðxNÞ�
T; 1pipN. (22)

Let an orthogonal decomposition of H be

H ¼ PD, (23)

where P ¼ ½p1 p2 � � � pN � with orthogonal columns satisfy-
ing pTi pj ¼ 0 if iaj, and

D ¼

1 d1;2 � � � d1;N

0 1 . .
. ..

.

..

. . .
. . .

.
dN�1;N

0 � � � 0 1

2
666664

3
777775. (24)

The regression model (20) can alternatively be expressed as

y ¼ PDwþ e ¼ Phþ e, (25)

where the orthogonal model weight vector h satisfies the
triangular system h ¼ Dw.

The sum of squared errors for this N-term regression
model can be expressed as [7]

JN ¼ eTe ¼ yTy�
XN

i¼1

ðyTpiÞ
2

pTi pi

. (26)

Define the error reduction due to the jth term pj as

ERj ¼
ðyTpjÞ

2

pTj pj

. (27)

Based on this error reduction criterion, a subset model can
be obtained in a forward selection procedure [7]. At the lth
selection stage, a model term is selected from the remaining
candidates pj, lpjpN, as the lth model term in the subset
model, if it maximises the error reduction criterion ERj .
The details of the selection algorithm are readily available
in [7–10,13] and is not repeated here. The selection is

terminated at the Ns stage if the MSE

1

N
JNs

pz, (28)

where the small positive tolerance value z controls the
sparsity level of the selected subset model. This produces a
parsimonious model containing Ns terms. Appropriate
value for z is problem dependent and may be learnt via
cross validation. Alternatively, the Akaike information
criterion [1,23] can be adopted to terminate the subset
model selection procedure. Moreover, the optimal experi-
mental design criteria can be combined with the least
squares cost (26) to automatically terminate the selection
with an appropriate Ns-term subset model without the need
for the user to specify a tolerance value z [9,19,20]. It should
also be pointed out that regularisation can naturally be
incorporated into this OLS forward selection procedure [9].
As is in the standard kernel regression modelling, each

kernel regressor is positioned at a training input data point
and a single common kernel variance s2 is used for every
regressors. Using the OLS forward selection procedure
described above, we first obtain a sparse representation
containing Ns kernel regressors. The corresponding
kernel weights are then calculated using the ESVM
method of Section 2.2. We will referred to this approach
of constructing sparse kernel models as the SESVM
method.

3. Generalised kernel regression modelling

In Section 2.2, the deduction of the dual problem does
not assume the concept of reproducing kernel Hilbert space
and Mercer theorem. Therefore, we are not restricted to
Mercer kernels. For example, we will allow a kernel
function to take position other than the training input data
points and to have an individually tunable diagonal
covariance matrix. This leads to the generalised
kernel regression modelling, in which the regressors take
the form:

hjðxÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� ljÞ

TR�1j ðx� ljÞ

q� �
, (29)

where 1pjpM, lj is the mean vector of the jth kernel,
Rj ¼ diagfs2j;1; s

2
j;2; . . . ;s

2
j;mg its diagonal covariance matrix,

M is the number of regressors in the model, and gð�Þ a
chosen kernel function.

3.1. Construction of sparse generalised kernel models

We propose a construction procedure for obtaining
sparse generalised kernel models by adopting an orthogo-
nal forward selection to append the regressors one by one.
At the lth stage of model construction, the lth kernel
regressor is determined by maximising the following error
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reduction criterion:

ERlðll ;RlÞ ¼
ðyTplÞ

2

pTl pl

, (30)

where pl is obtained by an orthogonal transformation of
the lth model column hl ¼ ½hlðx1Þ hlðx2Þ � � � hlðxN Þ�

T via

pl ¼ hl �
Xl�1
j¼1

dj;lpj (31)

and pj, 1pjpl � 1, are the orthogonalised model columns
already selected. All the discussions in Section 2.3 regarding
the termination of selection apply here. For example, the
model appending process can be terminated when the MSE

1

N
JMs
¼

1

N
yTy�

1

N

XMs

l¼1

ERlðll ;RlÞpz (32)

yielding an Ms-term generalised kernel model. The corre-
sponding kernel weights can readily be calculated using the
ESVM method of Section 2.2. For a comparison purpose, we
will call this construction approach the GSESVM method.

