
Pattern Recognition 135 (2023) 109112 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

A label distribution manifold learning algorithm 

Chao Tan 

a , Sheng Chen 

b , d , ∗, Xin Geng 

c , Genlin Ji a 

a School of Computer Science and Technology, Nanjing Normal University, Nanjing 210023, China 
b School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK 
c School of Computer Science and Engineering, Southeast University, Nanjing 210096, China 
d Department of Computer Science and Technology, Ocean University of China, Qingdao, China 

a r t i c l e i n f o 

Article history: 

Received 25 August 2020 

Revised 3 June 2022 

Accepted 14 October 2022 

Available online 19 October 2022 

Keywords: 

Multi-label learning 

Label distribution learning 

Manifold learning 

Dimension reduction 

Linear regression 

a b s t r a c t 

In this paper, we propose a novel label distribution manifold learning (LDML) method for solving the mul- 

tilabel distribution learning problem. First, using manifold learning, we extract the accurate and reduced- 

dimension features of the training data. Second, we estimate the unknown label distributions associated 

with the extracted reduced-dimension features based on multi-output kernel regression. Third, we use 

the extracted reduced-dimension features and their associated estimated label distributions to form an 

enhanced maximum entropy model, which enables us to accurately and efficiently estimate the unknown 

true label distributions for the training data. We refer to this algorithm as the LDML. We also propose to 

apply the tangent space alignment regression in the second stage, and the resulting algorithm is called 

the LDML-R. The LDML-R has better label distribution learning performance than the LDML but imposes 

higher complexity than the latter. We evaluate the proposed LDML and LDML-R algorithms on 15 real- 

world data sets with ground-truth label distributions, and the experimental results obtained show that 

our method has advantages in terms of learning accuracy compared to the latest multi-label distribu- 

tion learning approaches. We also use another 10 real-world multi-class data sets, which do not have the 

ground-truth label distributions, to demonstrate the superior multilabel classification performance of our 

LDML-R algorithm over the existing state-of-the-art multi-label classification algorithms. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Multi-label learning (MLL) [1] handles the case where one in- 

tance corresponds to multiple labels, with goal of learning a map- 

ing from examples to related label sets. MLL is widely used 

or classification, recognition and retrieval in many areas, such as 

ulti-label text classification [2] , aircraft heading changes to re- 

olve conflicts [3] , chest radiography classification [4] , multi-label 

mage classification [5] , and multi-label clinical document classi- 

cation [6] , etc. The data in these applications are often rich in 

emantics, and hence suitable for modeling using MLL. Traditional 

ethods of MLL generally adopt the uniform label distribution as- 

umption, i.e., the importance of each related label to the example 

s considered equal. However, for many real-world applications, the 

ulti labels for a sample do not have the same importance to the 
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ample. Rather some labels have primary importance to the sam- 

le, while the others have secondary importance. 

Label distribution learning (LDL) [7] is a related machine learn- 

ng paradigm in which each instance is annotated by a label dis- 

ribution covering the importance of its labels. The emergence of 

DL makes it possible to learn richer semantics from data other 

han multiple labels. Applications of LDL include video parsing [8] , 

cene classification [9] , and indoor crowd counting [10] . LDL can 

haracterize the relative importance of the multiple labels related 

o the same example more accurately [11] . However, in real-world 

ulti-label applications, the training data are usually labeled by 

ultiple logical labels (uniform label distribution), and the true la- 

el distribution information is unavailable. Nevertheless, the super- 

ised information in these data essentially follows some kind of la- 

el distribution, which is often implicitly contained in the training 

amples. If this label distribution can be recovered by a suitable 

ethod, the advantages of mining more semantic information by 

LL can be realized. 

The process of promoting the original logical label to the label 

istribution is called the label enhancement (LE) in LDL, and the 

https://doi.org/10.1016/j.patcog.2022.109112
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109112&domain=pdf
mailto:tutu_tanchao@163.com
mailto:sqc@ecs.soton.ac.uk
mailto:xgeng@seu.edu.cn
mailto:glji@njnu.edu.cn
https://doi.org/10.1016/j.patcog.2022.109112


C. Tan, S. Chen, X. Geng et al. Pattern Recognition 135 (2023) 109112 

c  

L  

i

i

a

b

t

s

d

t

b

t

l

o

t

i

s

f

c

o

t

r

u

l

l

t

m

L

m

M

l

f

t

p

p

s

s

i

 

b

d

i

2

f

l

L

t

a

a

i

a

t

A

n

f

i

d

w

t

e

u

s

b

o

s

t

a

m

l

(

c

t

[

m

m

[  

t

k

m

3

3

a  

q

g  

d  

[  

a

a

l

p

k

 

s

a

t

t

d

oncept of LE was proposed by Geng et al. [11] . An application of

E to large-scale retrieval was given in Liu et al. [12] . However, it

s difficult to obtain the label distributions directly from the log- 

cal labels in the training set. To solve this problem, an effective 

pproach is to recover the label distributions from the logical la- 

els in the training set by utilizing the correlation between the 

opological information in the feature space and the labels. More 

pecifically, by mining the relevant information of the labels hid- 

en in the training samples to establish the relationship between 

he examples’ correlation and the labels’ correlation, the logical la- 

els of the examples are enhanced to the label distributions. Af- 

er the label distributions are recovered, more effective supervised 

earning can be achieved by using the label distributions, instead 

f the logical labels. 

The label distributions cannot be obtained explicitly from the 

raining examples. In order to reconstruct the label manifold that 

s necessary for LDL, the key is the topology. According to the 

moothness assumption [13] , local topology can be shared between 

eature manifold and the labels. Moreover, examples or points 

lose to each other are more likely to share the same labels. Based 

n this smoothness property, in this paper, we propose a label dis- 

ribution manifold learning (LDML) approach with the two algo- 

ithms for multi-label distribution learning by reconstructing and 

tilizing the label manifold. With the expansion from the logical 

abel space onto the Euclidean label space, we can naturally uti- 

ize the smoothness property to transfer the local topology from 

he manifold space onto the label space. The feature vectors in the 

anifold space and the label vectors in the label space will guide 

DL. To our best knowledge, this is an earliest attempt to explore 

anifold in the label space for multi-label distribution learning. 

ore specifically, the proposed LDML method consists of the fol- 

owing three components. 

1. Manifold space enhanced feature extraction: With the nonlin- 

ear dimensionality reduction using the locally linear embedding 

manifold learning (LLEML) algorithm [14] , we extract accurate 

and reduced-dimension features in the feature manifold space 

construction. 

2. Regression to estimate the label distributions of the extracted 

features: The unknown label distributions associated with the 

extracted reduced-dimension features are estimated based on 

multi-output kernel regression. 

Alternatively, the local tangent space alignment (LTSA) 

[15] based regression can be adopted to learn the unknown 

label distributions associated with the extracted reduced- 

dimension features. 

3. Enhanced maximum entropy model based LDL: By substituting 

the full-dimensional data and their corresponding logical labels 

in the standard maximum entropy model with the reduced- 

dimension features extracted in step 1) and their associated en- 

riched label distribution estimates acquired in step 2), we form 

the enhanced maximum entropy model. A gradient-descent it- 

erative optimization is then performed to estimate the un- 

known true label distributions. 

The resulting algorithm by adopting regression in step 2 is re- 

erred to as the LDML, while the resulting algorithm by applying 

he LTSA regression in step 2 is called the LDML-R. Extensive ex- 

eriments show that our LDML approach significantly improve the 

erformance of multi-label distribution learning. Experimental re- 

ults also demonstrate that our method has better multi-label clas- 

ification performance compared with the latest multi-label learn- 

ng algorithms. 

The rest of this paper is organized as follows. In Section 2 , we

riefly introduce the related work. The proposed LDML approach is 

etailed in Section 3 . Extensive experimental results are reported 

n Section 4 , and our conclusions are offered in Section 5 . 
2 
. Related work 

LDL has been successfully applied to various problems, such as 

acial age estimation [7,16] , head pose estimation [17] and multi- 

abel ranking of natural scene images [18] . Formally, the goal of 

DL is to learn the conditional probability of the label vector condi- 

ioned on the input sample. According to Geng [16] , a well-known 

pproach for learning multi-label distributions is known as the 

lgorithm adaptation (AA) strategy, which adapts existing learn- 

ng algorithms to process label assignments directly. Two typical 

lgorithms based on this strategy are the AA with backpropaga- 

ion (AA-BP) and with k-nearest neighbor (AA-kNN) [16] . For the 

A-kNN, the average value of the label distributions of k nearest 

eighbors is calculated as the predicted label distribution, while 

or the AA-BP, the backpropagation (BP) algorithm is used to train- 

ng a single layer neural network with multiple outputs as the pre- 

icted label distribution. 

An alternative strategy is to adopt the maximum entropy model 

hich turns the problem of estimating the unknown label distribu- 

ions into the problem of estimating the label distributions’ param- 

ter vectors. Specifically, by substituting the logical labels for the 

nknown label distributions and using the full-dimensional input 

amples as the features in the maximum entropy model, the la- 

el distributions’ parameter vectors can be estimated via iterative 

ptimization procedures. The two representative algorithms of this 

trategy are the IIS-LLD and BFGS-LLD [16] , The difference between 

hese two algorithms is that the IIS-LLD is a gradient descent iter- 

tive method while the BFGS-LLD adopts a quasi-Newton iterative 

ethod. 

In addition, Geng and Hou [19] regard LDL as a regression prob- 

em and proposed the label distribution support vector regression 

LDSVR), which applies support vector regression (SVR) to pro- 

ess label assignment. Another well-known LDL algorithm is called 

he conditional probabilistic neural network (CPNN) [7] . Hou et al. 

13] proposed an LE algorithm based on manifold learning, and this 

ethod relies on the assumption that each data point can be opti- 

ally reconstructed by using a linear combination of its neighbors 

20] . In this paper, we use manifold in the label space to improve

he performance of multi-label distribution learning. To our best 

nowledge, this is the first attempt to explore label manifolds in 

ulti-label distribution learning. 

. The proposed algorithms 

.1. Problem description and maximum entropy model 

For the generic multi-label problem, let x ∈ R 

q be an instance, 

nd y= 

[
y 1 y 2 . . . y c 

]
T ∈{ 0 , 1 } c be its logical class label vector, where

 is the feature dimension and c is the number of classes. The de- 

ree to which the label y j , 1 ≤ j ≤ c, describes the example x is

efined by the conditional probability d 
y j 

x = Pr 
(
y j | x ), where d 

y j 

x ∈
0 , 1] , 1 ≤ j ≤ c, and 

∑ c 
j=1 d 

y j 

x =1 . It can be seen that for each ex-

mple, the descriptiveness of all the labels in the label set builds 

 data form similar to a probability distribution, hence the name 

abel distribution. This label distribution however is unknown. The 

rocess of learning the label distribution of a labeled example is 

nown as LDL. 

Given the labeled training data set 
{

x i , y i 
}

n 
i =1 

, where n is the

ample size, x i = 

[
x 1 

i 
x 2 

i 
. . . x 

q 
i 

]
T ∈R 

q and y i = 

[
y 1 

i 
y 2 

i 
. . . y c 

i 

]
T ∈{ 0 , 1 } c 

re the i sample and its associated logical label vector, respectively, 

he task of LDL is to learn the unknown underlying label distribu- 

ions 
{

d 
y 1 

i 
x i 

, d 
y 2 

i 
x i 

, . . . , d 
y c 

i 
x i 

}
n 
i =1 

, where 

 

y j 
i 

x i 
∈ [0 , 1] , 1 ≤ j ≤ c, and 

∑ c 

j=1 
d 

y j 
i 

x i 
=1 , 1 ≤ i ≤ n. (1) 
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n effective LDL approach is to express the estimate of d 
y 

j 
i 

x i 
in the 

orm of the parameterized conditional probability model 

̂ 

 

y j 
i 

x i 
= Pr 

(
y j 

i 
| x i ; w i, j 

)
, 1 ≤ j ≤ c, 1 ≤ i ≤ n, (2) 

here w i, j = 

[
w 

1 
i, j 

w 

2 
i, j 

. . . w 

q 
i, j 

]
T ∈R 

q is a parameter vector. Thus, 

earning the label distributions is turned into the problem of es- 

imating w i, j for every { x i , y j i } , 1 ≤ i ≤ n and 1 ≤ j ≤ c. 

