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Abstract— We consider a class of networked control sys-
tems (NCSs) where the plant has time-varying norm-bounded
parameter uncertainties, the network only provides a limited
number of simultaneous accesses for the sensors and actuators,
and the packet dropouts occur randomly in the network. For
this class of NCSs with uncertainties and access constraints
as well as packet dropouts, we derive sufficient conditions in
the form of linear matrix inequalities that guarantee robust
stochastic stabilisation and synthesis of H∞ controller. An
example is provided to illustrate our proposed method.

Index Terms— Networked control systems, norm-bounded
uncertainties, access constraints, packet dropouts, robust H∞
control

I. INTRODUCTION

Networked control systems (NCSs) have attracted much
attention recently [1], [2], [3], [4], [5]. An NCS is a control
system in which the feedback control loop is closed via a
shared communication network. Compared to conventional
point-to-point system connection, an NCS offers several
advantages, such as low installation cost, reducing system
wiring, simple system diagnosis and easy maintenance. How-
ever, some inherent shortcomings of the NCS, such as access
constraints, packet dropouts and packet delays, will degrade
performance of NCSs or even cause instability. Access
constraints refer to scenarios where simultaneous access to
all the sensors and actuators is lacked. The communication
sequence policy under access constraints is first taken into
account in a stabilisation problem [6]. This policy is further
studied for LQG control [7], [8]. In [9], an H∞ control
synthesis with the periodic sequencing scheme is proposed.
Due to network or system constraints, the multiple-packet
transmission policy is often required. For example, a packet
exceeding the maximum packet size is broken into multiple
packets. In a distributed control system, each sensor or
control signal is transmitted via the individual packet. The
multiple-packet transmission policy is studied in [10], [11],
[12].

Packet dropouts can randomly occur due to node failures
or network congestion. Stochastic approaches are typically
adopted to establish mean square stability [13], [14]. Under
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such a stochastic approach, the packet dropout process is usu-
ally modeled as a Bernoulli process or a Markov chain, and
the system can be viewed as a special case of jump linear sys-
tem [11], [15], [16]. The optimal LQG control and Kalman
filter problems under lossy measurements are dealt in [3],
[17]. In some other works [18], [19], the NCSs with arbitrary
packet dropouts are modelled as switched systems. When
the system has parameter uncertainties, the standard H∞
control [20] cannot provide guaranteed H∞ performance
and stability. Robust H∞ control has been investigated for
both continuous-time and discrete-time systems [15], [21],
[22], [23]. All these references only consider the systems
with delays, such as state or network packet delays. In [9],
the author studies H∞ control problem under a periodic
sequencing transmission policy and random packet dropouts
for the nominal system. To the best of our knowledge, robust
H∞ control has not been studied for NCSs with access
constraints and packet dropouts.

The novel contribution of this paper is that we study
synthesis of robust stabilisation and design of H∞ control
for NCSs where the plant has time-varying norm-bounded
uncertainties and the network has access constants as well
as experiences random packet dropouts in both the sensor-to-
controller (S/C) connection and controller-to-actuator (C/A)
connection. The periodic communication sequence scheme
is adopted to solve the problem of limited access, while
the characteristics of packet dropouts is treated as random
switchings by a memoryless process. The controller employs
a plant model to estimate the plant state but when a multiple-
packet state transmission succeeds, the corresponding part of
the model state is updated by the plant state information.
Sufficient conditions are derived for synthesising robust
stochastic stabilisation controller and for designing robust
H∞ controller. These conditions are formulated in the form
of linear matrix inequalities (LMIs) that can be solved
by the existing numerical techniques [24]. Throughout this
contribution we adopt the following notational conventions.
R stands for real numbers and N for nonnegative integers.
W > 0 indicates that W is a positive-definite matrix. I
and 0 represent the identity and zero matrices of appropriate
dimensions, respectively, while `2[0,∞) defines the space of
square summable vector functions over [0,∞). The notation
∗ within a matrix denotes symmetric entries.