3.2. Determination of the generalised kernel parameters

It can be seen that at each regression stage, the task is to
determine the generalised kernel parameters u so as to
minimise the cost function

f ðuÞ ¼
1

ERlðuÞ
, (33)

where the parameter vector u contains the regressor mean
vector ll and diagonal covariance matrix Rl . This
optimisation task may be carried out with a gradient based
optimisation method. A gradient method however depends
on the initial condition and may be trapped at the local
minima. Alternatively, the standard global optimisation
methods, such as the genetic algorithm [17,24] and adaptive
simulated annealing [22,11], can be used. We have
developed a simple and effective guided global search
method called the RWBS algorithm [12], which is adopted
to perform this optimisation task. The algorithm for
determining the generalised kernel parameters at each
incremental model stage is summarised as follows.

Repeated weighted boosting search: Specify the following
algorithmic parameters: PS—population size, NG—num-
ber of generations in the repeated search, and zI—accuracy
for terminating the weighted boosting search.

Outer loop: generations For k ¼ 1 : NG

Outer loop initialisation: Initialise the population by
setting u

ðkÞ
1 ¼ u

ðk�1Þ
best and randomly generating rest of the

population members u
ðkÞ
i , 2pipPS, where u

ðk�1Þ
best denotes

the solution found in the previous generation. If k ¼ 1, u
ðkÞ
1

is also randomly chosen
Weighted boosting search initialisation: Assign the initial

distribution weightings dið0Þ ¼ 1=PS, 1pipPS, for the
population

(1) For 1pipPS, generate h
½i�
l from u

ðkÞ
i , the candidates for

the lth regressor, and orthogonalise them:

d
½i�
j;l ¼

pTj h
½i�
l

pTj pj

; 1pjol, (34)

p
½i�
l ¼ h

½i�
l �

Xl�1
j¼1

d
½i�
j;lpj. (35)

(2) For 1pipPS, calculate the loss of each population
member

S
½i�
l ¼ f ðu

ðkÞ
i Þ ¼

ðp
½i�
l Þ

Tp
½i�
l

ðyTp
½i�
l Þ

2
. (36)

Inner loop: weighted boosting search Set t ¼ 0; For
tþ ¼ 1

Step 1: Boosting

(1) Find

u
ðkÞ
best ¼ arg minfS

½i�
l ; 1pipPSg,

u
ðkÞ
worst ¼ arg maxfS

½i�
l ; 1pipPSg.

(2) Normalise the loss function values

S̄
½i�

l ¼
S
½i�
lPPS

j¼1 S
½j�
l

; 1pipPS.

(3) Compute a weighting factor bt according to

Zt ¼
XPS

i¼1

diðt� 1ÞS̄
½i�

l ; bt ¼
Zt

1� Zt

.

(4) Update the distribution weightings for 1pipPS

diðtÞ ¼
diðt� 1ÞbS̄

½i�

l
t for btp1;

diðt� 1Þb1�S̄
½i�

l
t for bt41;

8<
:

and normalise them

diðtÞ ¼
diðtÞPPS

j¼1 djðtÞ
; 1pipPS.

Step 2: Parameter updating

(1) Construct the ðPS þ 1Þth point using the formula

uPSþ1 ¼
XPS

i¼1

diðtÞu
ðkÞ
i .

(2) Construct the ðPS þ 2Þth point using the formula

uPSþ2 ¼ u
ðkÞ
best þ ðu

ðkÞ
best � uPSþ1Þ.
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(3) Calculate h
½PSþ1�
l and h

½PSþ2�
l from uPSþ1 and uPSþ2,

orthogonalise these two candidate model columns (as
in (34) and (35)), and compute their loss function values
(as in (36))

(4) Choose a better point (smaller loss function value) from
uPSþ1 and uPSþ2 to replace u

ðkÞ
worst

If kuPSþ1 � uPSþ2kozI, exist inner loop

End of inner loop

The solution found is u
ðkÞ
best

End of outer loop

This yields the solution u ¼ u
ðNGÞ

best as the parameter vector
(mean vector and diagonal covariance matrix) of the lth
regressor, as well as the corresponding orthogonal model
column pl .

