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Abstract

The paper investigates a nonlinear detection technique designed for multiple-antenna assisted
receivers employed in space-division multiple-access systems. We derive the optimal solution of the
nonlinear spatial processing assisted receiver for binary phase shift keying signalling, which we refer
to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms
the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense
of an increased complexity, while the achievable system capacity is substantially enhanced with the
advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms
of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear
beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable
of perform adequately. The adaptive implementation of the optimal Bayesian detector can be realized
using a radial basis function network. Two techniques are presented for constructing block-data based
adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector
machine invoked for classification, while the other on the orthogonal forward selection procedure
combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation
procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced � -
means clustering techniques and the recursive least squares algorithm.

Keywords: Smart antenna, adaptive beamforming, mean square error, bit error rate, Bayesian classification, rel-

evance vector machine, orthogonal least squares, Fisher ratio for class separability measure, radial basis function

network, enhanced � -means clustering, recursive least squares.

1 Introduction

Spatial processing invoking adaptive antenna arrays has shown real promise in terms of attaining substan-

tial capacity enhancements in mobile communication [1]–[8]. Multiple-antenna aided receivers are capa-

ble of separating signals transmitted on the same carrier frequency, provided that signals are sufficiently

separated in the spatial domain. Classically, beamforming algorithms create a linear combination of the

signals received from the different elements of an antenna array. We refer to this classic beamforming

principle as linear beamforming. A traditional approach to linear beamforming is based on the minimum

mean square error (MMSE) principle that minimizes the mean square error (MSE) between the desired

output generated from a known reference signal and the actual array output. Adaptive implementations
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of the linear MMSE (LMMSE) beamforming solution can readily be realized using the well-known fam-

ily of temporal reference techniques [2],[3],[9]–[13]. Specifically, block-data based beamformer weight

adaptation can be achieved using the sample matrix inversion (SMI) algorithm [9],[10], while sample-by-

sample based array-weight adaptation can be carried out using the least mean square (LMS) algorithm

[11]–[13]. Recent work [14],[15] has investigated a linear beamforming technique based directly on

minimizing the system’s bit error rate (BER) rather than the MSE and developed both block-data based

and sample-by-sample adaptive algorithms for implementing linear minimum BER (LMBER) beam-

forming. The results of [14],[15] have demonstrated that LMBER beamforming is capable of providing

considerable performance gains in terms of a reduced BER over the usual LMMSE beamforming.

In the context of space division multiple access (SDMA), the spatial separation in angles of arrival

between the desired signal and the closest interfering signal dominates the achievable system perfor-

mance and hence the system’s user capacity. When this angular separation is below a certain threshold,

linear beamforming ultimately fails, since the signals transmitted by the individual users become linearly

inseparable, a situation that has also been observed in the context of single-user channel equalization and

multiuser detection designed for code-division multiple-access (CDMA) [16]–[20]. In fact, it has been

observed even in linearly separable scenarios that a nonlinear processing technique is capable of provid-

ing a better performance than a linear one, although this is typically achieved at the cost of an increased

complexity. In conjunction with nonlinear spatial processing the achievable system capacity can be

significantly increased, since an adequate performance can be maintained even in case of a low angu-

lar separation compared to linear beamforming. These considerations motivate this study of nonlinear

detection techniques contrived for multi-antenna aided systems.

The outline of the paper is as follows. Section 2 introduces the system model, while Section 3 outlines

our linear beamforming based benchmarker. In section 4 we derive the optimal solution of the nonlinear

spatial processing assisted receiver for binary phase shift keying (BPSK) signalling, which is referred to

as the Bayesian detection solution. It is shown that this Bayesian solution has an identical form to a radial

basis function (RBF) network [17],[21]. In Section 5 two schemes are proposed for realizing block-data

based adaptive RBF detectors. One of them is based on the relevance vector machine (RVM) invoked

for classification [22],[23] and the other one is the orthogonal forward selection (OFS) procedure using

the Fisher ratio class-separability measure [24]. Finally, in Section 6 an adaptive sample-by-sample

implementation of the RBF detector is also considered using an amalgam of the enhanced � -means

clustering and the recursive least squares (CRLS) algorithm [25],[19], before offering our conclusions in

Section 7.
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2 System Model

We consider the multiple-antenna aided receiver configuration of Fig. 1 invoked for assisting the opera-

tion of a multi-user SDMA system. It is assumed that the system supports
�

users (signal sources), and

each user transmits a BPSK modulated signal on the same carrier frequency of �������	� . Let 
 denote

the bit instance. Then the baseband signal of user � , sampled at symbol rate, is given by:

��
�� 
������ 
���
�� 
���������� � � � (1)

where the complex-valued coefficient � 
 models the multiplication of the channel coefficient of user �
with the transmitted signal power of user � and therefore ! � 
 ! " denotes the received signal power for user

� , and � 
 � 
��$#�%'&(�') is the 
 -th bit of user � . Without any loss of generality, source 1 is assumed to be

the desired user and the rest of the sources are the interfering users. A linear antenna array is considered

which consists of * uniformly spaced elements, and the signals received by the * -element antenna array

are given by:

+-,.� 
�� �
/0

2143 � 
 � 
��6587:9 �<; ��= ,>�@? 
 ���	ACB ,�� 
�� �ED+-,.� 
��FACB ,.� 
�� (2)

for �G�IHJ�I* , where = ,K�@? 
 � is the relative time delay at element H for source � , ? 
 is the direction of arrival

for source � , and B ,�� 
�� is a complex-valued white Gaussian noise with zero mean and LNM2! B ,.� 
��O! "OPG�
��QR"S . The desired user’s signal to noise ratio is defined as SNR �T! � 3 ! "VU���QR"S , and the desired signal to

interference ratio with respect to interfering user � is defined by SIR 
 �W! � 3 ! " UX! � 
 ! " for ���Y�Z�O[O[O[V� � .

