Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Benchmarking Capabilities of Evolutionary Algorithms in Joint Channel Estimation and Turbo Multi-User Detection/Decoding

Jiankang Zhang^{a,b}, Sheng Chen^b, Xiaomin Mu^a and Lajos Hanzo^b

^aSchool of Information Engineering, Zhengzhou University Zhengzhou 450001, China

^bCommunications, Signal Processing and Control Group Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, UK

E-mails: {pz3g09,sqc,lh}@ecs.soton.ac.uk, iexmmu@zzu.edu.cn

2013 IEEE Congress on Evolutionary Computation Cancún, Mexico, June 20-23, 2013

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- Motivations
- 2 Joint Channel Estimation and Turbo Receiver
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD

③ Simulation Experimental Results

- Simulation Settings
- Efficiency and Reliability
- Performance Evaluation

4 Conclusions

Concluding Remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Joint Channel Estimation and Turbo Receiver
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD

3 Simulation Experimental Results

- Simulation Settings
- Efficiency and Reliability
- Performance Evaluation
- 4 Conclusions
 - Concluding Remarks

Introduction	
000	

Motivations

- What critical to a communication signal processing application are performance and complexity
 - Optimal solutions are ofter NP-hard to obtain, with unaffordable cost
 - Traditionally, suboptimal solutions are sought, at lower complexity
- Evolutionary algorithms are capable of offering near optimal performance with affordable cost
 - A well-tuned EA may solve a NP-hard problem with complexity at most polynomial in problem size
- We evaluate several evolutionary algorithms in a very challenging application
 - Joint channel estimation and turbo multiuser detection-decoding for OFDM

Background

- Joint channel estimation and turbo multiuser detection-decoding
 - Turbo MUD/decoding optimisation given CSI is NP-hard, and optimal ML solution is computationally prohibitive
- Within joint optimisation of iterative CE and MUD/decoding
 - CE optimisation is defined on continuous space while MUD optimisation is defined on discrete space
- We test both discrete-binary and continuous-valued
 - Genetic algorithm, repeated weighted boosting search, particle swarm optimisation, differential evolution algorithm
- EA aided joint CE and turbo multiuser detector/decoder:
 - BER approaches ML bound associated with perfect CSI
 - CE accuracy attains optimal Cramér-Rao lower bound
 - Complexity is a fraction of NP-hard optimal ML complexity

Simulation Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

2 Joint Channel Estimation and Turbo Receiver

- System Optimisation Model
- EA Aided Iterative CE and Turbo MUD

3 Simulation Experimental Results

- Simulation Settings
- Efficiency and Reliability
- Performance Evaluation
- 4 Conclusions
 - Concluding Remarks

Joint Channel Estimation and Turbo Receiver $\circ \bullet \circ \circ \circ \circ \circ$

Simulation Experimental Results

Conclusions

System Schematic

- SDMA: U single-antenna users are spatially separated by user-specific CIRs
- OFDM: K subcarriers for combating dispersive channel
- BS: has Q antennas and performs soft-in soft-out iterative detection and decoding

Joint Channel Estimation and Turbo Receiver 00000000

Simulation Experimental Results

Conclusions

(日) (日) (日) (日) (日) (日) (日)

Joint CE and MUD

Joint ML CE and MUD solution

$$ig(\widehat{\pmb{h}}[\pmb{s}],\widehat{\pmb{X}}[\pmb{s}]ig) = rg\min_{\pmb{h}[\pmb{s}],\pmb{X}[\pmb{s}]} Jig(\pmb{h}[\pmb{s}],\pmb{X}[\pmb{s}]ig)$$

with joint optimisation cost function

$$J(\boldsymbol{h}[\boldsymbol{s}], \boldsymbol{X}[\boldsymbol{s}]) = \sum_{q=1}^{Q} \|\boldsymbol{Y}_{q}[\boldsymbol{s}] - \boldsymbol{X}^{\mathrm{T}}[\boldsymbol{s}]\overline{\boldsymbol{\mathsf{F}}}\boldsymbol{\mathsf{h}}_{q}[\boldsymbol{s}]\|^{2}$$

- Y_q[s] ∈ C^{K×1}: qth antenna received data over K subcarriers at sth OFDM symbol
- X[s] = [X¹[s] X²[s] ··· X^U[s]]^T with X^u[s] = diag{X^u[s, 1], ··· , X^u[s, K]} being transmitted data of user *u* over *K* subcarriers at *s*th OFDM symbol