The motivation and analysis of the RWBS algorithm as
a general global optimiser are detailed in [12]. The
appropriate values for the algorithmic parameters, PS,
NG and zI, depends on the dimension of u and how hard
the objective function to be optimised. Generally, these
algorithmic parameters have to be found empirically. In
the inner loop optimisation, there is no need for every
members of the population to converge to a (local)
minimum, and it is sufficient to locate where the minimum
lies. Thus, the accuracy for stopping the weighted boosting
search, zI, can be set to a relatively large value. This makes
the search efficient, achieving convergence with a small
number of the cost function evaluations. As an alternative
to choose zI, one can simply set a maximum number of
iterations MI for the inner-loop optimisation. The popula-
tion size PS and the number of generations NG should be
set to sufficiently large values so that the parameter space
will be sampled sufficiently. The optimisation experiments
reported in [12] suggested that the algorithmic parameters
of the RWBS algorithm are not difficult to set.

It should be emphasised that PS, NG and zI (or MI) are
not the learning hyperparameters of the GSESVM algo-
rithm. Rather they are the optimisation algorithmic
parameters. The learning hyperparameters of the
GSESVM algorithm are C and �. It is important to
distinguish these two types of algorithmic parameters.
Obviously, the optimisation algorithmic parameters need
to be set appropriately but they are not as critical as the

learning hyperparameters in the influence of the model
generalisation capability. When one chooses a particular
optimiser to solve the constrained quadratic programming
(QP) of the SVM learning problem, for example, one also
needs to assign some optimisation algorithmic parameters.
These QP optimiser’s algorithmic parameters are similar in
nature to the algorithmic parameters of the RWBS
optimiser, and they are not the learning hyperparameters
of the SVM algorithm. The learning hyperparameters of
the SVM algorithm are the kernel variance s2, C and �.
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Table 1

Summary of the experimental results for the simulated example

Algorithm SVM SESVM GSESVM

Kernel type Gaussian Gaussian Generalised

Gaussian

Error band � 0.2 0.3 0.2

Regularisation C 0.5 0.3 1.0

Model size 172 16 9

MSE over noisy training

set

0.9522 0.9697 0.9658

MSE over noisy test set 1.2572 1.1950 1.2285

MSE over noise-free test

set

0.0740 0.0353 0.0344
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Fig. 1. The experiment result of the SVM method for the simulated

example. The circles are the noisy training data, the dashed curve is the

sinc function, and the solid curve is the kernel model with 172 support

vectors. The kernel variance s2 ¼ 1, regularisation parameter C ¼ 0:5 and

error band parameter � ¼ 0:2.
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Fig. 2. The experiment result of the SESVM method for the simulated

example. The circles are the noisy training data, the dashed curve is the

sinc function, and the solid curve is the kernel model with 16 support

vectors. The kernel variance s2 ¼ 1, regularisation parameter C ¼ 0:3 and

error band parameter � ¼ 0:3.
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4. Modelling experiments

A one-dimensional simulated example and three real
data sets were used in our modelling experiments. For each
example, three sets of results were obtained by the SVM,
the SESVM and the GSESVM, respectively. The learning
hyperparameters, C and �, were optimised using grid
search optimisation based on cross validation for each

algorithm. The single common kernel variance s2, required
for the SVM and SESVM algorithms, was similarly
determined. The optimisation algorithmic parameters of
the RWBS, PS, NG and MI, were chosen empirically.

Example 1. Two hundred points of training data fx; yg
were generated from the scalar sinc function corrupted by
an observation noise shown below

y ¼
5 sin x

x
þ Z, (37)

where the equally spaced input x 2 ½�10; 10� and Z denotes
the Gaussian white noise process with unit variance. A
separate noisy test data containing 200 data samples was
provided for model validation purpose. Two hundred
points of noise-free data were also generated as the
additional test data set. For the Gaussian kernel modelling,
the common kernel variance was set to s2 ¼ 1. This value
was found empirically to be appropriate. The error band
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Fig. 4. The engine data set: (a) system input vðtÞ and (b) system output yðtÞ.

Table 2

Summary of the experimental results for the engine data set

Algorithm SVM SESVM GSESVM

Kernel type Gaussian Gaussian Generalised

Gaussian

Error band � 0.01 0.0107 0.01

Regularisation C 14.0 1600.0 300.0

Model size 94 50 15

MSE over training set 0.0004388 0.0004548 0.0004586

MSE over test set 0.0004930 0.0004991 0.0004894
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Fig. 3. The experiment result of the GSESVM method for the simulated

example. The circles are the noisy training data, the dashed curve is the

sinc function, and the solid curve is the generalised kernel model with nine

support vectors. The regularisation parameter C ¼ 1:0 and error band

parameter � ¼ 0:2.
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parameter � and regularisation parameter C for each
algorithm were determined by grid search to minimise the
MSE over the noisy test data set. The algorithmic