In vectorial form, the antenna array output \ � 
����YM + 3 � 
�� + " � 
��-[O[O[ +-]^� 
��.P<_ can be expressed as:

\ � 
�� � D\ � 
��	Aa` � 
�����bdc � 
��	A�` � 
�� (3)

where ` � 
��e�fM B 3 � 
��gB " � 
��-[O[O[�B ]4� 
��.P _ has a covariance matrix of LhMi` � 
���`kj � 
��.Pl�m��QR"SZn ] with n ]
denoting the *Iop* identity matrix, the system matrix b is given by

bq�YM � 3sr�3 � " r " [O[O[t� / r / P�� (4)

the steering vector for source � is formulated as

rO
 �YM 587:9 �<; ��= 3 �@? 
 ���d587Z9 �<; ��= " �@? 
 ���-[O[O[s587:9 �<; ��= ]J�@? 
 ���.P _ (5)

and the transmitted bit vector is c � 
����YM � 3 � 
�� � " � 
��-[O[O[ � / � 
��.P<_ .

The task of the spatial processing assisted receiver is to provide an estimate u� 3 � 
�� of the desired

user’s transmitted bit �'3V� 
�� , given the input \ � 
�� . To keep our notations and the associated concepts

relatively simple, we have used a BPSK modulation scheme, a narrow-band channel model and narrow-

band beamforming (space-only processing). The approach can be extended to other modulation schemes
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and wideband channels that induce inter-symbol interference. The same idea can also be applied to

broadband beamforming (space-time processing).

3 Linear Beamforming Assisted Receiver

The output of the linear beamformer is given by

�R� 
������ j \ � 
������ j D\ � 
��FA�� j ` � 
���� D�R� 
��	A�� � 
�� (6)

where � � M � 3 � " [O[O[�� ] P<_ is the complex-valued beamformer weight vector, and � � 
�� is Gaussian

distributed with a zero mean and a variance LNM2! � � 
��O! " PR� ��QR"S � j�� . The estimate of the transmitted bit
� 3 � 
�� is given by:

u� 3 � 
���� sgn �	��
g� 
���� � � A(��� �

 � 
������:�� ��� �

 � 
�� ���:� (7)

where ��
g� 
������$M � � 
��.P denotes the real part of �R� 
�� . Classically, the linear beamformer’s weight vector

is determined by minimizing the MSE term of LNM2! � 3 � 
�� � �R� 
��O! " P between the desired user’s transmitted

bit and the beamformer’s output, which leads to the following LMMSE solution:

��������� ����b$b j A ��Q "S n ]���� 3! 3 (8)

with
 3 being the first column of b . Using a temporal reference technique aided approach [7], the

LMMSE beamforming solution can be readily realized using the block-data based SMI algorithm [7],

and recursive sample-by-sample adaptation can be performed using the LMS or RLS algorithm [21].

In order to derive the BER formula of the linear beamformer with the weight vector � , firstly note

that there are "$#�� � / possible sequences of c � 
�� , which are denoted as c&% , �$��'e��"(# . Furthermore,

denote the first element of c)% , corresponding to the desired user, as � %�* 3 . As expected, the noiseless part

of the beamformer input signal, D\ � 
�� , assumes encountering values only from the signal set defined as

+-,� % D\.% ��b$c/% � ����'e��"(#�)10 (9)

This set can be partitioned into two subsets depending on the specific value of �63 � 
�� , as follows:

+3254768,�q% D\ 25476% # +:9 �V3 � 
���� &(�')10 (10)

Similarly, D� � 
�� takes values from the scalar set

;<,� % D� % ��� j D\.% � �$��'e��"=#�) (11)

which can be divided into the two subsets defined as

; 2>476 ,� % D� 25476% # ;?9 � 3 � 
�� � &(�')10 (12)
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Thus, D�

 � 
�� can only take values from the set

; 
 ,� %�D�

 * %����$M D� %�P�� ����'e��"(#t) (13)

which can be partitioned into the two subsets conditioned on the value of � 3 � 
��
; 2>476
 ,� %�D� 25476
 * % # ; 
 9 � 3 � 
��g� &(�')10 (14)

It can be readily seen that the conditional probability density function (p.d.f.) of �R� 
�� given � 3 � 
����
A(� is a Gaussian mixture given by:�^�	� !VA��V��� �"�� # �����0% 143 �

���RQ "S � j � 587:9
�	
 ����� � � D� 2�
76% ��� "��Q "S � j �

���� (15)

where D� 2�
76% # ; 2�
76 and "�� # �-"(#�U�� is the number of the points in
; 2�
76