A well-known parameterized conditional probability model is 

he maximum entropy model [7,16] , in which Pr 
(
y 

j 
i 
| x i ; w i, j 

)
takes 

he exponential form 

r 
(
y j 

i 
| x i ; w i, j 

)
= 

1 

Z i 
exp 

( 

q ∑ 

k =1 

w 

k 
i, j f k 

(
x i , y 

j 
i 

)) 

, (3) 

ith the normalization factor 

 i = 

c ∑ 

j=1 

exp 

( 

q ∑ 

k =1 

w 

k 
i, j f k 

(
x i , y 

j 
i 

)) 

, (4) 

here f k (x i , y 
j 
i 
) ∈ R is known as the k th feature function that re-

ies on both instance x i and label y 
j 
i 
, for 1 ≤ k ≤ q . The features

re further expressed as f k 
(
x i , y 

j 
i 

)
=y 

j 
i 
g k (x i ) , with g k (x i ) denoting

he class-independent k th feature function. This simplification al- 

ow (3) to be rewritten as 

r 
(
y j 

i 
| x i ; w i, j 

)
= 

1 

Z i 
exp 

( 

q ∑ 

k =1 

(
w 

k 
i, j · y j 

i 

)
g k 

(
x i 
)) 

. (5) 

ecognizing 
∑ c 

j=1 d 
y 

j 
i 

x i 
= 1 yields the target function for all the pa- 

ameter vectors w = 

{
w i, j , 1 ≤ j ≤ c, 1 ≤ i ≤ n 

}
: 

 (w) = 

n ∑ 

i =1 

c ∑ 

j=1 

d 
y j 

i 
x i 

ln P 
(
y j 

i 
| x i ; w i, j 

)
= 

n ∑ 

i =1 

c ∑ 

j=1 

d 
y j 

i 
x i 

q ∑ 

k =1 

(
w 

k 
i, j · y j 

i 

)
g k 

(
x i 
)

−
n ∑ 

i =1 

ln 

( c ∑ 

j=1 

exp 

( q ∑ 

k =1 

(
w 

k 
i, j · y j 

i 

)
g k 

(
x i 
)))

. (6) 

f all the true label distributions d 
y 

j 
i 

x i 
and the feature functions 

 k 

(
x i 

)
were available, the target function (6) could be optimized 

sing the improved iterative scaling (IIS) [21] . Specifically, the IIS 

nds the optimal parameters w by solving the nonlinear equa- 

ion associated with the lower bound of T (w + �w) − T (w) based

n an iterative procedure, such as the Gauss-Newton method. This 

s of course impractical, as d 
y 

j 
i 

x i 
are unknown and they are to be 

stimated. 

Since g k 
(
x i 

)
and in particular d 

y 
j 
i 

x i 
are unknown, a practical solu- 

ion is to construct an empirical target function by substituting the 

nknown true label distributions d 
y 

j 
i 

x i 
with the known logical labels 

 

j 
i 

as well as by substituting g k 
(
x i 

)
with x k 

i 
. That is, the following

mpirical target function is adopted 

 e (w) = 

n ∑ 

i =1 

c ∑ 

j=1 

y j 
i 

q ∑ 

k =1 

(
w 

k 
i, j · y j 

i 

)
x k i −

n ∑ 

i =1 

ln 

( c ∑ 

j=1 

exp 

( q ∑ 

k =1 

(
w 

k 
i, j · y j 

i 

)
x k i 

))
. 

(7) 

he IIS-LLD and BFGS-LLD [7,16] are in fact the iterative optimiza- 

ion algorithms that find the label distributions’ parameters w by 

olving the nonlinear equation associated with the lower bound 

f T e (w + �w) − T e (w) using gradient descent method and Gauss- 

ewton method, respectively. 

This maximum entropy model based approach has some draw- 

acks. First it does not calculate the features g (x ) , and using the
k i 

3 
 th element of x i as its k th feature is clearly heuristic. Furthermore,

he logical label y 
j 
i 

contains far less information than the associ- 

ted label distribution. These two substitutions or approximations 

nherently limit the accuracy of the empirical model (7) . Addition- 

lly, since the dimension q for many practical applications is very 

arge, the IIS-LLD and BFGS-LLD impose high computational cost. 

earching the solution to these problems motivate our work. 

.2. Manifold space construction for feature extraction 

We extract the class-independent features in the maximum en- 

ropy model (6) based on the LLEML algorithm [14] . According to 

he smoothness property [13] , the topology of the feature space 

an be transferred locally to a local label space. To maintain lo- 

ality, we rely on the property that each data point can be re- 

onstructed optimally using a linear combination of its neighbors. 

pecifically, a graph G = (V, E, �) is used to represent the topol- 

gy of the multilabel training data set, where V denotes the set 

f vertices composed of examples, E denotes the set of edges, and 

= 

[
ω i, j 

]
∈ R 

n ×n is the graph weight matrix with ω i, j representing 

he coefficient of the i th point reconstructed by the jth point. First, 

n the feature space, we need to use the local neighborhood infor- 

ation of each point to construct G, that is, any example x i can be

econstructed by the linear combination of its k nearest neighbors 

x i 1 , . . . , x i k 

}
. The reconstruction weight matrix � can be obtained 

y solving the optimization [14] 

in 

�
�(�) = 

n ∑ 

i =1 

∥∥∥x i −
n ∑ 

j=1 

ω i, j x j 

∥∥∥2 

, 

.t. w i, j = 0 if x j / ∈ { x i 1 , . . . , x i k } and 

∑ n 
j=1 ω i, j = 1 , 1 ≤ i ≤ n

(8) 

he optimization problem (8) has a closed-form solution [14] . 

In order to find the low-dimensional embedded coordinates G = 

g 1 . . . g n 
]

that can optimally maintain the weight matrix �, we 

efine the cost: 

(G) = 

n ∑ 

i =1 

∥∥∥g i −
n ∑ 

j=1 

ω i, j g j 

∥∥∥2 

, (9) 

here g i ∈R 

d with d < q . Since 
{

g i 
}

has the same local topology as

x i 
}

, any g i can be reconstructed by the linear combination of its k 

earest neighbors 
{

g i 1 , . . . , g i k 

}
. Given �, we extract G by minimiz- 

ng (9) . To make the optimization well posed and without changing 

he cost value, we constrain the d-dimensional embedded coordi- 

ates to be centered on the origin 

∑ n 
i =1 g i =0 d and to have unit 

ovariance matrix 1 
n 

∑ n 
i =1 g i g 

T 
i 
= I d , where 0 d is the d-dimensional 

ector whose elements are all zero and I d is the d × d identity 

atrix. Then the cost can be expressed in the following quadratic 

orm Roweis and Saul [14] 

(G) = 

∑ n 

i =1 

∑ n 

j=1 
m i, j g 

T 
i g j , (10) 

ith the symmetric, positive semi-definite and sparse matrix M = 

m i, j 

]
∈R 

n ×n given by 

 = 

(
I n − �

)
T 
(
I n − �

)
. (11) 

The solution of G is obtained by the decomposition of M [22] . 

he eigenvectors corresponding to the second to (d + 1) th smallest 

igenvalues of M constitute the d-dimensional embedded coordi- 

ates G, which minimizes the cost function (9) . Specifically, group- 

ng these d eigenvectors as the n × d matrix E M 

, then G =E 

T 
M 

. This

imension reduction algorithm maintains the local neighborhood 

tructure and restores the entire data set by stitching each neigh- 

orhood structure. The maintenance of the local structure infor- 

ation of high-dimensional data set is the notable feature of the 
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LEML algorithm [14] . The two algorithmic parameters or hyperpa- 

ameters are k and d. 

According to the smoothing property that the labels of ex- 

mples with similar features are also likely to be similar, the 

opology of the feature space can be transferred into the label 

pace, i.e., sharing the same local linear reconstruction of the d- 

imensional embedded coordinates G. Hence, we can use the d- 

imensional g i = 

[
g 1 

i 
. . . g d 

i 

]
T to replace the q -dimensional unknown 

eatures g(x i ) = 

[
g 1 (x i ) . . . g q (x i ) 

]
T in the maximum entropy model

6) . 

.3. Regression to estimate features’ label distributions 

Since g i is the low-dimensional feature vector of x i , it will 

hare the same logical label vector y i with x i . It can also be en-

isaged that there exists an underlying label distribution vector 

 g i = 

[
d 

y 1 
i 

g i 
. . . d 

y c 
i 

g i 

]
T associated with the feature vector g i . Clearly, 

 d g i } contain richer supervised information than the logical label 

ectors { y i } . Therefore, if we can obtain the unknown label distri- 

utions { d g i } , we can use them, instead of { y i } , in the maximum

ntropy model (6) . 

To estimate { d g i } is to construct a Euclidean label or label distri-

ution manifold, which can readily be reconstructed using the local 

opology from the feature manifold established in Section 3.2 and 

he known logical labels. Hence, we can represent { d g i } by the fol-

owing linear-in-the-parameter kernel regression model 

 

y j 
i 

g i 
= θT 

i, j ψ(x i ) + e i, j , 1 ≤ i ≤ n, 1 ≤ j ≤ c, (12)

here ψ(x i ) ∈ R 

d are the kernel feature vectors associated with the 

eatures g i , and θi, j ∈R 

d are the regression weight vectors. That is, 

e estimate d 
y 

j 
i 

g i 
with 

̂ 

 

y j 
i 

g i 
= θT 

i, j ψ(x i ) , (13) 

efine the n × n kernel matrix as Tan et al. [23] , Tan and Ji [24] 

 = (λmax I n − M) , (14) 

here the matrix M is given in (11) and λmax is the maximum 

igenvalue of M. The kernel feature matrix �= 

[
ψ (x 1 ) . . . ψ (x n ) 

]
re the eigenvectors corresponding to the largest d eigenvalues of 

[22] . 

To estimate �= 

{
θi, j , 1 ≤ i ≤ n, 1 ≤ j ≤ c 

}
, consider the stan-

ard SVR technique with the loss function 

 (�) = 

1 

2 

n ∑ 

i =1 

c ∑ 

j=1 

‖ θi, j ‖ 

2 + 

n ∑ 

i =1 

L 2 (r i ) , (15) 

here r i =‖ e i ‖ and e i = 

[
e i, 1 . . . e i,c 

]
T with 

 i, j = y j 
i 
− θT 

i, j ψ(x i ) , 1 ≤ j ≤ c, (16) 

hile the L 2 loss is given by 

 2 (r) = 

{
0 , r < ε, 

(r − ε) 2 , r ≥ ε. 
(17) 

fter obtaining � with the SVR, we arrive at the estimates of the 

abel distributions ̂ d 
y 

j 
i 

g i 
, 1 ≤ j ≤ c, 1 ≤ i ≤ n , associated with the fea-

ure vectors g i . 

.4. LTSA regression to estimate features’ label distributions 

As aforementioned, it can be visualized that there exists a set 

f the label distributions { d j 
i 
} c 

j=1 
, which contains more supervisory 

nformation than the logical label set { y j 
i 
} c 

j=1 
for g i . According to

he smooth assumption [25] , samples close to each other in the 
4 
eature space are likely to have the same labels. Let us determine 

 i as the k nearest neighbors for each x i . By transferring the close- 

ess in the feature manifold space to the closeness in the label 

anifold space, we can reconstruct the label manifold to align the 

educed-dimensional feature g i to the label space with c labels, 

hat is, to align the dimension k to c. This can be formulated as 

he following optimization 

in 

∥∥∥T i 

(
I k −

1 

k 
1 k 1 

T 
k 

)
− L i U i 

∥∥∥. (18) 

ere U i = Q 

T 
i 

X i 

(
I k − 1 

k 
1 k 1 

T 
k 

)
, 1 k is the k -dimensional vector whose 

lements are all 1, T i denotes the low-dimensional global coordi- 

ates with respect to the local geometry determined by the U i , and 

 i = T i 
(
I k − 1 

k 
1 k 1 

T 
k 

)
U 

† 
i 

, while Q i denotes the matrix formed by the 

igenvectors corresponding to the first c maximum eigenvalues of 

he neighborhood covariance matrix of point x i . Using the LTSA al- 

orithm [15] , we obtain the global alignment matrix W i W 

T 
i 

, with 

 i = 

(
I c − 1 

c 
1 c 1 

T 
c 

)(
I c − U 

† 
i 
U i 

)
. (19) 

he global low-dimensional coordinates ḡ i ∈ R 

c are composed of 

he eigenvectors corresponding to the first c small eigenvalues of 

he global matrix. 

We can model 
{

d 
j 
i 

}
c 
j=1 

by the linear regression model 

 

j 
i 

= ḡ T i θ̄i, j + ē i, j , 1 ≤ j ≤ c, 1 ≤ i ≤ n, (20) 

amely, we estimate d 
j 
i 

by ̂ 

 

j 
i 

= ̄g T i θ̄i, j , (21) 

here θ̄i, j ∈R 

c is the parameter vector of the label distribution es- 

imate ̂ d 
j 
i 
. After estimating all the ̂ d 

j 
i 
, i.e., all the θ̄i, j , for 1 ≤ j ≤ c

nd 1 ≤ i ≤ n , we need to perform the normalization 

˜ 

 

j 
i 

= 

̂ d j 
i ∑ c 

l=1 
̂ d l 

i 

, 1 ≤ i ≤ n. (22) 

hen 

˜ d 
j 
i 

is the estimate of d 
j 
i 
. 