parameters of the RWBS were chosen empirically. The
experimental results obtained by the SVM, SESVM and
GSESVM methods are summarised in Table 1. Judging by
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Fig. 5. The experiment result of the SVM method for the engine data set: (a) model prediction (green or light curve) superimposed on system output (red

or dark curve); (b) model prediction error over the training set; (c) model prediction (green or light curve) superimposed on system output (red or dark

curve); and (d) prediction error over the test set. The regularisation parameter C ¼ 14:0, error band parameter � ¼ 0:01 and the model contains 94 kernels.
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Fig. 6. The experiment result of the SESVM method for the engine data set: (a) model prediction (green or light curve) superimposed on system output

(red or dark curve); (b) model prediction error over the training set; (c) model prediction (green or light curve) superimposed on system output (red or dark

curve); and (d) prediction error over the test set. The regularisation parameter C ¼ 1600:0, error band parameter � ¼ 0:0107 and the model contains 50

kernels.
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their MSE values over the noisy test data set, the three
algorithms had similarly good generalisation capability but
the model produced by the GSESVM method was the

sparsest containing only 9 kernels. The model maps derived
by the three methods are depicted in Figs. 1–3, respectively,
in comparison with the underlying sinc function.

ARTICLE IN PRESS

0 50 100 150

3

4

5

(a)

S
ys

te
m

/P
re

di
ct

io
n

0 100 200 300

3

3.5

4

5

(c)

S
ys

te
m

/P
re

di
ct

io
n

0 50 100 150

0

0.05

(b)

P
re

di
ct

io
n 

er
ro

r

0 100 200 300

-0.05

0

(d)

P
re

di
ct

io
n 

er
ro

r 0.05

-0.1

0.1

SampleSample

-0.1

-0.05

0.1

Sample

2.5

3.5

4.5

2.5

4.5

Sample

Fig. 7. The experiment result of the GSESVM method for the engine data set: (a) model prediction (green or light curve) superimposed on system output

(red or dark curve); (b) model prediction error over the training set; (c) model prediction (green or light curve) superimposed on system output (red or dark

curve); and (d) prediction error over the test set. The regularisation parameter C ¼ 300:0, error band parameter � ¼ 0:01 and the model contains 15

kernels.

0 50 100 150 200 250 300
45

50

55

60

65

Sample

S
ys

te
m

 o
ut

pu
t

0 50 100 150 200 250 300
3

2

1

0

1

2

3

Sample

S
ys

te
m

 in
pu

t

(a)

(b)

Fig. 8. The gas furnace data set: (a) system input vðtÞ and (b) system output yðtÞ.
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Example 2. This example constructed a model representing
the relationship between the fuel rack position (input vðtÞ)
and the engine speed (output yðtÞ) for a Leyland TL11
turbocharged, direct injection diesel engine operated at low
engine speed. The data set, depicted in Fig. 4, contained
410 samples. The study [3] has shown that this data set can
be modelled as

yi ¼ FSðxiÞ þ ei, (38)

where yi ¼ yðiÞ and xi ¼ ½yði � 1Þ vði � 1Þ vði � 2Þ�T, FSð�Þ

describes the unknown underlying system to be identified
and ei denotes the system noise. It is often claimed that the
SVM method is capable of constructing sparse models with
excellent generalisation performance with a small training
set. We constructed the training set by using the data pairs
ðxi; yiÞ for i ¼ 3; 6; 9; 12; . . . and putting rest of the data
pairs into the test set. Thus, the training set contained N ¼

136 points, while the test set had 272 samples. The values of
the single common kernel variance s2 for the two Gaussian
kernel modelling cases were determined using a grid search,
and the appropriate values were found to be 1.69 for the
SVM algorithm and 2.60 for the SESVM algorithm,
respectively.
Again, the error band parameter � and regularisation

parameter C for each algorithm were found by grid search
to minimise the MSE over the test data set. The algorithmic
parameters of the RWBS were determined empirically.
Table 2 summarises the experimental results obtained by
the SVM, SESVM and GSESVM algorithms. It can be
seen that the GSESVM method produced the best result, in
terms of model generalisation capability and model size.
Fig. 5 depicts the model prediction ŷi and the prediction
error êi ¼ yi � ŷi obtained by the SVM model over both
the training and test sets. Similarly, the modelling results of
the SESVM and GSESVM algorithms are shown in Figs. 6
and 7, respectively.