•
$$\overline{\mathbf{F}} = \text{diag}\{\underbrace{\mathbf{F}, \mathbf{F}, \cdots \mathbf{F}}_{U}\}$$
 with $\mathbf{F} \in \mathbb{C}^{K \times L_{cir}}$ denoting FFT matrix

h_q[s] = [(h_q¹[s])^T (h_q²[s])^T · · · (h_q^U[s])^T]^T with h_q^U[s] ∈ ℂ^{L_{cir}×1} being CIR vector between *u*th user and *q*th receive antenna during *s*th OFDM symbol

Simulation Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Joint Channel Estimation and Turbo Receiver
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD
- 3 Simulation Experimental Results
 - Simulation Settings
 - Efficiency and Reliability
 - Performance Evaluation
- 4 Conclusions
 - Concluding Remarks

Introduction	Joint Channel Estimation and Turbo Receiver	Simulation Experimental Results	Conclusions

Given CSI, ML MUD solution

$$\widehat{\mathbf{X}}[s,k] = \arg\min_{\mathbf{X}[s,k]\in\mathcal{S}^U} J_{mud}(\mathbf{X}[s,k]), 1 \le k \le K$$

with symbol set $\ensuremath{\mathcal{S}}$ and MUD optimisation cost function

$$J_{mud}(\mathbf{X}[s,k]) = \|\mathbf{Y}[s,k] - \widehat{\mathbf{H}}[s,k]\mathbf{X}[s,k]\|^2$$

- Y[s, k] ∈ C^{Q×1}: received data of Q antennas at sth OFDM symbol and kth subcarrier
- **Ĥ**[*s*, *k*] ∈ C^{Q×U}: estimated FDCHTF matrix (FFT transform of CIRs) at *s*th OFDM symbol and *k*th subcarrier

- X[s, k] ∈ C^{U×1}: U users' transmitted data at sth OFDM symbol and kth subcarrier
- ML MUD is NP-hard, and we use discrete-binary evolutionary algorithm to solve this optimisation

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Turbo SISO MUD-Decoder

- Given estimated channel, EA assisted MUD detects data, which are converted into soft bits
- SISO MUD and SISO channel decoder exchange extrinsic information lite times to enhance decoded bits
- After convergence of turbo detection-decoding, detected bits are remodulated and passed to channel estimator

Joint Channel Estimation and Turbo Receiver $\circ\circ\circ\circ\circ\circ\bullet$

Simulation Experimental Results

Conclusions

ML Channel Estimation

Given estimated data, ML CE solution

$$\widehat{\mathbf{h}}_q[s] = rg \Big\{ \min_{\mathbf{h}_q[s]} J_{ce}ig(\mathbf{h}_q[s]ig) \Big\}, \ 1 \leq q \leq Q$$

with CE optimisation cost function

$$J_{ce}(\mathbf{h}_{q}[s]) = \|\mathbf{Y}_{q}[s] - \widehat{\mathbf{X}}^{\mathrm{T}}[s]\overline{\mathbf{F}}\mathbf{h}_{q}[s]\|^{2}$$

As $\mathbf{h}_q[s] \in \mathbb{C}^{UL_{cir} \times 1}$, search space for each optimisation is a continuous $(2UL_{cir})$ -dimensional space

- We use a continuous EA to solve this optimisation
 - Continuous EA assisted **channel estimator** and discrete-binary EA aided **turbo MUD-decoder** iterates *I*_{ce} times
 - Continuous as well as discrete-binary GA, RWBS, PSO and DEA are detailed in the paper

Simulation Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Joint Channel Estimation and Turbo Receiver
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD

3 Simulation Experimental Results

- Simulation Settings
- Efficiency and Reliability
- Performance Evaluation
- 4 Conclusions
 - Concluding Remarks

Simulation Experimental Results

Conclusions

Simulated Multiuser OFDM System

Simulation parameters of the multi-user OFDM system

Encoder	Туре	RSC
	Code rate	1/2
	Constraint length	3
	Polynomial	$(g_0,g_1)=(7,5)$
Channel Number of paths <i>L_{cir}</i>		4
	Path delays	{0,1,2,3}
	Average path gains	{0, -5, -10, -15} (dB)
	Taps: frame to frame	Complex white Gaussian
	Taps: within frame	fading rate $F_D = 10^{-7}$
System	MSs U	4
	Receiver antennas Q	3
	Modulation	16-QAM
	Subcarriers K	64
	Cyclic prefix K _{cp}	16