. Therefore, the conditional

marginal p.d.f. of � 
 � 
�� given �V3V� 
���� A � is formulated as:�^�	�

 !OA��V��� �"�� # � ���0% 143 ��
���RQ "S � j � 587:9

�	
 � � �

 � D� 2�
76
 * % � "
��Q "S � j �

� �� (16)

where D� 2�
76
 * % # ; 2�
76
 . Thus, it can be shown that the BER of the linear beamformer associated with the

weight vector � is given by [14],[15]:��� � ����� �"�� # �����0% 143�� ��� %�* 
 � � ��� � (17)

where � ��� � � �� �����! " 587Z9$# �&% "��')( % (18)

and � %�* 
 � � � �+*-,/. � � %�* 3 � D� 2�
76
 * %Q S � � j � � *-,/. � � %�* 3 � �$M � j D\ 2�
76% P
Q S � � j � 0 (19)

The LMBER beamforming solution is then defined as:

� �10 ��2 �4365 ,87&9:.; �<� � � ��0 (20)

Unlike the LMMSE solution (8), there exists no closed-form LMBER solution. In [14],[15], a simplified

conjugate gradient method [26],[27] is used to obtain numerical solutions. Both the block-data based

gradient and LMS-style stochastic gradient adaptive algorithms have been derived in [14],[15] to realize

the LMBER beamforming solution.

For the linear beamformer to work adequately, the underlying system must be linearly separable.

The linear separability means that there exists a weight vector � such that
; 2 � 6
 and

; 2�
76
 are completely
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separated by the decision threshold � 
 � � . When the minimum spatial separation expressed in angles of

arrival between the desired user and interfering users is below a certain threshold, the system inevitably

becomes linearly inseparable. In such a situation, the linear bermformer will have a high irreducible

BER floor, and nonlinear processing has to be adopted for the sake of achieving an adequate BER perfor-

mance. In general, nonlinear spatial processing is capable of achieving a better performance than a linear

receiver, regardless whether the output of the system is linearly separable or not. The limitation of a lin-

ear beamforming assisted receiver is illustrated in the following example, which is also used throughout

this paper for investigating the proposed nonlinear multi-antenna detection techniques.

Simulation example. The example consisted of four signal sources and a two-element antenna array.

Fig. 2 shows the locations of the desired source and the three interfering sources in a graphical form. The

simulated channel conditions were � 
 ���RA ; � , �G���g��� . The desired user and all the three interfering

users had equal signal power, and therefore we had SIR 
 � � dB for � � �Z���Z��� . The minimum spatial

separation in this example was the difference in angles of arrival between the desired user 1 and the

interferer 2, which was ? ��� ��� . Fig. 3 compares the BERs of the LMMSE and LMBER beamformers

for the two cases of ? ��� � � and ? ��� � � , respectively. It can be seen from Fig. 3 (a) that for ? ��� � � the

underlying system scenario was linearly separable as was confirmed by the performance of the LMBER

beamformer, while the LMMSE beamformer was unable to achieve the linear separability of the signal

constellation and hence exhibited a high BER floor. Fig. 4 plots the conditional p.d.f.s �^�	� ! A��V� , the

conditional marginal p.d.f.s �^�	� 
 !6A �V� , the conditional subsets
; 2�
76

and
; 2�
76
 for the LMMSE and

LMBER beamformers, given ? ��� � � and SNR � � � dB, which represented a typical condition in Fig. 3

(a). It is clearly seen from Fig. 4 that the LMBER beamformer was “smarter” than the LMMSE scheme

and hence achieved the desired linear separability. However, when the minimum spatial separation was

reduced to ? � � �	� , the system became inherently linearly inseparable, and any linear beamformer

failed to perform adequately as can be seen in Fig. 3 (b). Fig. 5 depicts the conditional p.d.f.s �J�	� !OA��V� ,
the conditional marginal p.d.f.s �J�	� 
 ! A �V� , the conditional subsets

; 2�
76
and

; 2�
76
 for the LMMSE and

LMBER beamformers, given ? ��� � � and SNR �q� � dB, which provided a typical condition in Fig. 3 (b).

The results of Fig. 5 confirm that the underlying system was linearly inseparable, and it also explains why

the LMBER solution did better than the LMMSE scheme, resulting in a lower BER floor. This example

clearly demonstrates the need for invoking a nonlinear spatial processing assisted receiver structure.

4 Bayesian Detection Scheme

Given the observation vector \ � 
�� , the optimal solution to the multi-antenna aided spatial processing

problem in terms of the achievable BER is the maximum a posteriori probability solution, which is
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similar to the case of single-user channel equalization [17],[18], and therefore can readily be formulated.

