Experiments

(ロ) (同) (三) (三) (三) (三) (○) (○)

Conclusions

Probability Density Function Estimation Based Over-Sampling for Imbalanced Two-Class Problems

Ming Gao^a, Xia Hong^a, Sheng Chen^{b,c}, Chris J. Harris^b

- ^a School of Systems Engineering, University of Reading, Reading RG6 6AY, UK ming.gao@pgr.reading.ac.uk x.hong@reading.ac.uk
- ^b Electronics and Computer Science, Faculty of Physical and Applied Sciences, University of Southampton, Southampton SO17 1BJ, UK sqc@ecs.soton.ac.uk cjh@ecs.soton.ac.uk
- ^c Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

IEEE World Congress on Computational Intelligence Brisbane Australia, June 10-15, 2012

Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

Motivations and Solutions

2 PDF Estimation Based Over-sampling

- Kernel Density Estimation
- Over-sampling Procedure
- Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results

4 Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Motivations and Solutions
- PDF Estimation Based Over-sampling
 - Kernel Density Estimation
 - Over-sampling Procedure
 - Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results

4 Conclusions

Background

- Highly imbalanced two-class classification problems widely occur in life-threatening or safety critical applications
- Techniques for imbalanced problems can be divided into:
 - Imbalanced learning algorithms:

Internally modify existing algorithms, without artificially altering original imbalanced data

2 Resampling methods:

Externally operate on original imbalanced data set to re-balance data for conventional classifier

- Resampling methods can be categorised into:
 - Under-sampling: which tends to be ideal when imbalance degree is not very severe
 - Over-sampling: which becomes necessary if imbalance degree is high

Our Approach

• What would be ideal over-sampling:

Draw **synthetic** data according to **same** probability distribution which produces **observed** positive-class data samples

- Our probability density function estimation based over-sampling
 - Construct Parzen window or kernel density estimation from observed positive-class data samples
 - Generate synthetic data samples according to estimated positive-class probability density function
 - Apply our tunable radial basis function classifier based on leave-one-out misclassification rate to rebalanced data
- Ready-made PW estimator is low complexity in this application, as minority-class by nature is small size
- Particle swarm optimisation aided OFR for constructing RBF classifier based on LOO error rate is a state-of-the-art

Introduction

PDF Estimation Based Over-sampling

Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

Outline

Introduction

Motivations and Solutions

2 PDF Estimation Based Over-sampling

Kernel Density Estimation

- Over-sampling Procedure
- Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results
- 4 Conclusions
 - Concluding Remarks

Experiments

Conclusions

Problem Statement

• Imbalanced two-class data set $D_N = \{\mathbf{x}_k, \mathbf{y}_k\}_{k=1}^N$

$$D_N = D_{N_+} \bigcup D_{N_-} = \{ \boldsymbol{x}_i, y_i = +1 \}_{i=1}^{N_+} \bigcup \{ \boldsymbol{x}_i, y_i = -1 \}_{i=1}^{N_-}$$

1 $y_k \in \{\pm 1\}$: class label for feature vector $\mathbf{x}_k \in \mathbb{R}^m$

2 \mathbf{x}_k are i.i.d. drawn from unknown underlying PDF

3)
$$\mathit{N}=\mathit{N}_{+}+\mathit{N}_{-},$$
 and $\mathit{N}_{+}\ll \mathit{N}_{-}$

• Kernel density estimator $\hat{p}(\mathbf{x})$ for $p(\mathbf{x})$ is constructed based on **positive-class** samples $D_{N_i} = \{\mathbf{x}_i, v_i = +1\}_{i=1}^{N_i}$

$$\hat{p}(\boldsymbol{x}) = \frac{(\det \boldsymbol{S})^{-1/2}}{N_{+}} \sum_{i=1}^{N_{+}} \Phi_{\sigma} \left(\boldsymbol{S}^{-1/2} (\boldsymbol{x} - \boldsymbol{x}_{i}) \right)$$