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

EA Algorithmic Parameters

Algorithmic parameters for EA assisted joint CE and MUD-decoder

CE	Parameter	Value	MUD	Parameter	Value
CGA	Population size Ps	100	DBGA	Population size Ps	100
	Selection ratio rs	0.5		Selection ratio rs	0.5
	Mutation parameter γ	0.01		Mutation probabi. Mb	0.15
	Mutation probabi. Mb	0.2			
CRWBS	Population size Ps	100	DBRWBS	Population size Ps	100
	Mutation parameter γ	0.001		Mutation probabi. Mb	0.5
	WBS T _{wbs}	40		WBS T _{wbs}	40
CPSO	Population size Ps	100	DBPSO	Population size Ps	100
	Cognition learning c ₁	2		Cognition learning c ₁	0.1
	Social learning c2	2		Social learning c2	0.3
CDEA	Population size Ps	100	DBDEA	Population size Ps	100
	Greedy factor p	0.1		Greedy factor p	0.7
	Adaptive factor c	0.1		Adaptive factor c	0.8

Simulation Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Joint Channel Estimation and Turbo Receiver
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD
- 3 Simulation Experimental Results
 - Simulation Settings
 - Efficiency and Reliability
 - Performance Evaluation
 - 4 Conclusions
 - Concluding Remarks

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Evaluating Metrics

- CEA-based CE: given perfect data, and no channel noise ($N_{\rm o} = 0$)
- Successful run: achieve target $J_{ce}(\widehat{\mathbf{h}}_{q,G_{\max}^{i},\text{best}}) < 10^{-4}$ within limit of CF-evaluations: $\overline{N}_{CF-EVs}^{\lim} = P_{s} \cdot G_{\max}^{\lim} = 100 \times 1000$
- Evaluate statistics:

$$N_{\text{fai}} = N_{\text{fai}} + 1; N_{CF-EVs}^{\text{ran}} = N_{CF-EVs}^{\text{ran}} + P_s$$

end if

end for

Average number of CF evaluations per run

$$\overline{\textit{N}}_{\textit{CF-EVs}}^{\text{tot}} = \left(\textit{N}_{\textit{CF-EVs}}^{\text{suc}} + \textit{N}_{\textit{CF-EVs}}^{\text{fai}}\right) / \textit{N}_{\text{tot}}$$

Average number of CF evaluations per successful run

$$\overline{\textit{N}}_{\textit{CF}-\textit{EVs}}^{\rm suc} = \textit{N}_{\textit{CF}-\textit{EVs}}^{\rm suc} / \textit{N}_{\rm suc}$$

◆□> < □> < □> < □> < □> < □</p>

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Evaluating Metrics (continue)

• Efficiency is quantified by normalised average number of CF evaluations per run

$$\overline{R}_{CF-EVs}^{\text{tot}} = \overline{N}_{CF-EVs}^{\text{tot}} / \overline{N}_{CF-EVs}^{\text{lim}}$$

or normalised average number of CF evaluations per successful run

$$\overline{R}_{CF-EVs}^{\rm suc} = \overline{N}_{CF-EVs}^{\rm suc} / \overline{N}_{CF-EVs}^{\rm lim}$$

Smaller R^{tot}_{CF-EVs} or R^{suc}_{CF-EVs}, more efficient CEA-CE
 Reliability of CEA aided channel estimator is measured by failure ratio

$$R_{\rm fai} = N_{\rm fai}/N_{\rm tot}$$

• Similar procedure evaluates efficiency and reliability of DBEA-based MUD, by setting $G_{\text{max}}^{\text{lim}} = 500$ and $\overline{N}_{CF-EVs}^{\text{lim}} = M^U = 16^4$

• Given perfect CSI, no turbo iterations ($l_{ite} = 1$), and a successful detection run:

 $\mathsf{BER} \to \mathsf{0} \text{ for } G^{\mathrm{run}}_{\mathrm{max}} \leq G^{\mathrm{lim}}_{\mathrm{max}}$

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Efficiency and Reliability

(a) Histograms of efficiency and reliability measures, in terms of $\overline{R}_{CF-EVs}^{tot}$, $\overline{R}_{CF-EVs}^{suc}$ and R_{fai} , for four CEA assisted CE schemes