II. PROBLEM FORMULATION

The NCS P̂K , depicted in Fig. 1, contains a generalised
discrete-time plant P̂ and a discrete-time controller K̂ with
the control loop closed via a shared communication network.
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Fig. 1. Networked control system P̂K .

The plant P̂ with parameter uncertainties is described by




x(k + 1) = [A + ∆A(k)]x(k)
+[B + ∆B(k)]u(k) + Bww(k),

z(k) = Cx(k) + Du(k),
∀k ∈ N, (1)

where x(k) , [x1(k) · · · xn(k)]T ∈ Rn, u(k) ,
[u1(k) · · · um(k)]T ∈ Rm and z(k) ∈ Rq are the state,
input and controlled output vectors, respectively, w(k) ∈ Rp

is the disturbance input which belongs to `2[0,∞), i.e.,∑∞
k=0 wT(k)w(k) < ∞, A, B, Bw, C and D are the known

constant matrices of appropriate dimensions, while ∆A(k)
and ∆B(k) are the unknown matrices representing the time-
varying parameter uncertainties which satisfy the following
condition

[∆A(k) ∆B(k)] = M F(k) [Na Nb]. (2)

Here M, Na and Nb are the known constant matrices of ap-
propriate dimensions and F(k) is an unknown time-varying
matrix with FT(k)F(k) ≤ I. The network communication
is limited in the two ways: (i) due to access constraints it
cannot offer simultaneous communication for all the sensors
and actuators, and (ii) it imposes random packet dropouts.

The state of the plant is transmitted from the n sensors
to the controller in the form of packets under a multiple-
packet transmission policy where at any instant k ∈ N,
the state vector x(k) requires n packets for transmission,
one packet for each element of x(k). However, due to the
network access constraints, there are only sσ available output
channels in the S/C connection, where 1 ≤ sσ < n. That is,
only sσ of the n state variables can be transmitted to the
controller at instant k, while the other n− sσ state variables
are ignored. Similarly, we assume that the m actuators share
sρ input channels in the C/A connection to receive the control
input vector from the controller, where 1 ≤ sρ < m. This
specifies that only sρ of the m actuators can access the
input channels simultaneously at instant k. Based on these
assumptions on access constraints, we adopt the notations

of a communication sequence [7] to describe the network
access status of the plant state and input.

Definition 1: Let M̄, N̄ ∈ N with N̄ ≤ M̄ . An M̄ -to-
N̄ communication sequence is a map, σ̄(k): N 7→ {0, 1}M̄ ,
satisfying ‖σ̄(k)‖2 = N̄ , ∀k.

Considering the S/C connection, let σi(k), 1 ≤ i ≤ n,
denote the access status of the i-th state variable, xi(k),
at k. If σi(k) = 1, the i-th state variable is transmitted
to the controller; if σi(k) = 0, xi(k) is not transmitted to
the controller. This n-to-sσ communication sequence can be
represented by

σ(k) , [σ1(k) · · · σn(k)]T . (3)

Similarly, the network access status of the plant’s m inputs
is represented by the m-to-sρ communication sequence

ρ(k) , [ρ1(k) · · · ρm(k)]T . (4)

Thus, the communication scheme in Fig. 1 is represented
by the two memoryless system blocks Ss and Sa which are
specified by the two diagonal matrices

Ss
k , diag

[
σ1(k), · · · , σn(k)

]
, (5)

Sa
k , diag

[
ρ1(k), · · · , ρm(k)

]
, (6)

respectively, for each k ∈ N. To tackle the network access
constraints, the N -periodic sequence scheme is employed
which satisfies Ss

k = Ss
k+N and Sa

k = Sa
k+N , ∀k ∈ N, with

a given period N > 0. Now define

N , {0, · · · , N − 1},

mod(k, N) , r ∈ N , ∀k ∈ N. (7)