To estimate the parameters �̄ = 

{
θ̄i, j , 1 ≤ j ≤ c, 1 ≤ i ≤ n 

}
, the

egression cost function similar to (15) can be adopted 

 

(
�̄

)
= 

1 

2 

n ∑ 

i =1 

c ∑ 

j=1 

∥∥θ̄i, j 

∥∥2 + 

n ∑ 

i =1 

L 2 
(
r̄ i 
)
, (23) 

n which r̄ i = 

∥∥ē i 
∥∥ and ē i = 

[
ē i, 1 . . . ̄e i,c 

]
T with 

¯
 i, j = y j 

i 
− ḡ T i θ̄i, j , 1 ≤ j ≤ c, (24) 

hile the L 2 loss is specified in (17) . With the constraints ḡ T 
i 
θ̄i, j ≥

 , the iterative reweighed least squares (IRWLS) [26] can readily be 

sed to solve this multi-output regression problem. 

Clearly, this LTSA regression for estimating the features’ label 

istributions imposes significantly higher complexity than the re- 

ression of Section 3.3 , but it potentially offers more accurate es- 

imates, which will be investigated in the experimental evaluation 

ection. 

.5. Enhanced maximum entropy model and LDML/LDML-R 

lgorithms 

LDML By using the extracted reduced-dimensional features g i = 

g 1 
i 
. . . g d 

i 

]
T and the associated label distribution estimates ̂ d g i = ̂ d 

y 1 
i 

g i 
. . . ̂  d 

y c 
i 

g i 

]
T in the maximum entropy model (6) , we arrive at the 

nhanced empirical target function 

 

 e (w)= 

n ∑ 

i =1 

c ∑ 

j=1 ̂

 d 
y j 

i 
g i 

d ∑ 

k =1 

(
w 

k 
i, j · ̂ d 

y j 
i 

g i 

)
g k i −

n ∑ 

i =1 

ln 

( c ∑ 

j=1 

exp 

( d ∑ 

k =1 

(
w 

k 
i, j · ̂ d 

y j 
i 

g i 

)
g k i 

))
. 

(25) 
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Table 1 

Multilabel datasets with known ground-truth label distributions 

[27] used in experimental evaluation with LDL metrics. 

Dataset Examples ( n ) Features ( q ) Labels ( c) 

Yeast-alpha 2465 24 18 

Yeast-cdc 2465 24 15 

Yeast-cold 2465 24 4 

Yeast-diau 2465 24 7 

Yeast-dtt 2465 24 4 

Yeast-elu 2465 24 14 

Yeast-heat 2465 24 6 

Yeast-spo 2465 24 6 

Yeast-spo5 2465 24 3 

Yeast-spoem 2465 24 2 

Human Gene 30,542 36 68 

Natural Scene 2000 294 9 

Movie 7755 1869 5 

SJAFFE 213 243 6 

SBU_3DFE 2500 243 6 

 

 

4

 

4

ote that the parameter vector of the conditional probability 

odel is now d-dimensional rather than q -dimensional, that is, 

 i, j ∈R 

d . 

A gradient descent iterative optimization can be applied to find 

he parameters w i, j , 1 ≤ i ≤ n and 1 ≤ j ≤ c, of the conditional

robability models (2) by solving the nonlinear equation associ- 

ted with the lower bound of ̂ T e (w + �w) − ̂ T e (w) to yield the es-

imates ̂ d 
y 

j 
i 

x i 
of (2) for all the unknown label distributions d 

y 
j 
i 

x i 
. Our 

roposed LDML algorithm is summarized in Algorithm 1 . 

lgorithm 1 Label distribution manifold learning (LDML). 

nput: Multilabel sample set of size n : { x i , y i } n i =1 
, where samples

x i ∈R 

q and the label vectors y i = 

[
y 1 

i 
. . . y c 

i 

]
T ∈{ 0 , 1 } c . 

utput: Label distribution estimates ̂ d 
y 

j 
i 

x i 
= Pr 

(
y 

j 
i 
| x i ; w i, j 

)
of un- 

known label distributions d 
y 

j 
i 

x i 
, 1 ≤ j ≤ c and 1 ≤ i ≤ n . 

1: Step 1 . Extract features: Use manifold learning method of 

Subsection 3.2 to extract reduced dimension features G = [
g 1 . . . g n 

]
∈R 

n ×d as eigenvectors corresponding to second to 

(d + 1) smallest eigenvalues of M in (11). 

2: Step 2 . Estimate label distributions for features: Use kernel re- 

gression of Subsection 3.3 to estimate label distributions ̂ d g i of 

extracted features g i . 

3: Step 3 . Label enhancement based on manifold: Use { g i , ̂  d g i } 
to form enhanced maximum entropy model (25), and use 

gradient-descent iterative optimization to find parameters w i, j , 

1 ≤ i ≤ n , 1 ≤ j ≤ c. 

4: return 

̂ d 
y 

j 
i 

x i 
← 

1 
Z i 

exp 

(
d ∑ 

k =1 

(
w 

k 
i, j 

· ̂ d 
y 

j 
i 

g i 

)
g k 

i 

)
, 1 ≤ i ≤ n , 1 ≤ j ≤ c. 

LDML-R Similarly, by using the extracted reduced-dimensional 

eatures g i = 

[
g 1 

i 
. . . g d 

i 

]
T and the associated label distribution esti- 

ates ˜ d i = 

[˜ d 1 
i 

. . . ̃  d c 
i 

]
T in the maximum entropy model (6) , we ar- 

ive at the alternative enhanced empirical target function 

 

 e (w)= 

n ∑ 

i =1 

c ∑ 

j=1 ̃

 d j 
i 

d ∑ 

k =1 

(
w 

k 
i, j · ˜ d j 

i 

)
g k i −

n ∑ 

i =1 

ln 

( c ∑ 

j=1 

exp 

( d ∑ 

k =1 

(
w 

k 
i, j · ˜ d j 

i 

)
g k i 

))
. 

(26) 

t is clear that the LDML-R algorithm differs from the LDML of 

lgorithm 1 in Step 2 . Since the LTSA regression of Section 3.4 im-

oses higher computational complexity than the regression of 

ection 3.3 , the LDML-R algorithm imposes higher complexity 

han the LDML algorithm. However, because ˜ d 
j 
i 

estimated in 

ection 3.4 may contain more label information than 

̂ d 
y 

j 
i 

g i 
estimated 

n Section 3.3 , the LDML-R may outperform the LDML, in terms of 

DL accuracy. This will be further demonstrated in the experimen- 

al study. 

. Experimental evaluation 

.1. Experiment setup 

.1.1. Datasets 

1) Our primary objective is to evaluate the label distribution es- 

timation accuracy of the proposed LDML and LDML-R algo- 

rithms, namely, how close their label distribution estimates to 

the ground-truth label distributions. We select 15 real-world 

multilabel datasets from Mulan website [27] , whose ground- 

truth label distributions are provided. Table 1 summarizes the 

features of these datasets. Half of these datasets are regular- 

sized and half of them are large-scale. These datasets therefore 

cover a wide range of multilabel attributes. 
5 
2) It is also crucial to evaluate the multilabel classification capa- 

bility of the proposed LDML and LDML-R algorithms using var- 

ious MLL metrics. For this purpose, we select another 10 real- 

world multilabel datasets from Mulan website [27] , which do 

not have ground-truth label distributions, for performance eval- 

uation. Table 2 summarizes the features of these 10 real-world 

datasets from Mul [27] , with unknown ground-truth label dis- 

tributions. These datasets cover a wide range of multilabel at- 

tributes. In Table 2 , S: the number of examples, T : the number

of testing samples, dim (S) : the feature dimensions, L (S) : the 

number of class labels, LCard(S) : the label cardinality, LDen (S) : 

the label density, DL (S) : the distinct label sets, and F (S) : the

feature type. 

.1.2. Comparison algorithms 

1) In the experimental evaluation of LDL accuracy, we choose six 

well-established multilabel distribution learning algorithms, the 

AA-BP [16] , the BFGS-LLD [16] , CPNN [7] , AA-KNN [16] , IIS-LLD

[16] and LDSVR [19] , as the benchmarks for comparison with 

our LDML and LDML-R algorithms. 

2) In the experimental evaluation of multilabel classification per- 

formance, we first compare our LDML and LDML-R algorithms 

with the 5 existing state-of-the-art LDL algorithms, the AA-BP, 

CPNN, AA-KNN, IIS-LLD and LDSVR. 

3) Next, we select five up-to-date MLL algorithms, namely, back- 

propagation for multilabel learning (BP-MLL) [28] , multi-label 

manifold learning ( ML 2 ) [13] , multi-label lazy learning ap- 

proach (ML-kNN) [29] , multi-label naive Bayes classifier (MLNB) 

[30] , and multi-label learning with feature-induced labeling in- 

formation enrichment (MLFE) [31] , as the benchmarks for com- 

parison with our LDML and LDML-R in the multilabel classifi- 

cation experiments. 

.1.3. Evaluation metrics 

1) The output of an LDL algorithm is the label distribution, which 

is different from the single label output of the single-label 

learning (SLL) and the label set output of the MLL. Therefore, 

the evaluation measures for an LDL algorithm are different from 

the evaluation measures for the SLL and MLL algorithms. The 

natural choice of evaluation metric for an LDL algorithm is the 

average distance or similarity between the estimated label dis- 

tributions obtained by the LDL algorithm and the true label dis- 

tributions. Thus, we use the following six measures of LDL ac- 

curacy for comparing different LDL algorithms: 

Chebyshev distance (Cheb) ↓ Clark distance (Clark) ↓ 
Canberra metric (Canber) ↓ Kullback–Leibler divergence (KL-div) ↓ 
cosine coefficient (Cosine) ↑ intersection similarity (Intersec) ↑ 
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Table 2 

Characteristics of 10 real-world datasets from Mul [27] with unknown ground-truth label distri- 

butions used in experimental evaluation with MLL metrics. 

Dataset S T dim (S) L (S) LCard(S) LDen (S) DL (S) F (S) 

Emotions 415 178 72 6 1.869 0.311 27 numeric 

Medical 645 333 1449 45 1.245 0.028 94 nominal 

Cal500 250 252 68 174 26.044 0.150 502 numeric 

Birds 320 325 260 19 1.014 0.053 133 numeric 

Enron 1123 579 1001 53 3.378 0.064 753 nominal 

Yeast 1200 1217 103 14 4.237 0.303 198 numeric 

Image 1000 1000 294 5 1.236 0.247 20 numeric 

Scene 1211 1196 294 6 1.074 0.179 15 numeric 

Corel5k 2500 2500 499 374 3.522 0.009 3175 nominal 

Bibtex 3700 3695 1836 159 2.402 0.015 2856 nominal 

Table 3 

Experimental results of 8 LDL algorithms on 15 real-world datasets with ground-truth label distributions [27] measured by Chebyshev 

distance ↓ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 0.0185(4) 0.0257(5.5) 0.0257(5.5) 0.0487(8) 0.0182(3) 0.0260(7) 0.0151(2) 0.0124(1) 

Yeast-cdc 0.0152(6) 0.0147(5) 0.0170(8) 0.0142(4) 0.0156(7) 0.0100(3) 0.0071(1) 0.0091(2) 

Yeast-cold 0.0409(3) 0.0442(5) 0.0542(8) 0.0485(7) 0.0427(4) 0.0457(6) 0.0219(2) 0.0164(1) 

Yeast-diau 0.0245(3) 0.0313(6.5) 0.0313(6.5) 0.0282(5) 0.0203(2) 0.0357(8) 0.0251(4) 0.0195(1) 

Yeast-dtt 0.0310(8) 0.0176(4) 0.0209(6) 0.0204(5) 0.0143(3) 0.0216(7) 0.0082(2) 0.0070(1) 

Yeast-elu 0.0118(5) 0.0099(3.5) 0.0093(2) 0.0138(7) 0.0099(3.5) 0.0188(8) 0.0119(6) 0.0079(1) 

Yeast-heat 0.0411(7) 0.0308(3) 0.0375(6) 0.0310(4) 0.0304(2) 0.0414(8) 0.0323(5) 0.0121(1) 

Yeast-spo 0.0380(6) 0.0342(4) 0.0357(5) 0.0485(8) 0.0339(2) 0.0389(7) 0.0340(3) 0.0274(1) 

Yeast-spo5 0.0664(4) 0.1012(7) 0.0969(6) 0.0744(5) 0.0591(3) 0.1156(8) 0.0472(1) 0.0498(2) 

Yeast-spoem 0.0099(2.5) 0.0597(8) 0.0099(2.5) 0.0272(6) 0.0431(7) 0.0125(4) 0.0175(5) 0.0046(1) 

Human Gene 0.0284(6) 0.0323(8) 0.0125(1) 0.0140(3) 0.0187(4) 0.0130(2) 0.0245(5) 0.0300(7) 