The posterior probabilities or decision variables for � 3 � 
�� � &(� given \ � 
�� are given by

� 2>476 � 
���� �����0
% 143

� 25476%
� ���RQ "S �

] 587Z9 # � � \ � 
�� � D\ 2>476% � "
��Q "S ' (21)

where
� 25476% are a priori probabilities of D\ 25476% and

� \ � " ��\ j \ . Typically, all the states D\ 25476% are equiprob-

able, and thus we have
� 25476% � 3��� . The optimal decision regarding the transmitted bit � 3 � 
�� is given by

u�V3 � 
����
� A(��� � 2�
76 � 
���� � 2 � 6 � 
����� ��� otherwise 0 (22)

Let we redefine a single decision variable as

����� 
�� � ���0
% 143�� % 587:9$# � � \ � 
�� � D\.% � "

��Q "S ' (23)

where

� %�� sgn � � %�* 3 �"=# � ���RQ "S � ] 0 (24)

Then the optimal decision (22) is equivalent to

u� 3 � 
���� sgn �	� � � 
���� � � A(��� � � � 
��	���:�� ��� � � � 
��	
�� 0 (25)

Note that (23) has the exact form of the RBF network in conjunction with a Gaussian kernel function.

The BER performance of the optimal Bayesian detection scheme were evaluated using the simulation

example of the previous section under the two conditions of having minimum spatial separations of
? ��� � � and ? � � � � , and the results are plotted in Fig. 3 (a) and (b), respectively, in comparison to the

BERs of linear beamformers. It can be seen from Fig. 3 (a) that the Bayesian detector achieved an SNR

improvement of 4 dB at the BER of � � ��� over the LMBER beamformer. In the linearly inseparable case,

the achievable performance improvement over the linear beamformer was even greater. In particular,

Fig. 3 (b) shows that the Bayesian spatial processing assisted receiver removed the irreducible BER

that was experienced by the linear beamforming aided receiver. The Bayesian detection scheme (23)

may be viewed as a nonlinear “beamforming” process, and this nonlinear beamformer is clearly more

complex than the simple linear beamformer (6). Therefore, the performance improvement achieved

by the Bayesian detection scheme is attained at the expense of considerably increased computational

complexity.

5 Block-Data Kernel-Based Nonlinear Detector Construction

In reality, the signal subsets
+ 25476

are unknown and have to be estimated in order to realize the Bayesian

solution. We will adopt a temporal reference technique to construct a nonlinear detector. Given a block
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of " training data % \ � 
���� � 3 � 
��s) �� 143 , consider the nonlinear detector of the form

� � \4��� �0
, 143

� ,�� ,K� \4� (26)

where
� , represents the real-valued weights and �	,>� \4�g� �J� \k��\ � H ��� are the appropriately chosen kernel

basis functions with \ � H � denoting the H -th training input. In our spatial processing aided application,
�J��� � � � can be chosen as the Gaussian kernel function of the form

�^� \k��\ � H����g��587Z9 # � � \ � \ � H�� � "
��� " ' (27)

where the kernel variance �X" is an estimate of the noise variance Q^"S . Define the modelling residual as

� � 
�����= � 
�� � �R� 
���� �V3 � 
�� � �R� \ � 
�����0 (28)

Then the kernel model (26) generated for the training data set can be formulated as

	 ��

� A�� (29)

where the target vector
	

is defined as

	 �YM = � �V�	= � � �-[O[O[s= � " �.P _ �YM �V3 � �V� � 3V� � �-[O[O[ �V3 � " �.P _ � (30)

the kernel weight vector is given by � � M � 3 � " [O[O[
� � P<_ , the residual vector is formulated as ���

M � � �V� � � � �-[O[O[ � � " �.P<_ , and the regression matrix 
 is given by


�� M�� 3 � " [O[O[�� � P (31)

with

� 
 � M � 
 � �V� � 
 � � �-[O[O[ � 
 � " �.P _ �YM �J� \ � �V����\ � �>��� �J� \ � � ����\ � �>���-[O[O[ �J� \ � " ����\ � �>���.P _ � (32)

for � � �N� " . We adopt two different techniques for constructing a sparse detector model having

"������ ��� " � number of terms from the full model (26).

5.1 Relevance Vector Machine for Sparse Kernel Detector Construction

The RVM method [22],[23] can readily be applied for constructing a sparse kernel model having " �����
number of terms from the full model (26). The introduction of an individual hyperparameter � 
 for every

weight
� 
 of the model (26) is the key feature of the RVM, and is ultimately responsible for the sparsity

properties of the RVM method [22]. During the optimization process, many of the � 
 coefficients are

driven to large values, so that the corresponding model weights
� 
 are effectively pruned out. Thus the

corresponding model terms � 
 ��� � can be removed from the trained model. The construction procedure
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produces a beamformer having a sparse final kernel structure consisting of " � ��� number of significant

terms. The detailed RVM method used is summarized in Appendix A.

The RVM method is known to be able to produce very sparse models, while exhibiting excellent

generalization capabilities [22]. A drawback of the RVM method is its high computational complexity.

The algorithm contains two loops, with the inner loop used for updating the kernel weights and the outer

loop for the associated hyperparameters (see Appendix A). Both loops involve “expensive” nonlinear

optimization, and therefore converge relatively slowly, while incurring high computational costs. Fur-

thermore, the RVM method starts with the full model set 
 and removes those kernel terms that have

large values in their associated hyperparameters. In other words, it is based on the backward elimina-

tion principle. Since the Hessian matrix
�

associated with the full model set ((53) in Appendix A) is

typically ill-conditioned and may even be non invertible, the RVM method is inherently ill-conditioned

and its iterative procedure may converge at a slow rate, requiring numerous iterations. The threshold

* � employed by the pruning process (see Appendix A) is problem-dependent and has to be determined

empirically. Provided that the value of * � is tuned appropriately, the RVM algorithm is in general capa-

ble of identifying a sparse detector from the full model (26), which closely approximates the Bayesian

performance.