Then we have Ss
k = Ss

r and Sa
k = Sa

r .
Network packet dropouts occur in both the S/C and C/A

connections, which are represented by the system blocks
θs and θa in Fig. 1. Let θs

k, θa
k ∈ {0, 1}, k ∈ N, be

the indicators of the packet dropout in the S/C and C/A
connections, respectively, where a value 0 indicates that the
packet is dropped while a value 1 indicates that the packet
is transmitted successfully. The protocol of the network is
assumed to be TCP-like, in which there is acknowledgement
(ACK) of received packets, i.e. at each instant k, the network
sends an ACK signal to the controller to indicate whether the
current control input is received or not by the actuator. Note
that there is one step delay for the system block θa, since
the controller receives θa

k at the time step k + 1 rather than
k. It is obvious that

(θs
k+1, θ

a
k) ∈ Ŝ , {(0, 0), (1, 0), (0, 1), (1, 1)}. (8)

Next define the set S , {1, 2, 3, 4} and the one to one
mapping f : Ŝ → S as

θk = f(θs
k+1, θ

a
k) =





1, (θs
k+1, θ

a
k) = (0, 0),

2, (θs
k+1, θ

a
k) = (1, 0),

3, (θs
k+1, θ

a
k) = (0, 1),

4, (θs
k+1, θ

a
k) = (1, 1).

(9)



The network packet dropout process can be modelled by
this random switching system, which is specified by the
probability pi = Prob(θk = i) for i ∈ S.

The controller K̂, similar to the one employed in [5],
consists of the state feedback gain matrices Kr ∈ Rm×n,
r ∈ N , and the plant model. Thus the controller output is
given by

û(k) = Krx̂(k), r ∈ N , (10)

where x̂(k) ∈ Rn denotes the model state. Referring to
Fig. 1, if the packet transmission is successfully in the C/A
connection, u(k) = Sa

kû(k). If the packet is lost, the actuator
does nothing, i.e. u(k) = 0. Thus we have

u(k) = S̄a
kû(k), (11)

where
S̄a

k , θa
kS

a
k. (12)

Alternatively, if the packet is lost, the actuator may employ
the previous control input, i.e., u(k) = u(k−1). The analysis
of this compensation scheme requires a different problem
formulation and is not considered here. However, the both
schemes are natural compensation methods for input packet
dropout, and they are compared in [3], [8]. The plant model
is given by

x̂(k + 1) = Ax̂(k) + Bu(k). (13)

If the transmitted sσ plant state variables, Ss
k+1x(k + 1),

are dropped out, the model state vector x̂(k + 1) is updated
purely by (13). Otherwise, if the transmission succeeds, the
corresponding part of the model state, Ss

k+1x̂(k + 1), is set
to Ss

k+1x(k + 1), while the rest of the model states are still
updated according to (13). Thus

x̂(k + 1)
= θs

k+1S
s
k+1(A + ∆A(k))x(k) + θs

k+1S
s
k+1Bww(k)

+
(
S̄s

k+1A + (B + θs
k+1S

s
k+1∆B(k))S̄a

kKr

)
x̂(k)

=





Ss
k+1x(k + 1) + (I− Ss

k+1)
× (Ax̂(k) + Bu(k)), θs

k+1 = 1,
Ax̂(k) + Bu(k), θs

k+1 = 0,
(14)

where
S̄s

k+1 , I− θs
k+1S

s
k+1. (15)

Define e(k) = x(k) − x̂(k) and x(k) , [xT(k) eT(k)]T.
The state-space equation for the NCS P̂K is described by

[
x(k + 1)

z(k)

]
=

[
Ak,θk

Bk,θk

Ck,θk
0

] [
x(k)
w(k)

]
, (16)

∀k ∈ N, θk ∈ S , where

Ak,θk
,

[
A + ∆A(k) + (B + ∆B(k))S̄a

kKr

S̄s
k+1(∆A(k) + ∆B(k)S̄a

kKr)
−(B + ∆B(k))S̄a

kKr

S̄s
k+1(A−∆B(k)S̄a

kKr)