Natural Scene 0.1526(6) 0.1388(5) 0.1355(3) 0.2473(8) 0.1892(7) 0.0132(1) 0.1375(4) 0.1257(2) 

Movie 0.0876(5) 0.0742(2) 0.0629(1) 0.0975(8) 0.0767(3) 0.0930(6) 0.0816(4) 0.0967(7) 

SJAFFE 0.0907(8) 0.0661(5) 0.0828(7) 0.0694(6) 0.0658(4) 0.0613(3) 0.0474(2) 0.0375(1) 

SBU_3DFE 0.0984(5) 0.0830(3) 0.1170(7) 0.1008(6) 0.1295(8) 0.0871(4) 0.0739(2) 0.0697(1) 

Average rank 5.2333(6) 4.9667(4.5) 4.9667(4.5) 6.0000(8) 4.1667(3) 5.4667(7) 3.2000(2) 2.0000(1) 

Table 4 

Experimental results of 8 LDL algorithms on 15 real-world datasets with ground-truth label distributions [27] measured by Clark dis- 

tance ↓ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 0.3292(7) 0.3067(4) 0.3109(5) 0.4898(8) 0.3004(3) 0.3111(6) 0.2608(2) 0.1805(1) 

Yeast-cdc 0.2031(7) 0.2001(6) 0.2660(8) 0.1397(3) 0.1899(5) 0.1404(4) 0.1170(1) 0.1186(2) 

Yeast-cold 0.1248(3) 0.1383(6) 0.1422(8) 0.1390(7) 0.1253(4) 0.1324(5) 0.0529(2) 0.0402(1) 

Yeast-diau 0.1680(7) 0.1481(6) 0.1974(8) 0.1323(4) 0.1278(3) 0.1461(5) 0.1145(2) 0.0991(1) 

Yeast-dtt 0.0755(8) 0.0507(5) 0.0627(7) 0.0491(4) 0.0398(3) 0.0542(6) 0.0244(2) 0.0168(1) 

Yeast-elu 0.1541(6) 0.1251(2.5) 0.1313(4) 0.1592(7) 0.1251(2.5) 0.1931(8) 0.1393(5) 0.1087(1) 

Yeast-heat 0.2009(8) 0.1438(2) 0.1730(5) 0.1761(6) 0.1514(3) 0.1851(7) 0.1634(4) 0.0556(1) 

Yeast-spo 0.1738(7) 0.1619(4) 0.1712(5) 0.1736(6) 0.1793(8) 0.1561(2) 0.1614(3) 0.1215(1) 

Yeast-spo5 0.1323(4) 0.1943(7) 0.1908(6) 0.1504(5) 0.1177(3) 0.2057(8) 0.0991(2) 0.0961(1) 

Yeast-spoem 0.0140(2.5) 0.0846(8) 0.0140(2.5) 0.0386(6) 0.0632(7) 0.0176(4) 0.0250(5) 0.0065(1) 

Human Gene 3.0756(5) 3.4892(7) 0.9650(1) 1.3913(4) 1.0162(2) 1.0485(3) 3.1507(6) 3.5121(8) 

Natural Scene 2.1240(6) 2.1327(7) 2.1043(5) 1.8009(2) 2.2530(8) 1.7982(1) 2.0915(4) 2.0674(3) 

Movie 0.4607(6) 0.3387(1) 0.3931(4) 0.4724(7) 0.3861(3) 0.4079(5) 0.3543(2) 0.5201(8) 

SJAFFE 0.3215(8) 0.2729(7) 0.2511(6) 0.2174(3) 0.2474(5) 0.2375(4) 0.2152(2) 0.1847(1) 

SBU_3DFE 0.3368(7) 0.3112(5) 0.2943(3) 0.3363(6) 0.3509(8) 0.2807(2) 0.2420(1) 0.2967(4) 

Average rank 6.1000(8) 5.1667(5.5) 5.1667(5.5) 5.2000(7) 4.5000(3) 4.6667(4) 2.8667(2) 2.3333(1) 
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The first four are distance metrics and the last two are simi- 

larity metrics, where the symbol ‘ ↓ ’ after the metrics indicates 

‘the smaller the better’, while the symbol ‘ ↑ ’ after the metrics 

indicates ‘the larger the better’. How to calculate these metrics 

and the motivation of using them can be found in Cha [32] . 

2) To evaluate multilabel classification performance, we choose 

five widely used MLL metrics, and they are: Hamming loss ↓ , 

ranking loss ↓ , one error ↓ , coverage ↓ , and average preci-

sion ↑ . 

.1.4. Hyperparameter setting 

We set the two algorithmic parameters of the LDML/LDML-R as 

ollows. The number of nearest neighbors in feature extraction is 
6 
et to k = 10 . This value is chosen simply to be consistent with

he value of k used in the benchmark algorithms of Geng [16] . The

nfluence of the reduced feature dimension d turns out to be not 

ignificant. In fact, we have tested the values of d from 1 to 9, and

he results obtained are all similar. Hence, we simply choose d = 8 .

For the comparing algorithms, we use the original algorithmic 

ettings provided by the authors in their publications. 

.2. Experiments for multilabel distribution learning 

The 15 datasets with ground-truth label distributions of 

able 1 are used in this first set of experiments. 
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Table 5 

Experimental results of 8 LDL algorithms on 15 real-world datasets with ground-truth label distributions [27] measured by Canberra 

distance ↓ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 1.0239(5) 1.0452(6) 1.0234(4) 1.4548(8) 1.0085(3) 1.0573(7) 0.8769(2) 0.4740(1) 

Yeast-cdc 0.6542(6) 0.6556(7) 0.8938(8) 0.3801(3) 0.5645(5) 0.4443(4) 0.3588(2) 0.3219(1) 

Yeast-cold 0.2273(7) 0.2108(3) 0.2198(4) 0.2228(5) 0.2256(6) 0.2387(8) 0.0875(2) 0.0665(1) 

Yeast-diau 0.3899(7) 0.3005(6) 0.4733(8) 0.2991(5) 0.2980(4) 0.2742(3) 0.2277(2) 0.1991(1) 

Yeast-dtt 0.1267(8) 0.0797(4) 0.1203(7) 0.0829(5) 0.0677(3) 0.0889(6) 0.0470(2) 0.0277(1) 

Yeast-elu 0.4645(6) 0.3226(2.5) 0.4069(5) 0.4904(7) 0.3226(2.5) 0.5928(8) 0.4050(4) 0.3167(1) 

Yeast-heat 0.4816(8) 0.2935(2) 0.3357(4) 0.3732(6) 0.3376(5) 0.3965(7) 0.3147(3) 0.1181(1) 

Yeast-spo 0.3938(8) 0.3318(5) 0.3650(6) 0.3127(3) 0.3838(7) 0.2942(2) 0.3129(4) 0.2365(1) 

Yeast-spo5 0.1941(4) 0.3121(7) 0.2825(6) 0.2270(5) 0.1823(3) 0.3409(8) 0.1471(2) 0.0886(1) 

Yeast-spoem 0.0198(2.5) 0.1195(8) 0.0198(2.5) 0.0545(6) 0.0883(7) 0.0249(4) 0.0352(5) 0.0093(1) 

Human Gene 20.7807(5) 23.3088(7) 6.4936(3) 9.6774(4) 6.3145(1) 6.4525(2) 21.8772(6) 23.6378(8) 

Natural Scene 5.3662(7) 5.2818(4) 5.3364(5) 4.6644(2) 5.8775(8) 4.5593(1) 5.3472(6) 5.0009(3) 

Movie 0.8623(7) 0.7367(5) 0.7194(3) 0.8318(6) 0.7291(4) 0.6882(1) 0.7190(2) 0.9982(8) 

SJAFFE 0.6150(8) 0.5797(7) 0.4754(3) 0.3949(2) 0.5041(5) 0.5339(6) 0.4921(4) 0.3822(1) 

SBU_3DFE 0.7412(8) 0.6210(5) 0.6169(4) 0.5703(2) 0.7260(7) 0.5790(3) 0.4902(1) 0.6410(6) 

Average rank 6.4333(8) 5.2333(7) 4.8333(6) 4.6000(3) 4.7000(5) 4.6667(4) 3.1333(2) 2.4000(1) 

Table 6 

Experimental results of 8 LDL algorithms on 15 real-world datasets with ground-truth label distributions [27] measured by Kullback–Leibler 

divergence ↓ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 0.0114(3.5) 0.0114(3.5) 0.0116(5) 0.0317(7) 0.5645(8) 0.0117(6) 0.0076(2) 0.0044(1) 

Yeast-cdc 0.0055(6.5) 0.0055(6.5) 0.0092(8) 0.0027(3.5) 0.0049(5) 0.0027(3.5) 0.0018(1.5) 0.0018(1.5) 

Yeast-cold 0.0073(3) 0.0095(7.5) 0.0095(7.5) 0.0092(6) 0.0077(4) 0.0082(5) 0.0014(2) 0.0007(1) 

Yeast-diau 0.0079(7) 0.0063(5) 0.0108(8) 0.0053(4) 0.0044(3) 0.0065(6) 0.0038(2) 0.0028(1) 

Yeast-dtt 0.0027(8) 0.0012(4.5) 0.0020(7) 0.0012(4.5) 0.0008(3) 0.0014(6) 0.0002(2) 0.0001(1) 

Yeast-elu 0.0033(6) 0.0023(2.5) 0.0024(4) 0.0037(7) 0.0023(2.5) 0.0055(8) 0.0028(5) 0.0017(1) 

Yeast-heat 0.0138(8) 0.0067(2) 0.0099(5) 0.0100(6) 0.0075(3) 0.0116(7) 0.0088(4) 0.0010(1) 

Yeast-spo 0.0103(6) 0.0082(2) 0.0098(5) 0.0108(8) 0.0107(7) 0.0083(3) 0.0087(4) 0.0049(1) 

Yeast-spo5 0.0119(4) 0.0246(6) 0.0252(7) 0.0147(5) 0.0089(3) 0.0301(8) 0.0062(2) 0.0058(1) 

Yeast-spoem 0.0001(2.5) 0.0072(8) 0.0001(2.5) 0.0015(6) 0.0038(7) 0.0003(4) 0.0006(5) 0.00003(1) 

Human Gene 0.3242(5) 0.4361(8) 0.0283(1) 0.0594(4) 0.0314(2) 0.0330(3) 0.3309(6) 0.4064(7) 

Natural Scene 0.4782(5) 0.4162(4) 0.1398(2) 0.6874(7) 0.7376(8) 0.0109(1) 0.5819(6) 0.3367(3) 

Movie 0.0578(6) 0.0409(2) 0.0375(1) 0.0617(7) 0.0450(5) 0.0420(4) 0.0411(3) 0.0736(8) 

SJAFFE 0.0412(8) 0.0270(7) 0.0249(6) 0.0191(3) 0.0233(5) 0.0204(4) 0.0162(2) 0.0115(1) 

SBU_3DFE 0.0433(6) 0.0361(4) 0.0395(5) 0.0455(7) 0.0565(8) 0.0309(2) 0.0221(1) 0.0326(3) 

Average rank 5.6333(7) 4.8333(4) 4.9333(6) 5.6667(8) 4.9000(5) 4.7000(3) 3.1667(2) 2.1667(1) 

Table 7 

Experimental results of 8 LDL algorithms on 15 real-world datasets with ground-truth label distributions [27] measured by cosine coeffi- 

cient ↑ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 0.9895(4) 0.9882(5) 0.9880(6) 0.9686(8) 0.9903(3) 0.9879(7) 0.9927(2) 0.9943(1) 

Yeast-cdc 0.9945(6.5) 0.9945(6.5) 0.9912(8) 0.9973(3.5) 0.9952(5) 0.9973(3.5) 0.9982(1.5) 0.9982(1.5) 

Yeast-cold 0.9931(3) 0.9909(7) 0.9908(8) 0.9911(6) 0.9924(4) 0.9922(5) 0.9986(2) 0.9992(1) 

Yeast-diau 0.9925(7) 0.9939(5) 0.9897(8) 0.9945(4) 0.9958(3) 0.9936(6) 0.9962(2) 0.9973(1) 

Yeast-dtt 0.9974(8) 0.9989(4.5) 0.9981(7) 0.9989(4.5) 0.9992(3) 0.9987(6) 0.9997(2) 0.9999(1) 

Yeast-elu 0.9967(6) 0.9977(3) 0.9977(3) 0.9963(7) 0.9977(3) 0.9946(8) 0.9972(5) 0.9984(1) 

Yeast-heat 0.9863(8) 0.9937(2) 0.9903(5.5) 0.9903(5.5) 0.9928(3) 0.9884(7) 0.9916(4) 0.9990(1) 

Yeast-spo 0.9897(6) 0.9923(2) 0.9903(5) 0.9886(8) 0.9894(7) 0.9917(3) 0.9913(4) 0.9951(1) 