5.2 Orthogonal Forward Selection with Fisher Ratio Class Separability Measure for
Sparse Kernel Detector Construction

An alternative way of constructing a sparse kernel model from the full model (26) is offered by the OFS

procedure based on Fisher ratio class-separability measure [24], which is computationally attractive and

numerically very robust. Let an orthogonal decomposition of the regression matrix 
 be


������ (33)

where

�W�

������
�
� ( 3 * " [O[O[ ( 3 * �� � . . .

...
...

. . . . . . ( � � 3 * �� [O[O[ � �

	�





� (34)

and

� � M�
 3 
 " [O[O[�
 � PR�
�����
�
� 3 * 3 � 3 * " [O[O[ � 3 * �� " * 3 � " * " [O[O[ � " * �...

...
...

...� � * 3 � � * " [O[O[ � � * �
	�




� (35)
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with orthogonal columns that satisfy 
 _ 
 
 %h�-� if �����' . The kernel model (29) can alternatively be

expressed as
	 � ��� A�� (36)

where the orthogonal weight vector ��� M � 3 � " [O[O[ � � P<_ satisfies the triangular system � �I��� .

A sparse " ����� -term model can be selected by incrementally maximizing a class separability measure

in an OFS procedure, as is presented in [24]. Define the two class sets � 4 �Y% \ � 
�� 9 ( � 
�� �q&(�') , and

let the numbers of points in � 4 be " 4 , respectively, with " 
 A " � � " . The means and variances of

training samples belonging to class � 
 and class � � in the direction of basis 
 , are given by

� 
 * , � �" 
 �0

2143

� � = � ��� � �V� � 
 * , �^Q "
 * , � �" 
 �0

2143

� � = � �>� � �V� ��� 
 * , � � 
 * , � " (37)

and
� � * , � �" �

�0

2143

� � = � ���FA��V� � 
 * , �^Q " � * , � �" �
�0

2143

� � = � �>�FA �V� ��� 
 * , � � � * , � " � (38)

respectively, where
� � + � ��� for + � � and

� � + � � � for + �� � . Fisher ratio is defined as the ratio of the

interclass difference and the intraclass spread encountered in the direction of 
 , , which is given by [28]:

� , �
� � 
 * , � � � * , � "Q "
 * , A Q " � * , 0 (39)

Base on this Fisher ratio for class separability measure, significant kernel terms can be selected with the

aid of an OFS procedure. At the H -th stage, a term is chosen as the H -th term in the selected model, if it

produces the largest
� , among the candidate terms 
 
 , H�� � �<" . The procedure is terminated with a

sparse " ����� -term model when we have � �	��

�
� � ��

�, 143 � , 


�
(40)

where the threshold
�

determines the sparsity of the selected model. The appropriate value for
�

depends

on the application concerned, and in our spatial processing oriented application, we have found out

empirically that the appropriate values for
�

is in the range of 0.005 to 0.01. The least square solution for

the corresponding sparse model weight vector � � ��

� is readily available given the least square solution

of � �	��

� .
The detailed construction algorithm is summarized in Appendix B. This algorithm involves only lin-

ear optimization and is computationally significantly more attractive compared with the RVM method.

In the selection procedure, if 
 _ 
 
 
 is too small, this term will not be selected. Thus, any ill-conditioning

problem or singular situations are automatically avoided. The construction process is guaranteed to con-

verge and, to arrive at the sparsest possible kernel detector that is also capable of closely approximating

the optimum Bayesian performance, the only algorithmic parameter that requires tuning is the threshold
�
.
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5.3 Simulation Study

The example given in Section 3 was used for testing the two block-data kernel-based construction algo-

rithms. Two conditions of ? � � � � and ? � � �	� were simulated, representing the linearly separable and

inseparable cases, respectively. In each case, the OFS algorithm employing the Fisher ratio and the RVM

algorithm were used for constructing a RBF detector. The number of training data used for each SNR

value was " � ��� � . The Gaussian kernel variance � " was determined empirically and the appropriate

values of � " were found to be in the range spanning from ��Q "S to � � Q "S , depending on the SNR. The

number of RBF centers or kernel terms identified by the two algorithms for the given SNR values were

similar, ranging from " � � � � � � to 20, having typical values of " ����� � ��� . The BERs of the RVM

and OFS detectors are compared in Fig. 6. It can be seen that both kernel-based detectors had a simi-

lar performance at a similar model sparsity, and the two RBF detectors constructed from noisy training

data closely approximated the optimal Bayesian performance. However, the OFS algorithm based on

the Fisher ratio is known to have considerable computational and numerical advantages over the RVM

algorithm.