Kernel:

$$\Phi_{\sigma}\left(\boldsymbol{S}^{-1/2}(\boldsymbol{x}-\boldsymbol{x}_{i})\right) = \frac{\sigma^{-m}}{(2\pi)^{m/2}}e^{-\frac{1}{2}\sigma^{-2}(\boldsymbol{x}-\boldsymbol{x}_{i})^{\mathrm{T}}\boldsymbol{S}^{-1}(\boldsymbol{x}-\boldsymbol{x}_{i})}$$

- S: covariance matrix of positive class
- \odot σ : **smoothing** parameter

Introduction

PDF Estimation Based Over-sampling

Experiments

Conclusions

Kernel Parameter Estimate

Unbiased estimate of positive-class covariance matrix is

$$oldsymbol{S} = rac{1}{N_+ - 1} \sum_{i=1}^{N_+} (oldsymbol{x}_i - oldsymbol{ar{x}})^{\mathrm{T}}$$

with mean vector of positive class $\bar{\pmb{x}} = \frac{1}{N_+} \sum_{i=1}^{N_+} \pmb{x}_i$

Smoothing parameter by grid search to minimise score function

$$M(\sigma) = N_+^{-2} \sum_i \sum_j \Phi_\sigma^* \left(\mathbf{S}^{-1/2} (\mathbf{x}_j - \mathbf{x}_i) \right) + 2N_+^{-1} \Phi_\sigma(\mathbf{0})$$

with

$$\Phi_{\sigma}^{*} \left(\mathbf{S}^{-1/2}(\mathbf{x}_{j} - \mathbf{x}_{i}) \right) \approx \Phi_{\sigma}^{(2)} \left(\mathbf{S}^{-1/2}(\mathbf{x}_{j} - \mathbf{x}_{i}) \right) - 2\Phi_{\sigma} \left(\mathbf{S}^{-1/2}(\mathbf{x}_{j} - \mathbf{x}_{i}) \right)$$

$$\Phi_{\sigma}^{(2)} \left(\mathbf{S}^{-1/2}(\mathbf{x}_{j} - \mathbf{x}_{i}) \right) = \frac{(\sqrt{2}\sigma)^{-m}}{(2\pi)^{m/2}} e^{-\frac{1}{2}(\sqrt{2}\sigma)^{-2}(\mathbf{x}_{j} - \mathbf{x}_{i})^{\mathrm{T}}} \mathbf{S}^{-1}(\mathbf{x}_{j} - \mathbf{x}_{i})$$

• $M(\sigma)$ is based on mean integrated square error measure

Introduction

PDF Estimation Based Over-sampling

Experiments

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

Motivations and Solutions

2 PDF Estimation Based Over-sampling

- Kernel Density Estimation
- Over-sampling Procedure
- Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results

4 Conclusions

Experiments

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Draw Synthetic Samples

- Over-sampling positive class by drawing synthetic data samples according to PDF estimate p̂(x)
- Procedure for generating a synthetic sample
 - 1) Based on discrete uniform distribution, randomly draw a data sample, \mathbf{x}_o , from positive-class data set D_{N_+}
 - 2) Generate a synthetic data sample, \boldsymbol{x}_n , using Gaussian distribution with mean \boldsymbol{x}_o and covariance matrix $\sigma^2 \boldsymbol{S}$

$$\boldsymbol{x}_n = \boldsymbol{x}_o + \sigma \boldsymbol{R} \cdot \boldsymbol{randn}()$$

- *R*: upper triangular matrix that is Cholesky decomposition of *S*
- *randn*(): pseudorandom vector drawn from zero-mean normal distribution with covariance matrix *I*_m
- Repeat **Procedure** $r \cdot N_+$ times, given oversampling rate r

Experiments

Example (PDF estimate)

- (a) Imbalanced data set: x denoting positive-class instance and
 o negative-class instance
 - $N_{+} = 10$ positive-class samples: mean [2 2]^T and covariance I_{2}
 - $N_{-} = 100$ negative-class samples: mean [0 0]^T and covariance I_2
- (b) Constructed PDF kernel of each positive-class instance