Yeast-spo5 0.9880(4) 0.9770(6) 0.9746(7) 0.9857(5) 0.9915(3) 0.9704(8) 0.9941(2) 0.9943(1) 

Yeast-spoem 0.9998(2.5) 0.9929(8) 0.9998(2.5) 0.9985(6) 0.9965(7) 0.9997(4) 0.9994(5) 0.9999(1) 

Human Gene 0.7972(5) 0.7647(7) 0.9718(1) 0.9420(4) 0.9678(2) 0.9673(3) 0.7690(6) 0.7468(8) 

Natural Scene 0.8128(6) 0.8792(4) 0.9953(2) 0.8278(5) 0.7244(8) 1.0000(1) 0.7446(7) 0.8905(3) 

Movie 0.9620(7) 0.9669(5) 0.9771(1) 0.9589(8) 0.9731(3) 0.9746(2) 0.9666(6) 0.9723(4) 

SJAFFE 0.9547(8) 0.9723(7) 0.9733(6) 0.9784(4) 0.9761(5) 0.9792(3) 0.9838(2) 0.9890(1) 

SBU_3DFE 0.9566(5) 0.9623(4) 0.9555(6) 0.9521(7) 0.9382(8) 0.9677(2) 0.9769(1) 0.9657(3) 

Average rank 5.7333(8) 5.0667(5.5) 5.0667(5.5) 5.7000(7) 4.4667(3) 4.5667(4) 3.4333(2) 1.9667(1) 
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.2.1. Label distribution learning experimental results 

Quantitative experimental results of the eight LDL algorithms 

pplied to these 15 real-world datasets are compared in Tables 3–

 for the six evaluation metrics, respectively. In each of these 

ix tables, each row presents the metric values attained by the 

 LDL algorithms together with the rankings achieved in brackets 

or the corresponding dataset. We also calculate the correspond- 
7 
ng algorithms’ average ranking performance over the 15 datasets 

n the last row of each table, where the numerical value before the 

racket is the average ranking value, i.e., the sum of the ranks over 

he 15 datasets divided by 15, and the number in the bracket is 

gain the rank. To indicate the overall performance, Table 9 sum- 

arizes the ranking performance of the 8 LDL algorithms averag- 

ng over these 15 datasets and the 6 estimation accuracy measures. 
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Table 8 

Experimental results of 8 LDL algorithms on 15 real-world datasets with ground-truth label distributions [27] measured by intersectional 

similarity ↑ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 0.9453(3) 0.9408(6) 0.9421(5) 0.9173(8) 0.9443(4) 0.9402(7) 0.9516(2) 0.9710(1) 

Yeast-cdc 0.9565(6) 0.9559(7) 0.9416(8) 0.9746(3) 0.9622(5) 0.9702(4) 0.9760(2) 0.9787(1) 

Yeast-cold 0.9448(6) 0.9486(3) 0.9458(4) 0.9452(5) 0.9429(7) 0.9415(8) 0.9781(2) 0.9836(1) 

Yeast-diau 0.9452(7) 0.9570(5) 0.9338(8) 0.9559(6) 0.9585(4) 0.9596(3) 0.9670(2) 0.9720(1) 

Yeast-dtt 0.9690(8) 0.9814(4) 0.9700(7) 0.9796(5) 0.9830(3) 0.9784(6) 0.9883(2) 0.9930(1) 

Yeast-elu 0.9672(6) 0.9768(2.5) 0.9713(4) 0.9649(7) 0.9768(2.5) 0.9578(8) 0.9709(5) 0.9773(1) 

Yeast-heat 0.9191(8) 0.9521(2) 0.9441(5) 0.9387(6) 0.9447(4) 0.9334(7) 0.9460(3) 0.9803(1) 

Yeast-spo 0.9338(8) 0.9468(5) 0.9394(6) 0.9489(3) 0.9359(7) 0.9509(2) 0.9476(4) 0.9906(1) 

Yeast-spo5 0.9336(4) 0.8988(7) 0.9031(6) 0.9256(5) 0.9409(3) 0.8844(8) 0.9528(2) 0.9700(1) 

Yeast-spoem 0.9901(2.5) 0.9403(8) 0.9901(2.5) 0.9728(6) 0.9569(7) 0.9875(4) 0.9825(5) 0.9954(1) 

Human Gene 0.7043(5) 0.6785(7) 0.9040(2.5) 0.8567(4) 0.9068(1) 0.9040(2.5) 0.6794(6) 0.6660(8) 

Natural Scene 0.6573(5) 0.7171(4) 0.8645(2) 0.6142(6) 0.5522(8) 0.9868(1) 0.5651(7) 0.7257(3) 

Movie 0.8566(6) 0.8615(5) 0.8891(2) 0.8550(7) 0.8764(3) 0.8930(1) 0.8696(4) 0.8501(8) 

SJAFFE 0.8850(8) 0.8989(7) 0.9144(4) 0.9251(2) 0.9124(5) 0.9081(6) 0.9163(3) 0.9344(1) 

SBU_3DFE 0.8718(7) 0.8901(4) 0.8830(6) 0.8942(3) 0.8631(8) 0.8972(2) 0.9144(1) 0.8885(5) 

Average rank 5.9667(8) 5.1000(7) 4.8000(5) 5.0667(6) 4.7667(4) 4.6333(3) 3.3333(2) 2.3333(1) 

Table 9 

Ranking performance of 8 LDL algorithms average over 

15 datasets with ground-truth label distributions [27] 

and 6 multilabel distribution estimation accuracy mea- 

sures. 

Algorithm Average rank 

LDML-R 1.00 (1) 

LDML 2.00 (2) 

IIS-LLD 3.83 (3) 

LDSVR 4.17 (4) 

CPNN 5.42 (5) 

BFGS-LLD 5.58 (6) 

AA-kNN 6.50 (7) 

AA-BP 7.50 (8) 
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Fig. 1. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 

15 datasets for Chebyshev distance evaluation metric. 
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From Tables 3 to 9 , it can be seen that on average the LDML-

 attains the best performance, and the LDML achieves the sec- 

nd best performance, followed by the IIS-LLD as the third best 

lgorithm. The reason for the LDML to outperform the IIS-LLD is 

hat by extracting the features g i of samples x i and using the esti- 

ated label distributions ̂ d 
y 

j 
i 

g i 
, rather than the binary labels y 

j 
i 
, for 

he extracted features in the maximum entropy model, the LDML 

s provided with better information than the IIS-LLD. The results 

lso confirm our analysis that the LDML-R outperforms the LDML, 

n terms of LDL accuracy. 

The runtime performance of the 8 LDL algorithms on the 15 

atasets of Mul [27] are compared in Table 10 . For these 15 

atasets, the LDSVR and AA-kNN are clear winners on average, 

n terms of runtime performance. Our algorithm LDML ranks the 

hird. However, the LDML-R imposes higher computational com- 

lexity than the LDML, and it ranks the fifth on average, in terms 

f runtime complexity, which confirms our previous analysis. Of 

articular interest is to compare the runtimes of our LDML and 

DML-R with that of the IIS-LLD, as all the these algorithms are 

ased on solving similar maximum entropy targets with a sim- 

lar gradient descent optimization technique. Observe that the 

roposed LDML and LDML-R consistently impose lower runtimes 

han the IIS-LLD except for Human Gene and Movie datasets. As 

iscussed previously, compared with the IIS-LLD, our LDML and 

DML-R introduce additional complexity in feature extraction and 

egression. However, owing to its capability of extracting reduced 

imensional features, our LDML and LDML-R impose dramatically 

ower computational complexity in the iterative maximum entropy 

ased optimization than the IIS-LLD. Consequently, the LDML and 

DML-R impose lower overall computational complexity than the 
8

IS-LLD. This is significant, as we already know that the IIS-LLD 

utperforms the other well-established LLD algorithms on average, 

n terms of estimation accuracy. Our LDML and LDML-R not only 

onsistently outperform the IIS-LLD, in terms of estimation accu- 

acy, but also impose lower computational complexity. 

.2.2. Statistical validation of label distribution learning experimental 

esults 

Friedman test statistically compares relative performance 

mong multiple algorithms over multiple datasets [33] . We first 

se this test to validate the statistical significance of the perfor- 

ance of various algorithms given in Tables 3–8 and 10 . Table 11 

hows the Friedman statistic F F and the critical value on each eval- 

ation metric at a significance level of 0.05, among the 8 compar- 

ng algorithms and 15 datasets. 

As seen from Table 11 , the F F values for all the seven metrics are

reater than the critical value, and Nemenyi test [33] can be used 

s a post hoc test to show the algorithms’ relative performances. 

pecifically, based on Table 11 , we use Nemenyi test [33] to check 

he average ordering comparison between two algorithms. Figs. 1–

 represent these results with a critical difference (CD) graph for 

ach evaluation metric, respectively. When the significance level is 

.05, the number of comparing algorithms is 8, and the number of 

atasets is 15, the CD value is CD =2 . 7110 for Nemenyi test. In the

D diagram, the average ordering of each algorithm is marked on 

he same coordinate axis. If the difference between the average or- 

er of the two algorithms is less than the CD value, then there ex- 

sts no significant difference between the two algorithms and they 

re connected by a line segment in the CD graph. Algorithms not 

onnected with the LDML-R in the CD diagrams are considered to 
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Table 10 

Experimental results of 8 LDL algorithms on 15 datasets with ground-truth label distributions [27] measured by runtime [s] ↓ . 
Algorithms AA-BP BFGS-LLD CPNN AA-kNN IIS-LLD LDSVR LDML LDML-R 

Yeast-alpha 25.3371 (8) 20.6198 (7) 18.2403 (4) 1.0531 (1) 19.9805(6) 1.1045 (2) 15.0913 (3) 19.0666(5) 

Yeast-cdc 25.7166 (8) 21.9220 (7) 16.2724 (4) 0.8836 (1) 18.9836 (6) 1.0490 (2) 12.8269(3) 18.1193(5) 

Yeast-cold 20.7718 (7) 21.5407 (8) 5.2897 (4) 0.9374 (2) 17.5568 (6) 0.3171 (1) 4.8367 (3) 7.2280(5) 

Yeast-diau 23.6153 (7) 35.7157 (8) 9.2031 (5) 0.9131 (1) 18.7653 (6) 1.0043 (2) 6.8951 (3) 7.2450(4) 

Yeast-dtt 21.8427 (8) 21.4975 (7) 6.0809 (4) 0.9139 (2) 19.0879 (6) 0.8812 (1) 4.3748 (3) 7.1093(5) 

Yeast-elu 25.5688 (7) 26.4238 (8) 14.8539 (4) 0.9085 (1) 19.8465 (6) 1.0313 (2) 11.7568 (3) 18.2103(5) 

Yeast-heat 24.1267 (7) 31.2775 (8) 8.7874 (5) 0.9475 (1) 18.5278 (6) 0.9593 (2) 5.8102 (3) 7.2924(4) 

Yeast-spo 23.3896 (7) 31.7739 (8) 7.9834 (5) 0.9444 (2) 18.9764 (6) 0.3705 (1) 5.8481 (3) 7.1597(4) 

Yeast-spo5 21.9315 (8) 20.1524 (7) 4.3023 (4) 0.8912 (1) 18.0636 (6) 1.1629 (2) 3.6275 (3) 7.2504(5) 

Yeast-spoem 21.8737 (8) 17.9856 (7) 3.5101 (4) 1.0004 (2) 17.1523 (6) 0.1556 (1) 2.7987 (3) 7.0937(5) 

Human Gene 228.4788 (5) 621.8826 (6) 627.7233 (7) 45.1855 (1) 187.1719 (3) 120.2555 (2) 199.3687 (4) 952.6166(8) 

Natural Scene 33.4654 (3) 521.4446 (7) 582.3852 (8) 1.5061 (2) 187.0668 (6) 0.3724 (1) 82.7652 (4) 167.5837(5) 

Movie 200.3475 (2) 302.7946 (6) 247.1239 (4) 256.6008 (5) 224.6542 (3) 24.3013 (1) 311.7948(7) 446.2196(8) 

SJAFFE 15.6128 (6) 79.1725 (8) 2.4305 (3) 0.0231 (2) 21.9615 (7) 0.0192 (1) 6.6878 (5) 5.9159(4) 

SBU_3DFE 32.9427 (7) 118.8989 (8) 19.5154 (5) 1.7065 (2) 25.9362 (6) 0.4548 (1) 8.9834(4) 8.8391(3) 

Average rank 6.5333 (7) 7.3333 (8) 4.6667 (4) 1.7333 (2) 5.6667 (6) 1.4667 (1) 3.6000 (3) 5.0000(5) 

Table 11 

Friedman statistics F F , in terms of each LDL evaluation 

metric and the critical value at a significance level of 

0.05 (comparing algorithms: 8, datasets: 15). 