]
, (17)

Bk,θk
,

[
Bw

S̄s
k+1Bw

]
, (18)

Ck,θk
,

[
C + DS̄a

kKr −DS̄a
kKr

]
. (19)

Note that Ak,θk
can be written as Ar,i = Φr,i +

Mr+1F(k)Γr,i, for r ∈ N and i ∈ S, where

Φr,i =
[

A + BS̄a
rKr −BS̄a

rKr

0 S̄s
r+1A

]
, (20)

Γr,i =
[

Na + NbS̄a
rKr −NbS̄a

rKr

Na + NbS̄a
rKr −NbS̄a

rKr

]
, (21)

Mr+1 = diag
[
M, S̄s

r+1M
]
, (22)

F(k) = diag
[
F(k),F(k)

]
. (23)

It is easy to see that F
T
(k)F(k) ≤ I. Our objective is to es-

tablish criteria for synthesis of robust stochastic stabilisation
control and to design appropriate robust H∞ state feedback
controllers that guarantee robust stochastic stability of the
NCS P̂K .

III. ROBUST STABILISATION

Definition 2: (See [15], [23]) The NCS P̂K (16) with
w(k) ≡ 0 is said to be robustly stochastically stable if for
any initial condition x(0) ∈ R2n,

∞∑

k=0

E
[‖x(k)

∣∣x(0)‖2] < ∞ (24)

holds for all the admissible uncertainties ∆A(k) and ∆B(k),
where E[·] denotes the expectation.

The following lemma from [25] is useful for the proofs
of our main results.

Lemma 1: Let Z, U, H, G and F̃ be the real matrices
of appropriate dimensions such that G > 0 and F̃TF̃ ≤ I.
Then, for any scalar ε > 0 such that G − εUUT > 0, we
have

(Z + UF̃H)TG−1(Z + UF̃H)
≤ ZT(G− εUUT)−1Z + ε−1HTH.

Theorem 1: The NCS P̂K (16) with w(k) ≡ 0 is robustly
stochastically stable if there exist scalars εi > 0 for i ∈ S,
positive definite matrices Qr > 0 and Yr for r ∈ N such
that ∀r ∈ N the following LMIs are satisfied:



−Q̃r Π̃r,1 Π̃r,2 Π̃r,3 Π̃r,4

∗ Υ̃r+1,1 0 0 0
∗ ∗ Υ̃r+1,2 0 0
∗ ∗ ∗ Υ̃r+1,3 0
∗ ∗ ∗ ∗ Υ̃r+1,4




, Θr < 0,

(25)
where r is defined in (7), Mr+1 and S̄s

k+1 are given in (22)
and (15), while

Q̃r = diag
[
Qr,Qr

]
, (26)

Υ̃r+1,i = diag
[
εiMr+1M

T

r+1 − Q̃r+1, − εiI
]
, (27)

Π̃r,i =
√

pi

[
Φ̃

T

r,i Γ̃
T

r,i

]
, (28)

Φ̃r,i =
[

AQr + BS̄a
rYr −BS̄a

rYr

0 S̄s
r+1AQr

]
, (29)



Γ̃r,i =
[

NaQr + NbS̄a
rYr −NbS̄a

rYr

NaQr + NbS̄a
rYr −NbS̄a

rYr

]
, (30)

with i ∈ S. In this case, the state feedback gain matrices can
be chosen as Kr = YrQ−1

r .
Proof Let Pr = Q−1

r , then P̃r = Q̃−1
r . From (25), it is

easy to show that

Ψr+1,i , P̃−1
r+1 − εiMr+1M

T

r+1 > 0, ∀i ∈ S. (31)

Now for the NCS P̂K , construct the Lyapunov function

V (k) , xT(k)P̃rx(k), ∀k ∈ N. (32)

Noticing εi > 0, (22) and (31) as well as using Lemma 1,
we have

E[V (k + 1)− V (k)]