• Optimal smoothing parameter $\sigma = 1.25$ and covariance matrix $\mathbf{S} \approx \mathbf{I}_2$

(c) Estimated density distribution of positive class

Introduction 000 PDF Estimation Based Over-sampling

Experiments

Example (over-sampling)

Over-sampling rate: r = 100%, ideal **decision boundary**: x + y - 2 = 0

- (a) Proposed PDF estimate based over-sampling: over-sampled positive-class data set expands along direction of ideal decision boundary
- (b) Synthetic minority over-sampling technique (SMOTE): over-sampled data set is confined in region defined by original positive-class instances

◆□▶ ◆舂▶ ★吾▶ ★吾▶ 三吾 - わんび

Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

Outline

Introduction

Motivations and Solutions

2 PDF Estimation Based Over-sampling

- Kernel Density Estimation
- Over-sampling Procedure
- Tunable RBF Classifier Construction

3) Experiments

- Experimental Setup
- Experimental Results

4 Conclusions

Introduction 000 PDF Estimation Based Over-sampling

Experiments

Conclusions

Tunable RBF Classifier

 Construct radial basis function classifier from oversampled training data, still denoted as D_N = {x_k, y_k}^N_{k=1}

$$\hat{y}_k^{(M)} = \sum_{i=1}^M w_i g_i(\boldsymbol{x}_k) = \boldsymbol{g}_M^{\mathrm{T}}(k) \boldsymbol{w}_M$$
 and $\tilde{y}_k^{(M)} = \mathrm{sgn}(\hat{y}_k^{(M)})$

2 Gaussian kernel adopted: $g_i(\mathbf{x}) = e^{-(\mathbf{x}-\mu_i)^T \mathbf{\Sigma}_i^{-1}(\mathbf{x}-\mu_i)}$

- **3** $\mu_i \in \mathbb{R}^m$: *i*th RBF kernel **center vector**
- $\Sigma_i = \text{diag}\{\sigma_{i,1}^2, \sigma_{i,2}^2, \cdots, \sigma_{i,m}^2\}$: *i*th covariance matrix

• Regression model on training data D_N

$$oldsymbol{y} = oldsymbol{G}_Moldsymbol{w}_M + arepsilon^{(M)}$$

• $\varepsilon^{(M)} = [\varepsilon_1^{(M)} \cdots \varepsilon_N^{(M)}]^T$ with error $\varepsilon_k^{(M)} = y_k - \hat{y}_k^{(M)}$ • $G_M = [g_1 \ g_2 \cdots g_M]$: $N \times M$ regression matrix • $w_M = [w_1 \cdots w_M]^T$: classifier's weight vector

Introd	ucti	on

Experiments

Orthogonal Decomposition

• Orthogonal decomposition of regression matrix $G_M = P_M A_M$

$$\mathbf{A}_{M} = \begin{bmatrix} 1 & a_{1,2} & \cdots & a_{1,M} \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{M-1,M} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

 $\boldsymbol{P}_{M} = [\boldsymbol{p}_{1} \cdots \boldsymbol{p}_{M}]$ with orthogonal columns: $\boldsymbol{p}_{i}^{\mathrm{T}} \boldsymbol{p}_{j} = 0$ for $i \neq j$ • Equivalent regression model

$$oldsymbol{y} = oldsymbol{G}_M oldsymbol{w}_M + arepsilon^{(M)} \Leftrightarrow oldsymbol{y} = oldsymbol{P}_M oldsymbol{ heta}_M + arepsilon^{(M)}$$

$$\boldsymbol{\theta}_{M} = \begin{bmatrix} \theta_{1} \cdots \theta_{M} \end{bmatrix}^{\mathrm{T}}$$
 satisfies $\boldsymbol{\theta}_{M} = \boldsymbol{A}_{M} \boldsymbol{w}_{M}$

