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Microwave heating process

Characteristics

Generate thermal energy directly
due to internal friction of
molecules under the effect of
electromagnetic field.

Rapid heat transfer and
pollution-free environment.

Obstructions

Temperature runaway often
occurs.

Temperature model based on
first-principle is hard to
establish.

The process is highly nonlinear
and time-varying.
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Data-based modeling methods

Modeling microwave heating process from data offers a practical
alternative.

Data-based modeling

Batch learning

Sequential learning

Global model learning

Multiple models 
learning

Batch learning

Model learns from batch of off-line
data.

Sequential learning

Model incrementally learns from data
streams over time.
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Online sequential learning

Online sequential extreme learning
machine (OS-ELM) a

Dense hidden nodes are required
to cover the input data space.

Online weight adaptation is
computationally costly due to
the large model size.

Only model weights are updated.

a
A fast and accurate online sequential learning

algorithm for feedforward networks, IEEE Trans.
Neural Networks, Nov. 2006.

Adaptive multiple modelling a

A set of sub-models are
initialised on the same data set.

The structure of sub-models are
fixed during online operation.

a
A new adaptive multiple modelling approach

for non-linear and non-stationary systems, Int. J.
Systems Science, Oct. 2014.

Problem

Such leaner cannot capture the newly emerged process dynamics.

T. Liu et al.
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Adaptation of local linear models

iniW sftW

Samples

inie sfte

Local model construction

ŷini = fini
(
Xini

)
= Φβ

eini = yini − fini
(
Xini

)
esft = ysft − fini

(
Xsft

)
Construct local model and
estimate errors for consecutive
windows.

Two null hypotheses

Hµ
0 : µini = µsft

Hσ2

0 : σ2
sft = σ2

ini

Construct two hypotheses testing
to judge whether two data
windows are different or not.

Accepting condition

|T | < λt and χ2 < λχ

Wini and Wsft are assumed to
be different if this condition is
violated, where
T =

√
W
(
µsft − µini

)/
σsft,

χ2 = (W − 1)σ2
sft

/
σ2
ini
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Adaptation of local linear models

New local model detection

iniW sftW

Samples

inie sfte

Add new local model if the
consecutive windows are
significantly different.

Redundant local model deletion

1W
newW

Samples

1LW  LW

Delete the local model that is
similar to the new model from
the local model set {fl}L−1

l=1 .

Advantage

Maintain highly divers and redundancy-free local model set.

T. Liu et al.
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Adaptation of model prediction

Selective ensemble learning framework

Local model number
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three questions must be answered

how to quantify the generalization ability of each local model given the
process input x(tnext)?

how to determine which models should be selected and which models
should be filtered out?

how to make the ensemble of those selected models appropriately?

T. Liu et al.
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Adaptation of model prediction

Generalization ability

Modeling error vector of the lth local linear model fl on the latest p data
points {x(t− i), y(t− i)}p−1

i=0

el(t− i) = y(t− i)− fl(x(t− i)), 0 ≤ i ≤ p− 1

Performance metric

Jl(t) = ‖el(t)‖2

Normalize the performance metrics

J̄l(t) =
Jl(t)

Jlmax(t)
, 1 ≤ l ≤ L

T. Liu et al.
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Adaptation of model prediction

Model selection

The best local model

lmin = arg min
1≤l≤L

J̄l(t)

Other local models whose performance metrics are below a given threshold
0 < ε ≤ 1

Γ ={l1, lm|2 ≤ m ≤M,Jlm(t) ≤ ε, 2 ≤ lm ≤ L}

Local model number
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Adaptation of model prediction

Ensemble prediction and adaptation

Output estimation based on summation of selected models

ŷ(t− i) =

M∑
m=1

θm(t)ŷlm(t− i), 0 ≤ i ≤ p− 1

constraint :