Evaluation metric F F Critical value 

Chebyshev distance 5.7381 2.104 

Clark distance 5.1718 

Canberra distance 4.8107 

Kullback–Leibler divergence 4.5878 

cosine coefficient 5.0694 

intersectional similarity 3.8544 

Runtime [s] 41.8214 

Fig. 2. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 

15 datasets for Clark distance evaluation metric. 

Fig. 3. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 

15 datasets for Canberra distance evaluation metric. 
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Fig. 4. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 

15 datasets for Kullback–Leibler divergence metric. 

Fig. 5. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 

15 datasets for cosine coefficient evaluation metric. 

Fig. 6. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 

15 datasets for intersectional similarity evaluation metric. 
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A

ave significant performance difference from the control algorithm, 

iven the CD value of 2.7110 at a significance level of 0.05. 

The CD diagram of Nemenyi test for Chebyshev distance metric 

n Fig. 1 indicates that the differences for the top three ranking al- 

orithms, the LDML-R, LDML and IIS-LLD, may not be statistically 

ignificant, but it is statistically significant that the best LDML-R 
9

utperforms the BFGS-LLD, CPNN, AA-BP, LDSVR and AA-kNN. Ac- 

ording to the CD diagram of Nemenyi test for the Clark distance 

etric depicted in Fig. 2 , it is statistically significant that the top 

anking LDML-R outperforms the BFGS-LLD, CPNN, AA-kNN and 

A-BP, while for the Canberra distance metric, it is statistically sig- 
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Table 12 

Summary of Nemenyi test results for label distribution learning experiments. 

Evaluation metric Statistically significant 

Cheb Top ranking LDML-R superior over BFGS-LLD, CPNN, AA-BP, LDSVR, AA-kNN 

Clark Top ranking LDML-R superior over BFGS-LLD, CPNN, AA-kNN, AA-BP 

Canber Top ranking LDML-R superior over BFGS-LLD, AA-BP 

KL-div Top ranking LDML-R superior over IIS-LLD, CPNN, AA-BP, AA-kNN 

Cosine Top ranking LDML-R superior over CPNN, BFGS-LLD, AA-kNN, AA-BP 

Intersec Top ranking LDML-R superior over AA-kNN, BFGS-LLD, AA-BP 

Table 13 

Wilcoxon signed-ranks test among 8 algorithms in terms of Chebyshev distance, Clark distance, Canberra distance, Kullback–

Leibler divergence, cosine coefficient and intersectional similarity (significance level α = 0 . 05 ; p-values shown in the brack- 

ets). 

LDML- 

R 

versus 

Evaluation metric 

Cheb Clark Canber KL-div cosine Intersec 

AA-BP WIN[1.53E −3] WIN[3.53E −2] WIN[2.15E −2] WIN[6.71E −3] WIN[6.71E −3] WIN[4.27E −3] 

BFGS-LLD WIN[3.36E −3] WIN[1.50E −2] TIE[5.53E −2] WIN[6.71E −3] WIN[8.36E −3] WIN[4.27E −3] 

CPNN WIN[2.15E −2] TIE[7.30E −2] TIE[7.30E −2] TIE[3.30E −1] TIE[1.35E −1] TIE[2.77E −1] 

AA-kNN WIN[8.54E −4] TIE[1.69E −1] TIE[3.59E −1] WIN[4.79E −2] WIN[8.36E −3] WIN[2.15E −2] 

IIS-LLD WIN[1.51E −2] TIE[7.30E −2] TIE[6.37E −2] WIN[4.79E −2] WIN[1.51E −2] WIN[3.02E −2] 

LDSVR TIE[5.54E −2] TIE[3.30E −1] TIE[3.89E −1] TIE[3.00E −1] TIE[2.29E −1] TIE[3.59E −1] 

LDML WIN[6.23E −1] TIE[3.03E −1] TIE[2.08E −1] TIE[3.00E −1] WIN[8.42E −2] TIE[9.46E −2] 

Fig. 7. CD diagrams given CD = 2 . 7110 of Nemenyi tests on the 8 algorithms and 15 

datasets for run time (s) evaluation metric. 
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ificant that the best LDML-R outperforms the BFGS-LLD and AA- 

P, as can be seen from Fig. 3 . For the Kullback–Leibler divergence, 

he difference between the top four algorithms may not be statisti- 

ally significant, but it is statistically significant that the top LDML- 

 outperforms the IIS-LLD, CPNN, AA-BP and AA-kNN, as seen in 

ig. 4 . Likewise, for the cosine coefficient metric, it is statistically 

ignificant that thebest LDML-R outperforms the CPNN, BFGS-LLD, 

A-kNN and AA-BP, as confirmed in Fig. 5 . For the intersectional 

imilarity metric, it is statistically significant that the best LDML- 

 outperforms the AA-kNN, BFGS-LLD and AA-BP, as confirmed in 

he CD diagram of Nemenyi test in Fig. 6 . Table 12 summarizes the

tatistical Nemenyi test results for label distribution learning ex- 

eriments. Lastly, the CD diagram of Nemenyi test for the run time 

f Fig. 7 confirms that the differences between the best LDSVR, the 

econd best AA-kNN and the third best LDML may not be statisti- 

ally significant, but it is statistically significant that the LDML-R 

mposes higher runtime than the LDSVR. 

In addition, Wilcoxon signed-ranks test [33] is employed as the 

tatistical test to show whether the LDML-R performs significantly 

etter than other 7 algorithms, in terms of each evaluation met- 

ic. Table 13 summarizes the statistical test results where the p- 

alues for the corresponding tests are given in the brackets. From 

able 13 , the following observations can be made. The LDML-R 

chieves statistically better performance than the AA-BP in terms 

f all the six metrics, and better than the BFGS-LLD, AA-kNN, IIS- 

LD in majority of the metrics. The LDML-R performs better than 

he LDML in Cheb and cosine metrics, and is better than the CPNN 

n Cheb metric, while it is similar with the LDSVR in all the met- 

ics. Wilcoxon signed-ranks statistical test results clearly validate 
10 
he superior performance of our proposed LDML-R algorithm, in 

erms of LDL accuracy. 

We also employ Bayesian signed-rank test [34] as the statistical 

est to validate whether the LDML-R performs significantly better 

han the other 7 algorithms. Table 14 lists the statistical test re- 

ults, in terms of each evaluation metric, where the values of a, b, c

n the bracket [ a, b, c] are the probabilities of [WIN, TIE, LOSE] for

he corresponding test. Compared with Nemenyi test or Wilcoxon 

igned-ranks test, Bayesian signed-rank test provides more statisti- 

al details. Observe from Table 14 that the LDML-R achieves statis- 

ically better performance than the 5 existing LDL benchmark al- 

orithms, including LDSVR, in 4 metrics and it is similar (TIE) with 

hese methods in Kullback–Leibler divergence and cosine coeffi- 

ient. Also the LDML-R performs better than the LDML in 3 metrics 

nd it is similar with the LDML in the other 3 metrics. 

.3. Experiments for multilabel classification performance 

The 10 datasets without ground-truth label distributions of 

able 2 are used in this second set of experiments with LDL bench- 

arks. 

.3.1. Multilabel classification experimental results 

Half the examples in each dataset are selected randomly as a 

raining set, and the remaining half are used to form a test set. 

e use 10-fold cross-validation on each dataset and record each 

lgorithm’s average performance on the five MLL evaluation met- 

ics in Tables 15–19 , respectively. The overall ranking performance 

n multilabel classification, averaged over the ten datasets and the 

ve MLL metrics, are listed in Table 20 . It can be seen that on av-

rage, our LDML holds the top rank position with our LDML-R in 

he close second, compared with the other five existing LDL algo- 

ithms, AA-kNN, LDSVR, IIS-LLD, CPNN and AA-BP. 

.3.2. Statistical validation of multilabel classification experimental 

esults 

Table 21 lists the Friedman statistics F F and the critical value 

n the five multilabel classification metrics at a significance level 

f 0.05, among 7 algorithms and 10 datasets. Figs. 8–12 show the 

esults of Nemenyi test [33] with a CD graph for each of the five

LL metrics, respectively. For the significance level 0.05, 7 com- 

aring algorithms and 10 datasets, the CD value is CD = 2 . 8490 for
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Table 14 

Bayesian signed-rank test among 8 algorithms in terms of Chebyshev distance, Clark distance, Canberra distance, Kullback–Leibler divergence, cosine coefficient and inter- 

sectional similarity ( rope = 0 . 01 ; Default prior strength: 0.6). 

LDML-R versus 

Evaluation metric 

Cheb ↓ Clark ↓ Canber ↓ KL-div ↓ cosine ↑ Intersec ↑ 
AA-BP [0.81994,0.18006,0.0] [0.98728,0.0,0.01272] [0.98856,0.0,0.01144] [0.0729,0.91052,0.01658] [0.08252,0.90656,0.01092] [0.9983,0.0 0132,0.0 0 038] 

BFGS-LLD [0.86354,0.13642,0.0 0 0 04] [0.99122,0.0,0.00878] [0.97166,0.0,0.02834] [0.19312,0.80148,0.0054] [0.00886,0.99114,0.0] [0.97928,0.02072,0.0] 

CPNN [0.85898,0.13526,0.00576] [0.96268,6e −05,0.03726] [0.96984,0.0,0.03016] [0.01672,0.7523,0.23098] [0.01636,0.89426,0.08938] [0.87768,0.00112,0.1212] 

AA-kNN [0.97736,0.02264,0.0] [0.93434,8e −05,0.06558] [0.84968,0.0,0.15032] [0.07052,0.9134,0.01608] [0.17522,0.79884,0.02594] [0.96672,0.01624,0.01704] 

IIS-LLD [0.64526,0.35474,0.0] [0.96464,0.0,0.03536] [0.96538,0.0,0.03462] [0.26464,0.67342,0.06194] [0.0611,0.9204,0.0185] [0.98112,0.00128,0.0176] 

LDSVR [0.85962,0.11018,0.0302] [0.83664,0.0,0.16336] [0.82926,0.0,0.17074] [0.01144,0.78422,0.20434] [0.01286,0.91122,0.07592] [0.82536,0.0063,0.16834] 

LDML [0.0022,0.9978,0.0] [0.80474,0.0 0522,0.190 04] [0.90786,0.0,0.09214] [0.01988,0.91868,0.06144] [0.0 093,0.98926,0.0 0144] [0.61836,0.37936,0.00228] 

Table 15 

Performance comparison of 7 LDL algorithms on 10 real-world datasets without ground-truth label distributions [27] using 

Hamming loss ↓ . 
Algorithms AA-BP LDSVR CPNN AA-kNN IIS-LLD LDML LDML-R 

Yeast 1.0000 (6.5) 0.3037 (4) 0.6964 (5) 0.2297 (3) 1.0000 (6.5) 0.1939 (1) 0.1950(2) 

Emotions 1.0000 (6.5) 0.2996 (3) 0.7097 (5) 0.3006 (4) 1.0000 (6.5) 0.2388 (2) 0.2350(1) 

Medical 1.0000 (7) 0.9721 (4) 0.9732 (5) 0.0184 (1) 0.9959 (6) 0.0279(3) 0.0277(2) 

Cal500 1.0000 (6.5) 0.1488 (1.5) 0.8522 (5) 0.1814 (4) 1.0000 (6.5) 0.1488 (1.5) 0.1489(3) 

Birds 1.0000 (6.5) 0.0517 (2.5) 0.9491 (5) 0.0748 (4) 1.0000 (6.5) 0.0517 (2.5) 0.0510(1) 

Image 1.0000 (6.5) 0.7516 (4) 0.7522 (5) 0.2158 (2) 1.0000 (6.5) 0.2054 (1) 0.2484(3) 

Scene 1.0000 (6.5) 0.1810 (4) 0.8194 (5) 0.1134 (1) 1.0000 (6.5) 0.1559 (2) 0.1809(3) 

Enron 1.0000 (7) 0.0677 (2.5) 0.9339 (5) 0.0705 (4) 0.9919 (6) 0.0677 (2.5) 0.0668(1) 

Corel5k 1.0000 (6.5) 0.9907 (4.5) 0.9907 (4.5) 0.0114 (3) 1.0000 (6.5) 0.0093 (2) 0.0092(1) 

Bibtex 1.0000 (6.5) 0.0149 (2.5) 0.9853 (5) 0.0165 (4) 1.0000 (6.5) 0.0149 (2.5) 0.0125(1) 

Average rank 6.6000 (7) 3.2500 (4) 4.9500 (5) 3.0000 (3) 6.4000 (6) 2.0000 (2) 1.8000(1) 

Table 16 

Performance comparison of 7 LDL algorithms on 10 real-world datasets without ground-truth label distributions [27] 

using ranking loss ↓ . 
Algorithms AA-BP LDSVR CPNN AA-kNN IIS-LLD LDML LDML-R 

Yeast 0.5915 (6) 0.4974 (4) 0.9708 (7) 0.5054 (5) 0.4809 (3) 0.2945 (1) 0.3038(2) 