- After *n*th stage of orthogonal forward selection, *G_n* = [*g*₁ ··· *g_n*] is built with corresponding *P_n* = [*p*₁ ··· *p_n*] and *A_n*
 - *k*th row of \boldsymbol{P}_n is denoted as $\boldsymbol{p}^{\mathrm{T}}(k) = [p_1(k) \cdots p_n(k)]$

Introd	ucti	on

Experiments

Conclusions

OFS-LOO

Leave-one-out misclassification rate

$$J_{\text{LOO}}^{(n)} = \frac{1}{N} \sum_{k=1}^{N} \mathcal{I}_d(\boldsymbol{s}_k^{(n,-k)})$$

Indication function: $\mathcal{I}_d(s) = 1$ if $s \leq 0$ and $\mathcal{I}_d(s) = 0$ if s > 0

• LOO signed decision variable $s_{k}^{(n,-k)} = y_{k} \hat{y}_{k}^{(n,-k)} = \psi_{k}^{(n)} / \eta_{k}^{(n)}$ with recursions

$$\psi_{k}^{(n)} = \psi_{k}^{(n-1)} + y_{k}\theta_{n}p_{n}(k) - p_{n}^{2}(k)/(\boldsymbol{p}_{n}^{\mathrm{T}}\boldsymbol{p}_{n} + \lambda)$$
$$\eta_{k}^{(n)} = \eta_{k}^{(n-1)} - p_{n}^{2}(k)/(\boldsymbol{p}_{n}^{\mathrm{T}}\boldsymbol{p}_{n} + \lambda)$$

Determine nth RBF centre vector and covariance matrix

$$\{\boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n\}_{\mathrm{opt}} = rg\min_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} J_{\mathrm{LOO}}^{(n)}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

Particle swarm optimisation solves this optimisation OFS procedure automatically terminates at size M when

Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

Outline

Introduction

Motivations and Solutions

PDF Estimation Based Over-sampling

- Kernel Density Estimation
- Over-sampling Procedure
- Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results

Conclusions

Data Sets

Data set	m	N +	N_	ID	n-fold CV	σ
Pima Diabetes	7	268	500	1.87	10	0.47 ± 0.03
Haberman's survival	2	81	225	2.78	3	0.52 ± 0.03
Glass(6)	8	29	185	6.38	3	0.42 ± 0.06
ADI	8	90	700	7.78	8	0.56 ± 0.07
Satimage(4)	35	626	5809	9.28	10	0.90 ± 0.00
Yeast(5)	7	44	1440	32.73	3	0.10 ± 0.00

- Glass, Satimage and Yeast turned into two-class problems, using class with class label in brackets as positive class, and other classes altogether as negative class
- 2 Imbalanced degree: $ID = N_-/N_+$
- 3 Each dimension of feature vector $\boldsymbol{x}_k = [x_{k,1} \cdots x_{k,m}]^{\mathrm{T}}$ is normalised using

$$\bar{x}_{k,i} = \frac{x_{k,i} - x_{\min,i}}{x_{\max,i} - x_{\min,i}}, \ 1 \le k \le N, 1 \le i \le m$$

with $x_{\min,i} = \min_{1 \le k \le N} x_{k,i}$ and $x_{\max,i} = \max_{1 \le k \le N} x_{k,i}$

Mean and standard deviation of smoothing parameter σ, determined by PW estimator for positive class, averaged over *n*-fold CV, are listed in last column

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Benchmark Algorithms

- PFDOS+PSO-OFS: proposed PDF estimation based oversampling with PSO-OFS based tunable RBF classifier
- SMOTE+PSO-OFS: SMOTE based oversampling with same PSO-OFS based tunable RBF classifier

M. Gao, X. Hong, S. Chen, and C. J. Harris, "A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems," *Neurocomputing*, 74(17), 3456–3466, 2011

LOO-AUC+OFS: OFS based on LOO-AUC criterion for RBF classifier with weighted least square cost function