Example 3. This example constructed a model for the gas
furnace data set (Series J in [4]). The data set contained 296
pairs of input–output points, where the input vðtÞ was the
coded input gas feed rate and the output yðtÞ represented
the CO2 concentration from the gas furnace. Fig. 8 depicts
this data set. Let the desired output be yi ¼ yðiÞ for the
model input vector

xi ¼ ½yði � 1Þ yði � 2Þ yði � 3Þ vði � 1Þ vði � 2Þ vði � 3Þ�T

(39)
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Table 3

Summary of the experimental results for the gas furnace data set

Algorithm SVM SESVM GSESVM

Kernel type Gaussian Gaussian Generalised

Gaussian

Error band � 0.15 0.05 0.05

Regularisation C 50.0 880.0 600.0

Model size 79 47 5

MSE over training set 0.0316 0.0801 0.0603

MSE over test set 0.1070 0.0871 0.0760
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Fig. 9. The experiment result of the SVM method for the gas furnace data set: (a) model prediction (green or light curve) superimposed on system output

(red or dark curve); (b) model prediction error over the training set; (c) model prediction (green or light curve) superimposed on system output (red or dark

curve); and (d) prediction error over the test set. The regularisation parameter C ¼ 50:0, error band parameter � ¼ 0:15 and the model contains 79 kernels.
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Fig. 10. The experiment result of the SESVM method for the gas furnace data set: (a) model prediction (green or light curve) superimposed on system

output (red or dark curve); (b) model prediction error over the training set; (c) model prediction (green or light curve) superimposed on system output (red

or dark curve); and (d) prediction error over the test set. The regularisation parameter C ¼ 880:0, error band parameter � ¼ 0:05 and the model contains

47 kernels.
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for 4pip296. The even points of ðyi;xiÞ were used for the
training set while the odd points were selected as the test
set. For the Gaussian kernel modelling, an appropriate
value for the single common kernel variance was found
empirically to be s2 ¼ 20. The error band parameter � and
regularisation parameter C for each algorithm were
determined by grid search to minimise the MSE over the
test data set. The algorithmic parameters of the RWBS
were set empirically. Table 3 gives the experimental results
obtained by the SVM, SESVM and GSESVM algorithms.
The modelling results are also plotted in Figs. 9–11,
respectively, for the three algorithms. It is clear that for this
example the best result was obtained by the GSESVM
method.

Example 4. This is a popular regression benchmark data
set, Boston Housing, available at the UCI repository [21].
The data set comprises 506 data points with 14 variables.
The task was to predict the median house value from the
remaining 13 attributes. The first 456 data points from the
data set were used for training and the remaining 50 data
points were used to form the test set. As usual, the
appropriate value for the single common kernel variance,
required by the Gaussian kernel modelling, was determined
via cross validation, yielding s2 ¼ 2116:0 and s2 ¼ 2025:0
for the SVM and SESVM, respectively. The error band
parameter � and regularisation parameter C for each
algorithm were chosen by grid search via cross validation.
The algorithmic parameters of the RWBS were set
empirically. Table 4 summarises the modelling results for
this data set. The results of Table 4 again show that the
GSESVM method produced the best model, in terms of
model generalisation performance and model size.

5. Conclusions

In this paper, we have first considered an alternative SVM
formulation, referred to as the ESVM method, which does
not assume the reproducing kernel Hilbert space and is
capable of applying to non-Mercer kernels. Secondly, we
have proposed a sparse kernel model construction algorithm,
called the SESVM. In this approach, a parsimonious
representation is selected using the standard OLS forward
selection procedure and the corresponding model weights are
then computed using the ESVM formulation. Thirdly, which

is a major contribution of our work, we have developed the
generalised kernel modelling in which each kernel regressor
has its tunable centre vector and diagonal covariance matrix.
An orthogonal forward selection procedure has been
proposed to construct a sparse generalised kernel model
representation. At each model construction stage, a kernel
regressor is optimised using a global optimisation search
algorithm. Again the corresponding model weights are then
calculated using the ESVM formulation, and this novel
generalised kernel construction algorithm has been referred
to as the GSESVM method. Our modelling experimental
results have clearly demonstrated that both the SESVM and
GSESVM methods compare favourably with the standard
SVM formulation in terms of producing sparse models that
generalise well. The GSESVM method has been shown to be
particularly effective in constructing very sparse models with
excellent generalisation capability, and we believe that it
offers a state-of-the-art technique for regression modelling.
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