Emotions 0.9453 (7) 0.5899 (5) 0.8511 (6) 0.4283 (4) 0.3877 (3) 0.1814 (1) 0.2345(2) 

Medical 0.8245 (6) 0.5000 (4) 0.8982 (7) 0.5039 (5) 0.3082 (2) 0.1059 (1) 0.4970(3) 

Cal500 0.5126 (5) 0.5005 (4) 0.8621 (7) 0.7750 (6) 0.4937 (3) 0.4617 (1) 0.4836(2) 

Birds 0.6485 (6) 0.4374 (4) 0.3132 (1) 0.7335 (7) 0.4157 (3) 0.3159 (2) 0.4858(5) 

Image 0.7320 (6) 0.5000 (5) 0.8892 (7) 0.3139 (2) 0.3819 (3) 0.1402 (1) 0.4623(4) 

Scene 0.7328 (6) 0.6556 (4) 0.8609 (7) 0.1838 (2) 0.6753 (5) 0.0612 (1) 0.4766(3) 

Enron 0.6236 (5) 0.4741 (3) 0.9621 (7) 0.8563 (6) 0.5165 (4) 0.3126 (2) 0.3124(1) 

Corel5k 0.5134 (6) 0.5000 (5) 0.4990 (4) 0.9444 (7) 0.4954 (2) 0.4436 (1) 0.4982(3) 

Bibtex 0.5243 (5) 0.5012 (4) 0.6954 (6) 0.7416 (7) 0.0000 (1) 0.1017 (2) 0.4994(3) 

Average rank 5.8000 (6) 4.2000 (4) 5.9000 (7) 5.1000 (5) 2.9000 (3) 1.3000 (1) 2.8000 (2) 

Table 17 

Performance comparison of 7 LDL algorithms on 10 real-world datasets without ground-truth label distributions [27] using one 

error ↓ . 
Algorithms AA-BP LDSVR CPNN AA-kNN IIS-LLD LDML LDML-R 

Yeast 0.7857 (6.5) 0.4286 (4) 0.0714 (1.5) 0.4999 (5) 0.7857 (6.5) 0.0714 (1.5) 0.2857(3) 

Emotions 0.0000 (1) 0.6667 (7) 0.3333 (3) 0.4899 (5) 0.3333 (3) 0.3333 (3) 0.5000(6) 

Medical 1.0000 (7) 0.5000 (5) 0.4290 (4) 0.1579 (2) 0.5789 (6) 0.3684 (3) 0.1421(1) 

Cal500 0.8678 (7) 0.8563 (6) 0.3333 (2) 0.5862 (3) 0.8046 (5) 0.7471 (4) 0.1494(1) 

Birds 0.8421 (6) 0.4990 (3) 0.8421 (4.5) 0.4737 (2) 0.9474 (7) 0.8421 (4.5) 0.0526(1) 

Image 1.0000 (7) 0.5000 (5) 0.5470 (6) 0.4990 (4) 0.2000 (2.5) 0.0000 (1) 0.2000(2.5) 

Scene 1.0000 (6.5) 0.4999 (4) 0.3333 (3) 0.5000 (5) 1.0000 (6.5) 0.0000 (1) 0.1667(2) 

Enron 0.9804 (7) 0.9615 (6) 0.5050 (3) 0.4808 (2) 0.9423 (5) 0.6923 (4) 0.0566(1) 

Corel5k 0.9865 (7) 0.4890 (4) 0.4400 (2) 0.4419 (3) 0.9797 (6) 0.9390 (5) 0.0116(1) 

Bibtex 0.9937 (7) 0.9497 (5) 0.9874 (6) 0.7688 (3) 0.8428 (4) 0.3396 (2) 0.0063(1) 

Average rank 6.2000 (7) 4.9000 (5) 3.5000 (4) 3.4000 (3) 5.1500 (6) 2.9000 (2) 1.9500 (1) 
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emenyi test. Table 22 summarizes the Nemenyi test results for 

his set of experiments. 

Wilcoxon signed-ranks test [33] is next used as the statisti- 

al test to show whether the LDML-R performs significantly better 

han the comparing algorithms. Table 23 summarizes the statistical 

est results and the p-values for the corresponding tests are also 

hown in the brackets. As shown in Table 23 , the LDML-R achieves 
11 
tatistically better performance than the AA-BP for all the five met- 

ics, and it is better than the CPNN, AA-kNN, IIS-LLD and LDSVR in 

ajority of the metrics. The LDML-R is also better then the LDML 

n 2 metrics, and they are similar (TIE) in the other 3 metrics. 

In addition, Bayesian signed-rank test [34] results are given in 

able 24 . It can be seen that that the LDML-R is statistically better 

han the AA-BP, CPNN, AA-kNN, IIS-LLD and LDSVR in almost all 
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Table 18 

Performance comparison of 7 LDL algorithms on 10 real-world datasets without ground-truth label distributions [27] using 

coverage ↓ . 
Algorithms AA-BP LDSVR CPNN AA-kNN IIS-LLD LDML LDML-R 

Yeast 1.4925 (7) 0.8982 (6) 0.8845 (4) 0.8794 (3) 0.8976 (5) 0.8447 (1) 0.8629(2) 

Emotions 0.4125 (7) 0.1568 (2) 0.1703 (5) 0.1661 (4) 0.1643 (3) 0.1523 (1) 0.1723(6) 

Medical 0.5036 (7) 0.2087 (4.5) 0.2081 (3) 0.1374 (1) 0.1562 (2) 0.2087 (4.5) 0.3398(6) 

Cal500 0.2332 (7) 0.2284 (1) 0.2316 (6) 0.2315 (5) 0.2286 (2) 0.2288 (3) 0.2302(4) 

Birds 0.2702 (2) 0.3014 (7) 0.2309 (1) 0.2899 (6) 0.2771 (4) 0.2809 (5) 0.2704(3) 

Image 0.9980 (7) 0.9608 (1.5) 0.9648 (4) 0.9644 (3) 0.9872 (6) 0.9686 (5) 0.9608(1.5) 

Scene 1.2093 (7) 1.0843 (5) 1.0773 (4) 1.0505 (2) 1.1597 (6) 0.9900 (1) 1.0690(3) 

Enron 1.0148 (7) 0.4936 (3) 0.5028 (5) 0.4956 (4) 0.4891 (2) 0.4405 (1) 0.7529(6) 

Corel5k 1.6825 (7) 1.5023 (4.5) 1.5023 (4.5) 1.5126 (6) 0.1876 (3) 0.1836 (1) 0.1866(2) 

Bibtex 0.3562 (5) 0.3382 (3) 0.3598 (7) 0.3585 (6) 0.2068 (1) 0.2632 (2) 0.3477(4) 

Average rank 6.3000 (7) 3.7500 (3.5) 4.3500 (6) 4.0000 (5) 3.4000 (2) 2.4500 (1) 3.7500 (3.5) 

Table 19 

Performance comparison of 7 LDL algorithms on 10 real-world datasets without ground-truth label distributions [27] using 

average precision ↑ . 
Algorithms AA-BP LDSVR CPNN AA-kNN IIS-LLD LDML LDML-R 

Yeast 0.2675 (7) 0.3965 (4) 0.3064 (6) 0.4779 (3) 0.3125 (5) 0.5123 (2) 0.6910(1) 

Emotions 0.3422 (6) 0.4900 (4) 0.3123 (7) 0.4926 (3) 0.4220 (5) 0.6496 (2) 0.6743(1) 

Medical 0.0186 (7) 0.0480 (5) 0.0467 (6) 0.3692 (3) 0.2035 (4) 0.9520 (2) 0.9597(1) 

Cal500 0.1655 (6) 0.1676 (5) 0.1598 (7) 0.1705 (3) 0.1687 (4) 0.8417 (1) 0.8416(2) 

Birds 0.0653 (7) 0.0759 (6) 0.1013 (5) 0.1131 (4) 0.1151 (3) 0.9353 (1) 0.9348(2) 

Image 0.1650 (7) 0.2729 (5) 0.2645 (6) 0.5954 (3) 0.3663 (4) 0.7219 (2) 0.7271(1) 

Scene 0.1247 (7) 0.7859 (3) 0.2954 (5) 0.7649 (4) 0.1615 (6) 0.8354 (1) 0.7892(2) 

Enron 0.0522 (7) 0.0747 (6) 0.0828 (4) 0.1201 (3) 0.0812 (5) 0.9175 (2) 0.9217(1) 

Corel5k 0.0140 (6) 0.0141 (4.5) 0.0141 (4.5) 0.0252 (3) 0.0137 (7) 0.9859 (2) 0.9873(1) 

Bibtex 0.0155 (6) 0.0226 (4) 0.0182 (5) 0.1111 (3) NaN (7) 0.9829 (1) 0.9824(2) 

Average rank 6.6000 (7) 4.6500 (4) 5.5500(6) 3.2000 (3) 5.0000 (5) 1.6000 (2) 1.4000 (1) 

Table 20 

Ranking performance of 7 LDL algorithms averaged over 

10 datasets without ground-truth label distributions 

[27] and 5 multilabel classification measures. 

Algorithm Average rank 

LDML 2.05 (1) 

LDML-R 2.34 (2) 

AA-kNN 3.74 (3) 

LDSVR 4.15 (4) 

IIS-LLD 4.57 (5) 

CPNN 4.85 (6) 

AA-BP 6.30 (7) 

Table 21 

Friedman statistics F F , in terms of each MLL evalu- 

ation metric and the critical value at a significance 

level of 0.05 (comparing algorithms 7, datasets 10). 

Evaluation metric F F Critical value 

Hamming loss 51.3593 

ranking loss 16.3012 

one error 7.7944 2.272 

coverage 3.7919 

average precision 50.2244 
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Fig. 8. CD diagrams given CD = 2 . 8490 of Nemenyi tests on the 7 algorithms for 

Hamming loss evaluation metric. 

Table 22 

Summary of Nemenyi test results for multilabel classification experiments. 

Evaluation metric Statistically significant 

Hamming loss Top ranking LDML-R superior over CPNN, 

IIS-LLD, AA-BP 

ranking loss Top ranking LDML superior over LDSVR, 

AA-kNN, AA-BP, CPNN 

one error Top ranking LDML-R superior over LDSVR, 

IIS-LLD, AA-BP 

coverage Top ranking LDML superior over BP-MLL, 

AA-BP 

average precision Top ranking LDML-R superior over LDSVR, 

IIS-LLD, CPNN, AA-BP 
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he cases with only two exceptions. For the coverage metric, the 

A-kNN seems similar with the LDML-R and the IIS-LLD seems to 

erform better than the LDML-R. Compared with LDML, the LDML- 

 has one WIN, two TIEs and two LOSEs. 

.4. Performance comparison with state-of-the-art MLL algorithms 

In the previous set of multilabel classification experiments, we 

ompare our the LDML-R and LDML with some existing state-of- 

he-art LDL algorithms. We now further compare our LDML-R and 

DML with the five algorithms, namely, BP-MLL [28] , ML 2 [13] , ML- 
12 
NN [29] , MLNB [30] , and MLFE [31] , using the same 10 real-world

atasets of Table 2 with the same five MLL metrics. 

The experimental results are listed in Table 25 . In terms of av- 

rage ranking, MLFE ranks the first with the best performance in 

3 cases, our LDML ranks the second achieving the best perfor- 

ance in 11 cases, and our LDML-R ranks the third achieving the 

est performance in 10 cases. In terms of multilabel classification 

erformance, it seems that our proposed LDL algorithms may have 

ost their edge over best MLL algorithms. This is because for classi- 

cation the label enhancement algorithms, such as our LDML and 

DML-R, have to convert the predicted label distribution results 
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Table 23 

Wilcoxon signed-ranks test among 7 algorithms in terms of Hamming loss, ranking loss, one error, coverage and average 

precision (significance level α = 0 . 05 ; p-values shown in the brackets). 

LDML-R versus 

Evaluation metric 

Hamming loss Ranking loss One error Coverage Average precision 

AA-BP WIN[1.95E −3] WIN[1.95E −3] WIN[5.86E −3] WIN[3.91E −3] WIN[1.95E −3] 

CPNN WIN[1.95E −3] WIN[5.86E −3] WIN[2.73E −2] TIE[9.22E −1] WIN[1.95E −3] 

AA-kNN WIN[5.57E −1] TIE[8.40E −2] WIN[3.91E −3] TIE[9.22E −1] WIN[1.95E −3] 

IIS-LLD WIN[1.95E −3] TIE[8.46E −1] WIN[1.09E −2] TIE[6.25E −1] WIN[3.91E −3] 

LDSVR WIN[5.86E −3] WIN[2.73E −2] WIN[1.95E −3] TIE[9.53E −1] WIN[1.95E −3] 

LDML TIE[1.0] WIN[3.91E −3] TIE[8.40E −2] WIN[3.71E −2] TIE[2.32E −1] 

Table 24 

Bayesian signed-rank test among 7 algorithms in terms of Hamming loss, ranking loss, one error, coverage and average precision ( rope = 0 . 01 ; Default prior strength: 0.6). 