X. Hong, S. Chen, and C. J. Harris, "A kernel-based two-class classifier for imbalanced data sets," *IEEE Trans. Neural Networks*, 18(1), 28–41, 2007

- κ-means+WLSE: κ-means clustering for RBF centres and same weighted least square cost function for RBF weights
 - Algorithms 1 and 2: oversampling rate r; Algorithms 3 and 4: weighting ρ

Experiments

Performance Metrics

AUC: area under receiver operating characteristics (ROC) curve
 G-mean:

$$G-mean = \sqrt{\mathsf{TP\%} \times (\mathsf{1} - \mathsf{FP\%})}$$

True positive rate

$$\mathsf{TP}\% = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

False positive rate

$$\mathsf{FP\%} = \frac{\mathsf{FP}}{\mathsf{FP} + \mathsf{TN}}$$

Precision

$$\mathsf{Pr} = \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

F-measure:

$$F\text{-measure} = \frac{2 \times Pr \times TP\%}{Pr + TP\%}$$

Experiments

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions

Outline

Introduction

Motivations and Solutions

PDF Estimation Based Over-sampling

- Kernel Density Estimation
- Over-sampling Procedure
- Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results

Conclusions

Introduction

Experiments 00000000000 Conclusions

ROC Curves

Mean curves of (FP rate, TP rate) pairs averaged over n-fold CV, obtained for different over-sampling rates r of SMOTE+PSO-OFS and PDFOS+PSO-OFS or different weights p of LOO-AUC+OFS and p-means+WLSE

(a) Pima Indians diabetes, (b) Haberman's survival, (c) Glass, (d) ADI, (e) Satimage, and (f) Yeast

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

AUC Metric

• Comparison of mean and standard deviation of AUCs

Data set	LOO-AUC+OFS	κ -means+WLSE	SMOTE+PSO-OFS	PDFOS+PSO-OFS
Pima Diabetes	0.77 ± 0.06	0.80 ± 0.06	0.82 ± 0.06	$\textbf{0.84} \pm \textbf{0.06}$
Haberman's survival	0.68 ± 0.06	0.62 ± 0.06	0.71 ± 0.06	$\textbf{0.74} \pm \textbf{0.06}$
Glass(6)	0.94 ± 0.05	0.93 ± 0.06	0.92 ± 0.06	$\textbf{0.97} \pm \textbf{0.04}$
ADI	0.82 ± 0.03	0.82 ± 0.03	0.82 ± 0.03	$\textbf{0.83} \pm \textbf{0.03}$
Satimage(4)	0.88 ± 0.03	0.88 ± 0.03	$\textbf{0.91} \pm \textbf{0.03}$	$\textbf{0.91} \pm \textbf{0.03}$
Yeast(5)	0.93 ± 0.04	$\textbf{0.98} \pm \textbf{0.02}$	0.97 ± 0.03	$\textbf{0.98} \pm \textbf{0.02}$

Introduction 000

Experiments

Conclusions

G-Means

G-mean metrics with respect to over-sampling rate r of SMOTE+PSO-OFS and PDFOS+PSO-OFS or weight ρ of LOO-AUC+OFS and κ -means+WLSE, averaged over n-fold CV

(a) Pima Indians diabetes, (b) Haberman's survival, (c) Glass, (d) ADI, (e) Satimage, and (f) Yeast