6 Recursive Adaptive RBF Detector Using the Combined Clustering and
RLS Algorithm

In practice, it is often desirable to update a detector on a recursive sample-by-sample basis. Consider

again the RBF detector of the form:

�R� \ � 
������ ���0

2143

� 
 �J� \ � 
������ 
 � (41)

where � 
 are the complex-valued kernel centers and the number of kernel centers "�� is assumed to be

given. We propose to apply a combined enhanced � -means clustering and RLS algorithm [25],[19] for a

recursive sample-by-sample based adaptation of this RBF detector.

The enhanced � -means clustering algorithm [29], which recursively updates the RBF centers, is

described by:

� 
 � 
����	� 
 � 
 � �V�	A�
 
 � \ � 
���� � D� � � \ � 
�� � � 
 � 
 � �V��� � (42)

for �h��� � " � , where � 
mD� � 
 � 0 � defines the learning rate, the membership function 
 
�� \ � 
���� is

defined as


 
 � \4���
� ��� if D% 
 � \ � � 
 � " ��D% , � \ � � , � " for all H �� � ��:� otherwise � (43)
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and D% 
 is the variation of the � -th cluster. In order to estimate the associated variation D% 
 , the following

updating rule is used:

D% 
 � 
��g� D��� D% 
 � 
 � �V�	A � � � D��� � � 
 
 � \ � 
���� � \ � 
�� � � 
 � 
 � �V� � " � (44)

where D��� is a constant slightly less than 1.0. The initial variations, D% 
 � � � , �G���g��" � , are set to the same

small number. The learning rate D� � can either be set to a fixed small positive number or be self-adjusting

based on an entropy formula [29].

The traditional � -means clustering algorithm [28] can only achieve a local optimal solution in parti-

tioning the input data set into " � clusters, and the solution obtained depends on the initial locations of

cluster centers. A consequence of this local optimality is that some initial centers may become trapped

in regions of the input domain, which have only a few or no input patterns, and never move to regions,

where they are needed. This wastes resources and results in an unnecessarily large network. The en-

hanced � -means clustering algorithm [29] overcomes the above-mentioned drawback. When using a

cluster variation-weighted measure, we always achieve an optimal center configuration in the sense that

after convergence all clusters have an equal cluster variance. The above-mentioned enhanced � -means

clustering algorithm is an unsupervised one. In order to take full advantage of training, the algorithm

can be modified, in order to create a semi-supervised one. Let the RBF center set be divided into the two

subsets given below
� 2�
76 � % � 
 � ������� " �sU��6) (45)

and
� 2 � 6 � % � 
 � � A�" �sU��(�I� ��" �t) � (46)

corresponding to the two classes � 3 � 
�� � & � . During the training instance 
 , the enhanced � -means

clustering algorithm is applied only to the center subset
� 2�
76

,if we have � 3 � 
��$�mA(� . Otherwise, it is

applied to
� 2 � 6 , provided that we have � 3 � 
��l� � � . This “semi-supervised” clustering techniques was

found to be more effective in dealing with linearly inseparable cases.

The RBF weights
� 
 are updated using the classic RLS algorithm. Thus the combined CRLS algo-

rithm used for training the RBF detector (41) can readily be summarized as follows. At the instance


 , given the center set % � 
 � 
 � �V���d� � �(� " �t) and weight vector � � 
 � �V�(� M � 3 � 
 � �V� � " � 
 �
�V�-[O[O[ � ��� � 
 � �V�.P _ , we invoke the following procedure:

RBF center updating: Use the enhanced � -means clustering algorithm for obtaining an updated RBF

center set % � 
 � 
���������� ��" �t) ;
RBF weight updating: Employ the RLS algorithm for obtaining an updated RBF weight vector � � 
�� .
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The enhanced � -means clustering process is guaranteed to converge to the optimal center configura-

tion if either the learning rate D� � is self-adjusting based on an entropy formula or it is fixed to a positive

constant that is not too large [29]. The convergence properties of the standard RLS algorithm are well-

known. It is therefore reasonable to believe that the above-mentioned combined � -means clustering and

RLS algorithm is capable of guaranteeing convergence, provided that the algorithmic parameters are set

appropriately.

The example given in Section 3 was employed again for investigating the CRLS algorithm used for

training the RBF detector of (41). Two conditions associated with ? � � � � and ? � � � � were sim-

ulated. For this example, the number of states that defined the Bayesian detector was "3# � ��� , and

" � � ��� was assumed for the RBF detector. The training data length was " � � � � � . The first " �
number of samples \ � 
�� were used as the initial RBF centers and the two adaptive parameters of the

clustering algorithm were set to D� �d� � 0 � and D��� � � 0������ . Half of the RBF weights were set initially

to A � 0 � �X� and the other half to � � 0 � �X� . The initial condition of the RLS algorithm was chosen as
� � � �g� diag % � � � � 0 �:� � � � � 0 �:� [O[O[ � � � � � 0 �Z) with the forgetting factor given by � � � 0������ . Fig. 7 depicts

the achievable BER of the CRLS RBF detector in comparison to the optimal Bayesian performance. For

the CRLS RBF detector, the results obtained using the unsupervised and semi-supervised clustering al-

gorithms were similar in the linearly separable case ( ? � � � � ). By contrast, for the linearly inseparable

scenario of ? ��� �	� , it was observed that the semi-supervised clustering performed better than the unsu-

pervised one. The results given in Fig. 7 are those obtained with the aid of semi-supervised clustering.