LDML-R versus 

Evaluation metric 

Hamming loss ↓ Ranking loss ↓ One error ↓ Coverage ↓ Average precision ↑ 
AA-BP [1.0,0.0,0.0] [1.0,0.0,0.0] [1.0,0.0,0.0] [0.99356,0.00644,0.0] [1.0,0.0,0.0] 

CPNN [0.99998,2e −05,0.0] [0.9996,0.0001,0.0003] [0.9965,4e −05,0.00346] [0.25768,0.24178,0.50054] [1.0,0.0,0.0] 

AA-kNN [0.65222,0.15744,0.19034] [0.97668,0.00026,0.02306] [0.99992,6e −05,2e −05] [0.3038,0.36444,0.33176] [1.0,0.0,0.0] 

IIS-LLD [1.0,0.0,0.0] [0.57546,0.00348,0.42106] [0.99976,0.0001,0.00014] [0.25142,0.12512,0.62346] [0.96306,0.03694,0.0] 

LDSVR [0.87944,0.12056,0.0] [0.94478,0.04542,0.0098] [1.0,0.0,0.0] [0.4565,0.21146,0.33204] [0.99994,6e −05,0.0] 

LDML [0.0,0.81986,0.18014] [0.0,0.00108,0.99892] [0.96696,6e −05,0.03298] [4e −05,0.09082,0.90914] [0.23364,0.70158,0.06478] 

Table 25 

MLL performance comparison of 6 algorithms on 10 real-world datasets of Table 2 . 

Yeast Emotions Medical Cal500 Birds Image Scene Enron Corel5k Bibtex 

Algorithm Hamming loss ↓ 
ML 2 0.2073 0.2388 0.0114 0.1578 0.0636 0.1642 0.0847 0.0546 0.0098 0.0126 

ML-kNN 0.1980 0.2706 0.0153 0.1416 0.0546 0.1862 0.0989 0.0620 0.0094 0.0136 

MLNB 0.2166 0.2804 0.0339 0.1395 0.0779 0.2300 0.1299 0.1145 0.0145 0.0824 

MLFE 0.2038 0.2434 0.0112 0.1549 0.0615 0.1616 0.0903 0.0543 0.0101 0.0124 

BP-MLL 0.4500 0.2987 0.0290 0.1472 0.0683 0.3056 0.2904 0.0682 0.0094 0.0160 

LDML 0.1939 0.2388 0.0279 0.1488 0.0517 0.2054 0.1559 0.0677 0.0093 0.0149 

LDML-R 0.1950 0.2350 0.0277 0.1489 0.0510 0.2484 0.1809 0.0668 0.0092 0.0125 

Algorithm Ranking loss ↓ 
ML 2 0.3022 0.2228 0.1084 0.4721 0.3288 0.1467 0.0580 0.3210 0.4177 0.0897 

ML-kNN 0.1715 0.2724 0.0540 0.1928 0.3070 0.1927 0.0931 0.1220 0.2663 0.2234 

MLNB 0.2323 0.2150 0.0599 0.1927 0.2157 0.2420 0.1124 0.1768 0.1267 0.1584 

MLFE 0.1777 0.2061 0.0209 0.2089 0.3210 0.1443 0.0713 0.0958 0.3156 0.0914 

BP-MLL 0.4450 0.4803 0.2445 0.1996 0.3964 0.7956 0.5992 0.3738 0.2695 0.4764 

LDML 0.2945 0.1814 0.1059 0.4617 0.3159 0.1402 0.0612 0.3126 0.4436 0.1017 

LDML-R 0.3038 0.2345 0.4970 0.4836 0.4858 0.4623 0.4766 0.3124 0.4982 0.4994 

Algorithm One error ↓ 
ML 2 0.2857 0.5000 0.3421 0.0805 0.7895 0.2000 0.0000 0.6731 0.9360 0.3899 

ML-kNN 0.2345 0.4213 0.2492 0.1190 0.7356 0.3600 0.2425 0.3921 0.7892 0.6225 

MLNB 0.4170 0.4848 0.4234 0.1190 0.5517 0.4390 0.2851 0.5233 0.8804 0.5876 

MLFE 0.2356 0.3708 0.1471 0.1984 0.7471 0.2680 0.2157 0.2608 0.7832 0.3710 

BP-MLL 0.7034 0.7022 0.4024 0.1071 0.7989 0.6710 0.8269 0.2642 0.9716 0.4547 

LDML 0.0714 0.3333 0.3684 0.7471 0.8421 0.0000 0.0000 0.6923 0.9390 0.3396 

LDML-R 0.2857 0.5000 0.1421 0.1494 0.0526 0.2000 0.1667 0.0566 0.0116 0.0063 

Algorithm Coverage ↓ 
ML 2 0.8749 0.1600 0.5236 0.2302 0.2836 0.9510 0.9282 0.4523 0.1813 0.2472 

ML-kNN 0.6414 0.2247 0.3441 0.1319 0.3606 1.0420 0.5686 0.1631 0.1978 0.5723 

MLNB 0.2499 0.2871 0.1925 0.1346 0.2695 1.2450 0.6564 0.2313 0.2102 0.3819 

MLFE 0.6503 0.1887 0.1475 0.1354 0.3763 0.8410 0.4582 0.1495 0.2238 0.2586 

BP-MLL 0.8990 0.3089 0.2955 1.3386 0.4415 2.1460 2.0761 0.2369 0.1980 0.7356 

LDML 0.8447 0.1523 0.2087 0.2288 0.2809 0.9686 0.9900 0.4405 0.1836 0.2632 

LDML-R 0.8629 0.1723 0.3398 0.2302 0.2704 0.9608 1.0690 0.7529 0.1866 0.3477 

Algorithm Average precision ↑ 
ML 2 0.8228 0.7764 0.9806 0.7758 0.6430 0.8555 0.9329 0.9056 0.7059 0.9261 

ML-kNN 0.6642 0.7142 0.7695 0.5054 0.6173 0.8187 0.9108 0.5512 0.5233 0.6528 

MLNB 0.6936 0.6807 0.5227 0.5120 0.6955 0.7788 0.8993 0.5569 0.3559 0.8209 

MLFE 0.6996 0.7901 0.8745 0.5377 0.7047 0.8617 0.9385 0.6581 0.5549 0.8672 

BP-MLL 0.4297 0.5161 0.2081 0.4783 0.2460 0.5111 0.4200 0.2057 0.2012 0.0659 

LDML 0.5123 0.6496 0.9520 0.8417 0.9353 0.7219 0.8354 0.9175 0.9859 0.9829 

LDML-R 0.6910 0.6743 0.9597 0.8416 0.9348 0.7271 0.7892 0.9217 0.9873 0.9824 

13
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Table 26 

Wilcoxon signed-ranks test of LDML-R versus 5 state-of-art MLL algorithms and LDML in terms of Hamming loss, rank- 

ing loss, one error, coverage and average precision (significance level α = 0 . 05 ; p-values shown in the brackets). 

LDML-R 

Evaluation metric 

Hamming loss Ranking loss One error Coverage Average precision 

ML 2 TIE[6.95E −1] WIN[5.86E −3] WIN[6.30E −2] TIE[4.41E −2] TIE[1.0] 

ML-kNN TIE[3.75E −3] WIN[3.91E −3] WIN[3.71E −2] TIE[6.95E −1] TIE[6.45E −2] 

MLNB TIE[2.75E −1] WIN[1.95E −3] WIN[9.77E −3] TIE[3.22E −1] TIE[8.40E −2] 

MLFE TIE[4.92E −1] WIN[1.95E −3] TIE[8.40E −2] WIN[4.88E −2] TIE[2.75E −1] 

BP-MLL WIN[1.37E −2] TIE[1.0] WIN[3.91E −3] TIE[8.40E −2] WIN[1.95E −3] 

LDML TIE[1.0] WIN[3.91E −3] TIE[8.40E −2] WIN[3.71E −2] TIE[2.32E −1] 

Table 27 

Bayesian signed-rank test among 7 algorithms in terms of Hamming loss, ranking loss, one error, coverage and average precision ( rope = 0 . 01 ; Default prior strength: 0.6). 

LDML-R versus 

Evaluation metric 

Hamming loss ↓ Ranking loss ↓ One error ↓ Coverage ↓ Average precision ↑ 
ML 2 [0.0048,0.69412,0.30108] [0.0,0.01082,0.98918] [0.94914,0.01896,0.0319] [0.10934,0.2716,0.61906] [0.48756,0.00022,0.51222] 

ML-kNN [0.04556,0.66948,0.28496] [2e −05,0.0,0.99998] [0.99406,0.0,0.00594] [0.30948,0.00336,0.68716] [0.98676,2e −05,0.01322] 

MLNB [0.81604,0.1186,0.06536] [0.0,2e −05,0.99998] [0.99962,2e −05,0.00036] [0.13698,0.0006,0.86242] [0.98706,0.0029,0.01004] 

MLFE [0.00014,0.74434,0.25552] [0.0,0.0,1.0] [0.98118,0.00022,0.0186] [0.00704,0.0001,0.99286] [0.92538,0.0005,0.07412] 

BP-MLL [0.76608,0.23392,0.0] [0.51472,4e −05,0.48524] [0.99996,0.0,4e −05] [0.97966,0.0,0.02034] [1.0,0.0,0.0] 

LDML [0.0,0.82062,0.17938] [0.0,0.00072,0.99928] [0.96578,2e −05,0.0342] [0.00012,0.0945,0.90538] [0.23802,0.69812,0.06386] 

Fig. 9. CD diagrams given CD = 2 . 8490 of Nemenyi tests on the 7 algorithms for 

ranking loss evaluation metric. 

Fig. 10. CD diagrams given CD = 2 . 8490 of Nemenyi tests on the 7 algorithms for 

one error evaluation metric. 
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Fig. 11. CD diagrams given CD = 2 . 8490 of Nemenyi tests on the 7 algorithms for 

coverage evaluation metric. 

Fig. 12. CD diagrams given CD = 2 . 8490 of Nemenyi tests on the 7 algorithms for 

average precision evaluation metric. 
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ack to logical labels by binarization, which has inherent defects. 

y contrast, the state-of-the-art MLL algorithms can direct output 

ogical label results for classification. 

We also employ Wilcoxon signed-ranks test [33] to test the 

tatistical relationship between LDML-R and the other algorithms, 

nd the corresponding test results are summarized in Table 26 . As 

hown in Table 26 , the LDML-R achieves statistically superior per- 

ormance against the ML 2 , ML-kNN and MLNB in the rank loss and 

ne error metrics, and it is better over the BP-MLL in Hamming 

oss, one error and average precision, while it achieves statistically 

uperior performance over the MLFE ans LDML in the rank loss and 

overage metrics. It can be seen that our proposed LDML-R still of- 

ers some advantage in multilabel classification over the state-of- 

he-art MLL algorithms. 

Bayesian signed-rank test [34] results are given in Table 27 . 

ompared with the ML 2 , the LDML-R has 1 WIN, 1 TIE and 3 

OSEs. Compared with the ML-kNN and MLFE, our LDML-R has 2 
14 
INs, 1 TIE and 2 LOSEs. Compared with the MLNB, the LDML-R 

chieves 3 WINs and 2 LOSEs, while it achieves 5 WINs over the 

P-MLL. In addition, the LDML-R has 1 WIN, 2 TIEs and 2 LOSEs 

hen compared with the LDML. 

. Conclusions 

We have proposed a new label distribution manifold learning 

LDML) approach to learn the unknown label distributions of mul- 

ilabel data. Our contribution has been three-fold. First, we have 

roposed a manifold learning based feature extraction to extract 

he accurate and reduced-dimension features of data. Second, we 

ave proposed two algorithms to estimate the label distributions 

ssociated with the extracted features, one being the kernel regres- 

ion and the other being the LTSA based regression. Third, using 
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he extracted reduced-dimension features and associated label dis- 

ribution estimates to form the enhanced maximum entropy model 

as yielded the two algorithms, the LDML associated with the ker- 

el regression and the LDML-R associated with the LTSA regression 

o enable us to accurately estimate the underlying labels distribu- 

ions of the multilabel data. Experimental results involving 15 real- 

ife datasets with ground-truth label distributions have demon- 

trated that our proposed LDML-R algorithm offers the advantages 

n label distribution estimation accuracy, compared with the latest 

DL methods. Experimental results involving 10 real-life datasets 

ithout ground-truth label distributions have demonstrated the 

xcellent multilabel classification performance of our LDML-R al- 

orithm compared with the state-of-the-art MLL algorithms. 
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