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

Best G-Means

• Comparison of mean and standard deviation of best G-means

Data set	LOO-AUC+OFS	k-means+WLSE	SMOTE+PSO-OFS	PDFOS+PSO-OFS
	(ho)	(ho)	(<i>r</i>)	(<i>r</i>)
Pima Diabetes	0.74 ± 0.04	0.75 ± 0.06	0.76 ± 0.05	$\textbf{0.78} \pm \textbf{0.05}$
	(2.0)	(2.5)	(100%)	(100%)
Haberman's survival	0.67 ± 0.05	0.57 ± 0.07	$\textbf{0.69} \pm \textbf{0.08}$	$\textbf{0.69} \pm \textbf{0.02}$
	(3.0)	(4.0)	(200%)	(400%)
Glass(6)	0.93 ± 0.03	0.95 ± 0.02	0.95 ± 0.06	$\textbf{0.97} \pm \textbf{0.04}$
	(3.0, 6.0)	(8.0)	(600%)	(600%)
ADI	0.76 ± 0.01	$\textbf{0.77} \pm \textbf{0.02}$	0.76 ± 0.02	$\textbf{0.77} \pm \textbf{0.01}$
	(15.0)	(10.0)	(1000%, 1500%)	(800%, 1000%)
Satimage(4)	0.85 ± 0.03	0.84 ± 0.02	$\textbf{0.86} \pm \textbf{0.01}$	$\textbf{0.86} \pm \textbf{0.02}$
	(8.0)	(10.0)	(1000%)	(600%)
Yeast(5)	0.92 ± 0.09	0.97 ± 0.01	$\textbf{0.98} \pm \textbf{0.00}$	$\textbf{0.98} \pm \textbf{0.01}$
	(27.0, 30.0)	(18.0	(2700%)	(900%)

Experiments

Conclusions

F-Measures

F-Measure metrics with respect to over-sampling rate r of SMOTE+PSO-OFS and PDFOS+PSO-OFS or weight ρ of LOO-AUC+OFS and κ -means+WLSE, averaged over n-fold CV

(a) Pima Indians diabetes, (b) Haberman's survival, (c) Glass, (d) ADI, (e) Satimage, and (f) Yeast

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Best F-Measures

Comparison of mean and standard deviation of best F-measures

Data set	LOO-AUC+OFS	k-means+WLSE	SMOTE+PSO-OFS	PDFOS+PSO-OFS
	(ho)	(ho)	(<i>r</i>)	(<i>r</i>)
Pima Diabetes	0.67 ± 0.05	0.68 ± 0.06	0.70 ± 0.04	$\textbf{0.71} \pm \textbf{0.06}$
	(2.0)	(2.5)	(100%)	(100%)
Haberman's survival	0.52 ± 0.06	0.44 ± 0.11	$\textbf{0.55} \pm \textbf{0.09}$	0.54 ± 0.03
	(3.0)	(4.0)	(200%)	(200%, 400%)
Glass(6)	0.87 ± 0.03	0.89 ± 0.02	0.92 ± 0.07	$\textbf{0.95} \pm \textbf{0.01}$
	(3.0)	(8.0)	(900%)	(100%, 200%)
ADI	0.42 ± 0.01	0.42 ± 0.02	0.43 ± 0.02	$\textbf{0.45} \pm \textbf{0.03}$
	(10.0)	(5.0, 10.0)	(300%)	(300%)
Satimage(4)	$\textbf{0.58} \pm \textbf{0.03}$	0.55 ± 0.05	$\textbf{0.58} \pm \textbf{0.06}$	0.57 ± 0.05
	(3.0)	(2.0)	(200%)	(200%)
Yeast(5)	0.59 ± 0.08	0.61 ± 0.03	0.59 ± 0.03	$\textbf{0.63} \pm \textbf{0.10}$
	(9.0, 12.0)	(3.0)	(600%)	(600%)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Outline

Introduction

Motivations and Solutions

PDF Estimation Based Over-sampling

- Kernel Density Estimation
- Over-sampling Procedure
- Tunable RBF Classifier Construction

3 Experiments

- Experimental Setup
- Experimental Results

Conclusions

Experiments

Summary

- Our over-sampling method re-balances skewed class distribution according to original statistical information in observed data
 - Parzen window density estimator using observed positive class data samples
 - Oraw synthetic samples according to estimated PDF to re-balance data
- Construct tunable RBF classifier based on rebalanced data set using efficient PSO aided OFS procedure
 - State-of-the-art for balanced classification problems
- Experimental results demonstrate that our approach offers a very competitive technique
 - Compared favourably with many existing state-of-the-art methods for dealing with highly imbalanced problems