From Fig. 7, it can be seen that the performance of the CRLS RBF detector closely matched the optimal

Bayesian performance.

7 Conclusions and Discussions

A nonlinear detection technique has been investigated in the context of a multi-antenna assisted receiver.

The optimal solution of the nonlinear spatial processing aided receiver has been derived for binary phase

shift keying signalling. It has been shown that this optimal Bayesian detector significantly outperforms

the linear beamformer in terms of a reduced bit error rate, at the expense of an increased complexity. The

results presented in this paper have demonstrated the potential system capacity enhancements that may

be achieved by employing nonlinear spatial processing. Both block-data based and recursive sample-by-

sample adaptive implementations of the optimal Bayesian detector have been considered using a radial

basis function network. For block-data based adaptation, both the RVM algorithm and the orthogo-

nal forward selection procedure employing the Fisher ratio based class-separability measure have been

considered. Both algorithms have been shown to produce similarly good performance, but the latter is

13



known to have considerable computational advantages. For recursive sample-by-sample based adapta-

tion, the combination of the enhanced � -means clustering and the recursive least squares algorithm has

been invoked.

The nonlinear detection scheme proposed in this paper is based on what we refer to as a “direct”

approach, namely on estimating the RBF centers directly from received training data contaminated by

the channel. Alternatively, an “indirect” approach can be adopted, where the system matrix b defined

in equation (4) is first identified and then used for constructing the nonlinear detector. This indirect ap-

proach has the advantage of requiring a significantly shorter training time, since estimating the channel

matrix needs a shorter training sequence than estimating the noiseless channel states that define RBF

centers. This indirect approach is not applicable in the SDMA assisted multiuser downlink, since the

receiver in this case only has access to the one desired user’s training sequence. However, this indirect

scheme becomes attractive in the uplink, as the receiver has to detect all the users’ data and has access

to the training sequences of all the users. Moreover, numerous complexity-reduction schemes can be

adopted for the RBF detector [21]. Indeed, it was demonstrated in [21] that the complexity of the RBF

detector may be rendered comparable to that of classic linear detectors. For example, decision feedback

can be employed not only to improve the performance significantly but also to reduce the complexity

dramatically of the RBF detector, similar to the case of single-user channel equalization [18],[31]. This

nonlinear detection scheme designed for the SDMA assisted multiuser uplink is currently under investi-

gation.

Appendix A

The posterior probability of the kernel detector weight vector � is defined by�J� �$! 	 ���$�k� �^� 	 ! �G���$� �^� � ! �G��J� 	 ! ��� (47)

where �J� �d! ��� is the prior with � � M � 3 � " [O[O[ � � P _ denoting the vector of hyperparameters, �^� 	 ! � �����
is the likelihood and �^� 	 ! ��� the evidence. Following the Bayesian classification framework [22],[23],

the likelihood is expressed as�^� 	 ! � ���$�k� �
�
, 143 � � �	�R� \ � H ������� 2�� 2 , 6 
 3 6�� " � � � � �	� � \ � H�������� 2 3 � � 2 , 6 6�� " (48)

where

� �	� ��� �
�gAC587:9 � � � � (49)
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is the logistic sigmoid function. The Gaussian prior is chosen�^� �d! ����� �
�
, 143

� � ,� ��� 587Z9$# � � , � ",� ' 0 (50)

As the marginal likelihood �^� 	 ! ��� cannot be obtained analytically by integrating out the weights from

(47), an iterative procedure is necessitated [22].

With a fixed given � , the maximum a posteriori probability (MAP) solution u� can be obtained by

maximizing ��� , � �^� �d! 	 ������� or, equivalently, by minimizing the following cost function

� � � ! 	 ������� �0
, 143 # � , � ",� � = � H��	A��

� ��� , � � �	� � \ � H�������� � � � = � H �
� ��� , � � � � �	�R� \ � H�������� ' 0 (51)

The gradient of
�

with respect to � is

��� ��� � A 
 _
	�
 � �

�
� 	 A
� � ��� (52)

where � � diag % � 3 � � " �O[O[O[ � � � ) , 
 � Mi� �	�R� \ � �V����� � �	� � \ � � �����-[O[O[O� �	� � \ � " �����.P<_ , � � � M � �J[O[O['�tP<_
and 
 is the regression matrix defined in (31). The Hessian of

�
is

� � � " � ��
 _�� 
�A�� (53)

where � � diag % � �	�R� \ � �V����� � � � � �	� � \ � �V���������O[O[O[��s� �	�R� \ � " ����� � � � � �	�R� \ � " �������s) . The hyperparam-

eters � are updated using

�������
 � � � �������
�� 
 * 

u� "
 (54)

with � 
 * 
 being the diagonal elements of  , which is defined by

 a� 	 � !"!� � �
3 0 (55)

The following simple iterative procedure can be adopted to construct a sparse RVM detector:

Initialization. The "Eo " ����� kernel matrix 
 is initialized with " � ��� ��" , i.e. every training data point

is considered as a candidate kernel. Each weight
� 
 is initially associated with a same value of the

hyperparameter � 
 .