M∑
m=1

θm(t) = 1

Estimation errors

e(t− i) =y(t− i)− ŷ(t− i), 0 ≤ i ≤ p− 1

Construct the least squares cost function

V (t) =
1

2

p−1∑
i=0

e2(t− i)
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Adaptation of model prediction

Ensemble prediction and adaptation

Optimization problem

min
θ

1

2
θT(t)Ē(t)θ(t)

s.t.
M∑
m=1

θm(t) = 1

Lagrangian function for the optimization

L
(
θ(t); γ

)
=

1

2
θT(t)Ē(t)θ(t) + γ

(
1T
Mθ(t)− 1

)
Letting ∂

∂θ(t)
L = 0M yields

Ē(t)θ(t) + γ1M = 0M

θ̃(t) = Ē−1(t)1M
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Algorithm summary

The adaptation of local models can be performed both off-line
and on-line.

The choice of window size W trades off the ability of
capturing local characteristics and the computational
complexity.

The choice of innovation length p trades off the
computational complexity and the robustness against
noise.

The choice of threshold ε trades off the modeling accuracy
and the computational complexity.

T. Liu et al.
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Process description

Microwave generator

Waveguides

Temperature sensors

Multimode cavity

Conveyor belt

PLC Host computer

System inputs: microwave
powers (five microwave sources),
conveyor speed

System outputs: temperature
measured by fiber optical sensors
at different positions

Mathematical model

y(t) =fnl−ns(x(t); t)

model inputs : x(t) =
[
y(t− 1) uT(t)

]T ∈ R7

system inputs : u(t) =
[
up1(t) up2(t) up3(t) up4(t) up5(t) v(t)

]T
T. Liu et al.

Multiple Local Model Learning



Background and Motivation Proposed multiple local model learning Microwave heating process case study Conclusions

Data description

We use datasets from the three sensors, and each data set contains 3,000
data samples. we use the first 1,000 samples for model training, and the
last 2,000 samples for online prediction.

Normalization

ūpi(t) =
upi(t)

1000
, 1 ≤ i ≤ 5

ȳ(t) =
y(t)− ymin

ymax − ymin

Performance index

RMSE(t) =

√√√√1

t

t∑
i=1

(
y(i)− ŷ(i)

)2
MAE(t) =

1

t

t∑
i=1

∣∣y(i)− ŷ(i)
∣∣
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Parameter sensitive analysis
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window size

a small window size W can improve the ability of capturing local
characteristics, obtained at large number of local models, and vice verse.
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Parameter sensitive analysis
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innovation length

a large p can improve the model robustness against noise, but obtained at
heavy computation, and vice verse.
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Parameter sensitive analysis
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threshold

a large ε can improve the modeling accuracy with more local models
combined, thus increasing the computation time, and vice verse.
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Comparative study

online RMSE learning curves of three models:
ELM (RBF nodes), ELM (Sigmoid nodes), Proposed
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Comparative study

Table: Comparison of online prediction and adaptive modeling performance for
the OS-ELM and the proposed multiple local model learning approach (ACTpS:
Averaged computation time per sample)

Model RMSE MAE ACTpS (ms) Models

OS-ELM (sigmoid) 2.9911 0.2058 0.18 100
0.2520 0.1427 1.39 300
0.2370 0.1427 5.98 500

OS-ELM (RBF) 1.3952 0.3476 0.56 100
0.9209 0.2006 2.98 300
0.4353 0.1676 10.69 500

Proposed 0.1953 0.1411 0.66 16-34

T. Liu et al.
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Conclusions

Our proposed multiple local model learning approach automatically
identifies the newly emerging process state during online operation and
fits a local linear model to the newly identified process state.

Adaptive modeling is achieved by a selective ensemble strategy which
selects a number of best local linear models from the local model set
and optimally combines them to produce the online prediction.

In the application to a microwave heating system, our proposed
approach has been demonstrated to be capable of fast tracking the
nonlinear and time-varying characteristics of the underlying system.

T. Liu et al.
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