= xT(k)
[ ∑

i∈S
piA

T

r,iP̃r+1Ar,i − P̃r

]
x(k)

= xT(k)
[ ∑

i∈S
pi(Φr,i + Mr+1F(k)Γr,i)TP̃r+1

× (Φr,i + Mr+1F(k)Γr,i)− P̃r

]
x(k)

≤ xT(k)Θ̂rx(k), (33)

where

Θ̂r =
∑

i∈S
pi

(
ΦT

r,iΨ
−1
r+1,iΦr,i + ε−1

i ΓT
r,iΓr,i

)− P̃r. (34)

On the other hand, pre- and post-multiplying (25) by
diag

[
P̃r, I

]
yields




−P̃r Πr,1 Πr,2 Πr,3 Πr,4

∗ Υr+1,1 0 0 0
∗ ∗ Υr+1,2 0 0
∗ ∗ ∗ Υr+1,3 0
∗ ∗ ∗ ∗ Υr+1,4




< 0,

(35)
where

Πr,i =
√

pi[ΦT
r,i ΓT

r,i], ∀i ∈ S, (36)

Υi = diag
[−Ψr+1,i, − εiI

]
, ∀i ∈ S, (37)

while Φr,i and Γr,i are given in (20) and (21), respectively.
By Schur complement, (35) implies that Θ̂r < 0. This
together with (33) leads to

E[V (k + 1)]− V (k) ≤ −λmin(−Θ̂r)xT(k)x(k)
≤ −τxT(k)x(k), (38)

where λmin(−Θ̂r) denotes the minimal eigenvalue of −Θ̂r

and τ = inf{λmin(−Θ̂r), r ∈ N}. From (38), we obtain

E[V (T + 1)− V (0)] =
T∑

k=0

(
E[V (k + 1)− V (k)]

)

≤ −τ
T∑

k=0

E[xT(k)x(k)] (39)

for any T ≥ 1, which implies

T∑

k=0

E[xT(k)x(k)] ≤ 1
τ

[
E[V (0)]− E[V (T + 1)]

]

≤ 1
τ

E[V (0)]. (40)

Finally, from (40) we directly obtain
∞∑

k=0

E[xT(k)x(k)] ≤ 1
τ

E[V (0)] < ∞. (41)

According to Definition 2, the NCS P̂K is robustly stochas-
tically stable. ¥

IV. ROBUST H∞ CONTROL

Definition 3: (See [15], [23]) The NCS P̂K (16) is said to
be robustly stochastically stable with disturbance attenuation
level γ > 0 if P̂K is robustly stochastically stable and, for all
nonzero w(k) ∈ `2[0,∞), the response {z(k)} under zero
initial condition x(0) = 0 satisfies
∞∑

k=0

E
[
zT(k)z(k)

∣∣x(0) = 0
]

< γ2
[ ∞∑

k=0

wT(k)w(k)
]
. (42)

Theorem 2: Given a scalar γ > 0, the NCS P̂K (16)
is robustly stochastically stable with disturbance attenuation
level γ, if there exist scalars εi > 0 for i ∈ S , positive
definite matrices Qr > 0 and Yr for r ∈ N such that
∀r ∈ N the following LMIs are satisfied:




Qr Ωr,1 Ωr,2 Ωr,3 Ωr,4

∗ Ξr+1,1 0 0 0
∗ ∗ Ξr+1,2 0 0
∗ ∗ ∗ Ξr+1,3 0
∗ ∗ ∗ ∗ Ξr+1,4




< 0, (43)

where
Qr = diag

[− Q̃r, − γ2I
]
, (44)

Ξr+1,i = diag
[
εiMr+1M

T

r+1 − Q̃r, − εiI, − I
]
, (45)

Ωr,i =
√

pi

[
Φ̃

T

r,i Γ̃
T

r,i C̃T
r,i

B
T

r,i 0 0

]
, (46)