Step 1. Given current value � , find u� by minimizing the cost function (51). A simplified conjugate

gradient algorithm [26],[27] is used in our application.

Step 2. The hyperparameters are updated using (54). If a � 
 � * � , where * � is a preset large positive

value, " � ��� 9 � " � � � � � , the corresponding column in 
 is removed, and thus the corresponding

weight
� 
 and model term � 
 ��� � is pruned out the model.
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Test. If the hyperparameters � remain sufficiently unchanged in two successive iterations (no removal

of hyperparameters) or a pre-set maximum iteration number is reached, stop; otherwise go to Step

1.

Appendix B

The modified Gram-Schmidt orthogonalization procedure [30] calculates the � matrix row by row and

orthogonalizes 
 as follows: at the H -th stage make the columns � 
 , H-A � � � �<" , orthogonal to the

H -th column and repeat the operation for � ��H�� " � � . Specifically, denoting � 2���6
 � � 
 , �d��� � " ,

then 
 , � � 2 , � 3 6, �( , * 
 ��
	_, � 2 , � 3 6
 U � 
	_, 
 , � �^H�A����I����" �
� 2 , 6
 � � 2 , � 3 6
 � ( , * 
 
 , �^H�A��G�I� ��" �

� �������� HF�Y���s�Z�O[O[O[V��" � � 0 (56)

The last stage of the procedure is simply 
 � � � 2 � � 3 6� . The elements of � are computed by transforming
	 2���6 � 	

in a similar way: ��, � 
 _ , 	 2 , � 3 6 U � 
 _ , 
 , � �
	 2 , 6 � 	12 , � 3 6 � ��, 
 , � � �� �G�IH^��" 0 (57)

This orthogonalization scheme can be used to derive a simple and efficient algorithm for selecting

subset models in a forward-regression manner [30]. First define


 2 , � 3 6 ��� 
 3 [O[O[ 
 , � 3 � 2 , � 3 6, [O[O[�� 2 , � 3 6� 	 0 (58)

If some of the columns � 2 , � 3 6, �O[O[O[ � � 2 , � 3 6� in 
 2 , � 3 6 have been interchanged, this will still be referred

to as 
 2 , � 3 6 for notational convenience. With the notation � 2 , � 3 6% � M � 2 , � 3 63 * % � 2 , � 3 6" * % [O[O[ � 2 , � 3 6� * % P _ , the H -th
stage of the selection procedure is given as follows.

Step 1. For H^��'e��" , compute

� 2 % 6
 * , � �" 
 �0

<143

� � = � �>� � �V� � 2 , � 3 6
 * % � �tQ 2 % 6
 * , � " � �" 
 �0

2143

� � = � �>� � �V�)� � 2 , � 3 6
 * % � � 2 % 6
 * , � " �
� 2 % 6� * , � �" �

�0

<143

� � = � �>�4A��V� � 2 , � 3 6
 * % � � Q 2 % 6� * , � " � �" �
�0

2143

� � = � �>�4A��V� � � 2 , � 3 6
 * % � � 2 % 6� * , � "
and

� 2 % 6, � � � 2 % 6
 * , � � 2 % 6� * , �:"��Q 2 % 6
 * , � " A �tQ 2 % 6� * , � " 0
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Step 2. Find
� , � � 2 %�� 6, � 7 3'7 % � 2 % 6, �^H^��'e��" )10

Then the ' , -th column of 
 2 , � 3 6 is interchanged with the H -th column of 
 2 , � 3 6 , and the ' , -th
column of � is interchanged with the H -th column of � up to the � H � �V� -th row. This effectively

selects the ' , -th candidate as the H -th kernel term in the subset model.

Step 3. Perform the orthogonalization as indicated in (56) to derive the H -th row of � and to transform


 2 , � 3 6 into 
 2 , 6 . Calculate � , and update
	 2 , � 3 6 into

	 2 , 6
in the way shown in (57).

The selection is terminated at the " � � � stage when the criterion (40) is satisfied and this produces a

sparse subset model containing " ����� significant kernel terms.
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Figure 1: Multi-antenna receiver configuration for the multi-user space-division multiple-access system.
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Figure 3: Comparison of the bit error rates of three theoretical detection schemes, the LMMSE and
LMBER beamformers, and the optimal Bayesian detector.
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Figure 4: Conditional p.d.f.s �J�	� !�A �V� (surface), conditional marginal p.d.f.s �J�	� 
 !�A �V� (curve), con-

ditional subsets
; 2�
76

(symbol *) and
; 2�
76
 (symbol o) given ? � � ��� and SNR �W� � dB. Beamformer

weight vector has been normalized to a unit length.
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Figure 5: Conditional p.d.f.s �J�	� !�A �V� (surface), conditional marginal p.d.f.s �J�	�!
 !�A �V� (curve), con-

ditional subsets
; 2�
76

(symbol *) and
; 2�
76
 (symbol o) given ? � � ��� and SNR �W� � dB. Beamformer

weight vector has been normalized to a unit length.
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Figure 6: Performance comparison of the Bayesian detector with the RBF detectors constructed by the
RVM algorithm and the OFS with Fisher ratio, respectively.
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Figure 7: Performance comparison of the Bayesian detector with the RBF detector trained by the CRLS
algorithm.
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