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Motivations

@ What critical to a communication signal processing
application are and complexity
e Optimal solutions are ofter NP-hard to obtain, with
unaffordable cost

e Traditionally, suboptimal solutions are sought, at lower
complexity

© Evolutionary algorithms are capable of offering near
optimal performance with cost
o A well-tuned EA may solve a NP-hard problem with
complexity at most polynomial in problem size
© We evaluate several evolutionary algorithms in a very
challenging application

@ Joint channel estimation and turbo multiuser
detection-decoding for OFDM
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Background

@ Joint channel estimation and turbo multiuser detection-decoding

e Turbo MUD/decoding optimisation given CSl is NP-hard,
and optimal ML solution is computationally prohibitive

@ Within joint optimisation of iterative CE and MUD/decoding

e CE optimisation is defined on continuous space while MUD
optimisation is defined on discrete space

@ We test both discrete-binary and -valued

e Genetic algorithm, repeated weighted boosting search,
particle swarm optimisation, differential evolution algorithm

© EA aided joint CE and turbo multiuser detector/decoder:

e BER approaches ML bound associated with perfect CSI
o CE accuracy attains optimal Cramér-Rao lower bound
e Complexity is a fraction of NP-hard optimal ML complexity
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System Schematic
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Joint CE and MUD

Joint ML CE and MUD solution

(his]. X[s]) = arg, min_J(h(s). X[s])

with joint optimisation cost function

Q
J(hisl, X[s]) = > |[Y,[s] — X"[s]Fhq[s]|?
q=1

@ Yg[s] € CKX': gth antenna data over K subcarriers at sth OFDM
symbol

@ X[s] = [X'"[s] X2[s] - - - XVU[s]]" with X“[s] = diag{X“[s, 1], - - , X![s, K]} being
transmitted data of user u over K subcarriers at sth OFDM symbol
@ F = diag{F,F,---F} with F € C¥*Ler denoting FFT matrix
N———
U

@ hyls] = [(hils])" (h2[s])" - (hY[s])"]" with hi[s] € CLer*! being CIR vector
between uth user and gth receive antenna during sth OFDM symbol
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ML MUD

@ Given CSI, ML MUD solution

imm:ammggw%wmmxn1SKSK

with symbol set S and MUD optimisation cost function
Imud (X[s, K1) = || — His. KIX[s, K]|I®

o Y[s, k] € COx1: data of Q antennas at sth OFDM
symbol and kth subcarrier

e H[s, k] € CO*V: estimated FDCHTF matrix (FFT transform
of CIRs) at sth OFDM symbol and kth subcarrier

e X[s, k] € CU¥': U users’ transmitted data at sth OFDM
symbol and kth subcarrier

@ ML MUD is NP-hard, and we use discrete-binary evolutionary
algorithm to solve this optimisation
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Turbo SISO MUD-Decoder

SISO SISO
detector channel
decoder

@ Given estimated channel, EA assisted MUD detects data, which
are converted into bits

@ SISO MUD and SISO channel decoder exchange extrinsic
information /. times to enhance decoded bits

© After convergence of turbo detection-decoding, detected bits are
remodulated and passed to channel estimator
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ML Channel Estimation

@ Given estimated data, ML CE solution
h = i <g<
hy[s] = arg { hng Jce(hq[s])}, 1<g<Q
with CE optimisation cost function
Jee (Ngs]) = ||V [s] — X" [s]Fhg[s]||?

As hg[s] € CUterx1| search space for each optimisation is a
continuous (2UL;)-dimensional space

@ We use a continuous EA to solve this optimisation

@ Continuous EA assisted channel estimator and discrete-binary
EA aided turbo MUD-decoder iterates /. times

@ Continuous as well as discrete-binary GA, RWBS, PSO and
DEA are detailed in the paper
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Simulated Multiuser OFDM System

Simulation parameters of the multi-user OFDM system

Encoder | Type RSC
Code rate 1/2
Constraint length 3
Polynomial (90,91) = (7,5)
Channel | Number of paths L., | 4
Path delays {0,1,2,3}
Average path gains {0,-5,—10,—-15} (dB)
Taps: frame to frame | Complex white Gaussian
Taps: within frame fading rate Fp = 10~7
System | MSs U 4

Receiver antennas Q
Modulation
Subcarriers K

Cyclic prefix Kgp

3
16-QAM
64

16
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EA Algorithmic Parameters

Algorithmic parameters for EA assisted joint CE and MUD-decoder

CE Parameter Value MUD Parameter Value
CGA Population size Ps 100 DBGA Population size Ps 100
Selection ratio rs 0.5 Selection ratio rs 0.5
Mutation parameter v | 0.01 Mutation probabi. M, | 0.15
Mutation probabi. M, | 0.2
CRWBS | Population size Ps 100 DBRWBS | Population size Ps 100
Mutation parameter v | 0.001 Mutation probabi. M, | 0.5
WBS Typs 40 WBS Typs 40
CPSO Population size Ps 100 DBPSO Population size Ps 100
Cognition learning c; 2 Cognition learning ¢; | 0.1
Social learning ¢ 2 Social learning ¢, 0.3
CDEA Population size Ps 100 DBDEA Population size Ps 100
Greedy factor p 0.1 Greedy factor p 0.7
Adaptive factor ¢ 0.1 Adaptive factor ¢ 0.8
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Evaluating Metrics