CDEA-CE is best, CRWBS-CE close second, and CGA-CE worst

(b) Histograms of efficiency and reliability measures, in terms of R^{tot}_{CF-EVs}, R^{suc}_{CF-EVs} and R_{fai}, for four DBEA assisted MUDs DBGA-MUD is best, DBDEA-MUD close second, and DBPSO-MUD worst

Simulation Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Joint Channel Estimation and Turbo Receive
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD

③ Simulation Experimental Results

- Simulation Settings
- Efficiency and Reliability
- Performance Evaluation
- Conclusions
 - Concluding Remarks

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Performance

- (a) CEMSE as function of channel SNR for four EA assisted iterative CE and turbo MUD-decoder schemes
- (b) BER as function of channel SNR for four EA assisted iterative CE and turbo MUD-decoder schemes
 - $l_{\text{ite}} = 3$, $l_{\text{ce}} = 5$, number of CF evaluations for EA aided CE set to $N_{CF-EV_S}^{oe} = 20000$ ($G_{\text{max}} = 200$), and number of CF evaluations for EA aided MUD-decoder set to $N_{CF-EV_S}^{out} = 10000$ ($G_{\text{max}} = 100$)

GA based and PSO based schemes do not converge

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Performance (continue)

- (a) CE MSE as function of channel SNR for four EA assisted iterative CE and turbo MUD-decoder schemes
- (b) BER as function of channel SNR for four EA assisted iterative CE and turbo MUD-decoder schemes
 - $l_{\text{ite}} = 3$, $l_{\text{ce}} = 5$, number of CF evaluations for EA aided CE set to $N_{CF-EVs}^{ce} = 40000$ ($G_{\text{max}} = 400$), and number of CF evaluations for EA aided MUD-decoder set to $N_{CF-EVs}^{mud} = 20000$ ($G_{\text{max}} = 200$)
 - All four schemes converge to optimal solution

Joint Channel Estimation and Turbo Receiver

Simulation Experimental Results

Conclusions

Complexity Comparison

Scheme	Operation	$C_{ m MUD}^{EA}/C_{ m MUD}^{ML}$	$C_{ m turbo}^{EA}/C_{ m turbo}^{ML}$	$C_{\rm joint}^{EA}/C_{\rm turbo}^{ML}$
GA aided joint CE and	multiplications	0.10%	5.69%	62.24%
turbo MUD/decoder	additions	0.10%	7.45%	91.41%
RWBS aided joint CE and	multiplications	0.10%	3.00%	31.27%
turbo MUD/decoder	additions	0.10%	3.88%	45.86%
PSO aided joint CE and	multiplications	0.10%	5.69%	62.24%
turbo MUD/decoder	additions	0.10%	7.45%	91.41%
DE aided joint CE and	multiplications	0.10%	3.00%	31.27%
turbo MUD/decoder	additions	0.10%	3.88%	45.86%

- C^{ML}_{MUD}: complexity of ML MUD given CSI
- C^{EA}_{MUD}: complexity of discrete-binary EA based MUD given CSI
- C^{ML}_{turbo}: complexity of turbo ML MUD-decoder given CSI
- C^{EA}_{turbo}: complexity of discrete-binary EA based turbo MUD-decoder given CSI
- C^{EA}_{joint}: complexity of EA assisted joint CE and turbo MUD-decoder

Simulation Experimental Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- 2 Joint Channel Estimation and Turbo Receiver
 - System Optimisation Model
 - EA Aided Iterative CE and Turbo MUD
- Simulation Experimental Results
 - Simulation Settings
 - Efficiency and Reliability
 - Performance Evaluation
 - Conclusions
 - Concluding Remarks

Summary

- Joint channel estimation and turbo multiuser detection-decoding for OFDM communication offers a challenging application
 - to test capabilities of evolutionary algorithms
- Our EA aided joint CE and turbo MUD-decoder is capable of
 - approaching CRLB of optimal channel estimate, and BER of turbo ML MUD-decoder associated with perfect CSI
 - only imposing a fraction of complexity of idealised turbo ML MUD-decoder
- Our study has provided benchmark empirical results to support capabilities of EAs
 - for finding optimal or near optimal designs in challenging practical applications with affordable complexity
 - complimenting well current efforts to better understand EAs