C̃r,i =
[

CQr + Dθa
kS

a
rYr −Dθa

kS
a
rYr

]
, (47)

with i ∈ S , while Q̃r, Φ̃r,i, Γ̃r,i, Br,i and Mr+1 are given
in (26), (29), (30), (18) and (22), respectively. In this case,
the state feedback gain matrices are given by Kr = YrQ−1

r .
Proof From (43), we can directly obtain

Θr ≤ Θr +
∑

i∈S

[
C̃T

r,i

0

] [
C̃r,i 0

]

+
1
γ2

[
0
B̃r

] [
0 B̃T

r

]
< 0. (48)

where

B̃T
r =

[
B

T

r,1 0 B
T

r,2 0 B
T

r,3 0 B
T

r,4 0
]
, (49)



while Θr is defined in (25). Therefore, it follows from
Theorem 1 that the NCS P̂K with w(k) ≡ 0 is robustly
stochastically stable.

Next, we prove that P̂K has the required noise attenuation
level γ for all w(k) ∈ `2[0,∞). Let Pr = Q−1

r , then P̃r =
Q̃−1

r . Consider the Lyapunov function V (k) as defined in
(32) with the zero initial condition x(0) = 0 and V (0) = 0.
It follows from (39) that for any T ≥ 1

T∑

k=0

(
E[V (k + 1)]− V (k)

)
= E[V (T + 1)] ≥ 0. (50)

Since εi > 0 for i ∈ S and (31) is satisfied due to (43),
according to Lemma 1 we have

E[V (k + 1)]

=
[
xT(k) wT(k)

]
Λr

[
xT(k) wT(k)

]T

≤ [
xT(k) wT(k)

]
Λ̃r

[
xT(k) wT(k)

]T
, (51)

where

Λr =
∑

i∈S
pi

[
Ar,i Br,i

]T
P̃r+1

[
Ar,i Br,i

]

=
∑

i∈S
pi

([
Φr,i Br,i

]
+ Mr+1F(k)

[
Γr,i 0

])T
P̃r+1

× ([
Φr,i Br,i

]
+ Mr+1F(k)

[
Γr,i 0

])
, (52)

Λ̃r =
∑

i∈S
pi

( [
ΦT

r,i

B
T

r,i

]
Ψ−1

r+1,i

[
Φr,i Br,i

]

+ε−1
i

[
ΓT

r,i

0

] [
Γr,i 0

] )
. (53)

Combining (16) and (51) yields

E [V (k + 1)]− V (k) + zT(k)z(k)− γ2wT(k)w(k)

≤ [
xT(k) wT(k)

]
Θ̃r

[
xT(k) wT(k)

]T
, (54)

where

Θ̃r =
∑

i∈S
pi

(
Λ̃r +

[
C

T

r,i

0

]
[

Cr,i 0
]
)

−
[

P̃r 0
0 γ2I

]

=
∑

i∈S
pi




Φr,i Br,i

Γr,i 0
Cr,i 0




T 


Ψ−1
r+1,i 0 0
0 ε−1

i I 0
0 0 I




×



Φr,i Br,i

Γr,i 0
Cr,i 0


−

[
P̃r 0
0 γ2I

]
, (55)

and Ψr+1,i is defined in (31). Pre- and post-multiplying (43)
by diag

[
P̃r, I

]
as well as applying Schur complement yields

Θ̃r < 0. (56)

Let us define the performance function

J(T ) =
T∑

k=0

E
[
zT(k)z(k)− γ2wT(k)w(k)

]
. (57)

Then from (50), (54) and (57), we derive

J(T ) =
T∑

k=0

E
[(

zT(k)z(k)− γ2wT(k)w(k)

+V (k + 1)− V (k)
)− (

V (k + 1)− V (k)
)]

≤
T∑

k=0

E
[[

xT(k) wT(k)
]
Θ̃r

[
xT(k) wT(k)

]T
]

−E[V (T + 1)]. (58)