@ CEA-based CE: given perfect data, and no channel noise (N, = 0)
0.6 best) < 107% within limit of
CF-evaluations: Ngr_gys = Ps - GIm =100 x 1000
@ Evaluate statistics:
forrun=1: Nm[ (Ntol = 1000)
if (G{;‘:X < G#,TX) and (JCE(hq,G;]“XX,besl) < 10_4)
Nouwe = Nsue + 1; NéufgiEvs = Ngl/giEVs +Ps- Grnﬁ‘.?x

@ Successful run: achieve target Jee (ﬁ

else
Neai = Nea + 15 NG _ s = NE_gvs + Ps - Grix
end if
end for

@ Average number of CF evaluations per run

—+tot

_ suc fai
Ner—evs = (NGF—evs + NGF—gvs) /Mot
Average number of CF evaluations per successful run

xjsuc

Ner—evs = NEE_gvs/ Noue
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Evaluating Metrics (continue)

@ Efficiency is quantified by normalised average number of CF evaluations per run

—tot —tot —lim

Recr—evs = Ner—evs/Ner—evs
or normalised average number of CF evaluations per successful run

Ssuc —suc —lim

Rcr_evs = Ncr—evs/Ncr—Evs

Smaller Ror_gys OF Ror_gvs, More efficient CEA-CE
@ Reliability of CEA aided channel estimator is measured by failure ratio

Rt = Niai / Neot

@ Similar procedure evaluates efficiency and reliability of DBEA-based MUD, by
setting Gim = 500 and Ngp_ gys = MY = 16
@ Given perfect CSlI, no turbo iterations (k. = 1), and a successful detection run:

BER — 0 for G < Gim



Simulation Experimental Results
oooe

Efficiency and Reliability
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(a) Histograms of efficiency and reliability measures, in terms of Bar_ £vs: Ror— Evs
and Ry,;, for four CEA assisted CE schemes
CDEA-CE is best, CRWBS-CE close second, and CGA-CE worst

(b) Histograms of efficiency and reliability measures, in terms of T?IS}:,EVS, ﬁsg,i,EVs
and Ry, for four DBEA assisted MUDs

DBGA-MUD is best, DBDEA-MUD close second, and DBPSO-MUD worst
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CEMSE as function of channel SNR for four EA assisted iterative CE and turbo
MUD-decoder schemes

BER as function of channel SNR for four EA assisted iterative CE and turbo
MUD-decoder schemes

le = 3, ke = 5, number of CF evaluations for EA aided CE set to Né?_—fEVS = 20000 (Gmax = 200), and
number of CF evaluations for EA aided MUD-decoder set to Nglf‘liEVs = 10000 (Gmax = 100)
GA based and PSO based schemes do not converge
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(a) CE MSE as function of channel SNR for four EA assisted iterative CE and turbo
MUD-decoder schemes

(b) BER as function of channel SNR for four EA assisted iterative CE and turbo
MUD-decoder schemes

o le = 3, ke = 5, number of CF evaluations for EA aided CE set to Né?_—fEVS = 40000 (Gmax = 400), and

number of CF evaluations for EA aided MUD-decoder set to Nglf‘liEVs = 20000 (Gmax = 200)

@ All four schemes converge to optimal solution
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Complexity Comparison

Scheme Operation Clitn/ Citn | Clarbo/ Clutio | Clom/ Clatbo

GA aided joint CE and multiplications 0.10% 5.69% 62.24%
turbo MUD/decoder additions 0.10% 7.45% 91.41%
RWBS aided joint CE and | multiplications 0.10% 3.00% 31.27%
turbo MUD/decoder additions 0.10% 3.88% 45.86%
PSO aided joint CE and multiplications 0.10% 5.69% 62.24%
turbo MUD/decoder additions 0.10% 7.45% 91.41%
DE aided joint CE and multiplications 0.10% 3.00% 31.27%
turbo MUD/decoder additions 0.10% 3.88% 45.86%

@ CUL.: complexity of ML MUD given CSI

@ CHjp: complexity of discrete-binary EA based MUD given CSI
@ CM - complexity of turbo ML MUD-decoder given CSI

°

urbo*

CEA - complexity of discrete-binary EA based turbo

turbo *

MUD-decoder given CSI

CEA : complexity of EA assisted joint CE and turbo

joint *

MUD-decoder
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Summary

@ Joint channel estimation and turbo multiuser detection-decoding
for OFDM communication offers a challenging application

o to test capabilities of evolutionary algorithms
@ Our EA aided joint CE and turbo MUD-decoder is capable of

e approaching CRLB of optimal channel estimate, and BER
of turbo ML MUD-decoder associated with perfect CSI

e only imposing a fraction of complexity of idealised turbo ML
MUD-decoder

@ Our study has provided benchmark empirical results to support
capabilities of EAs

e for finding optimal or near optimal designs in challenging
practical applications with affordable complexity

e complimenting well current efforts to better understand EAs
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