For all the w(k) 6= 0, (56) and (58) yields

J(∞) < 0. (59)

This completes the proof of Theorem 2. ¥

V. A NUMERICAL EXAMPLE

To illustrate the effectiveness of the proposed approach, we
considered the following uncertain NCS P̂K of x(k) ∈ R3,
u(k) ∈ R2, z(k) ∈ R and w(k) ∈ R, with the following
parameters

A =



−0.2 0 0.9
0.6 −0.9 0.5
0.2 −1 0


 , B =




0.2 0.4
0.9 0.8
0.3 0.7


 ,

Bw =




0.1
0.1
−0.2


 , M =




0.1
0.1
0.2


 ,

C =
[

0.2 0.3 0.3
]
, D =

[
0.7 0.9

]
,

Na =
[

0.6 0.2 0.7
]
, Nb =

[
0.5 0.8

]
.

The eigenvalues of the plant were −1.0554 and −0.0233±
0.6726 i. The plant was controlled via a shared communica-
tion network which had two output channels and one input
channel, i.e., sσ = 2 and sρ = 1. We fixed the period of the
N -periodic sequence scheme to be N = 3. The deterministic
3-periodic sequences were chosen as

{σ(1),σ(2), . . .} = {[1, 1, 0]T, [1, 0, 1]T, [0, 1, 1]T, . . .},
{ρ(0),ρ(1), . . .} = {[1, 0]T, [0, 1]T, [0, 1]T, . . .}.

The probabilities of random switchings were p1 = 0.04,
p2 = p3 = 0.16 and p4 = 0.64.

Our objective was to design the state feedback gain
matrices K1, K2 and K3 such that, for all the admissible
uncertainties, the NCS P̂K was robustly stochastically stable
with the specified disturbance attenuation level γ. Assuming
γ = 0.46, we applied the Matlab LMI Control Toolbox to
solve the LMIs (43) and obtained the following solution

Q1 =




1.3214 0.4491 −0.1830
0.4491 0.5001 0.1157
−0.1830 0.1157 1.0484


 ,

Q2 =




1.4708 0.5318 −0.3939
0.5318 0.5096 −0.0003
−0.3939 −0.0003 0.9746


 ,



Q3 =




1.4028 0.5284 −0.2029
0.8284 0.6222 0.0020
−0.2029 0.0020 0.8800


 ,

Y1 =
[ −0.3317 −0.0119 −0.0156

0 0 0

]
,

Y2 =
[

0 0 0
−0.0376 0.0255 0.0902

]
,

Y3 =
[

0 0 0
−0.3496 0.0529 −0.0798

]
,

ε1 = 4.0589, ε2 = 3.3769, ε3 = 4.3402, ε4 = 4.5363.

It followed from Theorem 2 that the robust H∞ control
problem was solvable with the state feedback gain matrices
given by

K1 = Y1Q−1
1 =

[ −0.3876 0.3523 −0.1214
0 0 0

]
,

K2 = Y2Q−1
2 =

[
0 0 0

−0.0366 0.0884 0.0778

]
,

K3 = Y3Q−1
3 =

[
0 0 0

−0.4557 0.4726 −0.1969

]
.

VI. CONCLUSIONS

We have studied synthesis of robust stabilisation control
and design ofH∞ control for NCSs where the plant has time-
varying norm-bounded uncertainties and the nextwork has
limited access as well as imposes random packet dropouts
in both the S/C and C/A connections. The N -periodic com-
munication sequence scheme has been adopted to deal with
access constraints, and the approach of random switchings
has been utilised to model the packet dropout process.
A smart controller has been employed, which estimates
the plant state purely by a plant model when the state-
information transmission fails but updates part of the state
estimate using the available plant state information when
the multiple-packet state transmission succeeds. Sufficient
conditions have been derived in the form of solvable LMIs
for synthesising robust stochastic stabilisation controller and
for designing robust H∞ controller. A numerical example
has been included to illustrate our design method.
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