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Abstract— The ever-increasing demand for mobile communica-
tion capacity has motivated the development of adaptive an-
tenna array assisted spatial processing techniques for bandwidth
efficiency, high-throughput quadrature amplitude modulation
(QAM) systems. We evaluate performance of adaptive beam-
forming assisted detection for QAM systems in Rayleigh fading
environments. An adaptive minimum symbol error rate design,
referred to as the least symbol error rate, is shown to be
capable of successfully operating in fast fading conditions and to
consistently outperform the conventional adaptive beamforming
benchmarker based on the least mean square algorithm.

I. INTRODUCTION

The ever-increasing demand for mobile communication ca-
pacity has motivated the development of adaptive antenna
array assisted spatial processing techniques [1]–[10] in order to
further improve the achievable spectral efficiency. A particular
technique that has shown real promise in achieving substantial
capacity enhancements is the use of adaptive beamforming
with antenna arrays. Adaptive beamforming is capable of
separating signals transmitted on the same carrier frequency,
and thus provides a practical means of supporting multiusers
in a space-division multiple-access scenario. Classically, the
beamforming process is carried out by minimising the mean
square error (MSE) between the desired output and the actual
array output, and adaptive implementation of this minimum
MSE (MMSE) design can be achieved using the well-known
least mean square (LMS) algorithm [11],[12].
For a communication system, however, it is the bit error
rate (BER) or symbol error rate (SER) that really matters.
This has previously motivated the research in the adaptive
beamforming design based on directly minimising the sys-
tem’s BER for binary phase shift keying modulation [13]-
[18] and quadrature phase shift keying modulation system
[19],[20]. For the sake of improving the achievable bandwidth
efficiency, high-throughput quadrature amplitude modulation
(QAM) schemes [21] have become popular in numerous
wireless network standards. Recently, the adaptive minimum
SER (MSER) beamforming design has been proposed for the
QAM system [22] and its performance has been evaluated
in stationary channel environments, in comparison with the
classical adaptive MMSE beamforming design.
In this study, we concentrate on evaluating the fading perfor-
mance of the adaptive MSER beamforming algorithm, referred

to as the least symbol error rate (LSER) in [22]. Our simulation
results confirm that the adaptive LSER-based beamforming is
capable of successfully operating in fast fading conditions and
it consistently outperforms the standard adaptive beamforming
benchmarker based on the LMS algorithm.

II. SYSTEM MODEL

The system supports S users, and each user transmits an M -
QAM signal on the same carrier frequency of ω = 2πf .
For such a system, user separation can be achieved in the
spatial or angular domain [8],[10] and the receiver is equipped
with a linear antenna array consisting of L uniformly spaced
elements. Assume that the channel is narrow-band which does
not induce intersymbol interference. Then the symbol-rate
received signal samples can be expressed as

xl(k) =
S∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at array
element l for source i with θi being the direction of arrival for
source i, nl(k) is a complex-valued Gaussian white noise with
E[|nl(k)|2] = 2σ2

n, Ai is the narrow-band channel coefficient
for user i, and bi(k) is the kth symbol of user i which takes
the value from the M -QAM symbol set

B 4
= {bl,q = ul + juq, 1 ≤ l, q ≤

√
M} (2)

with <[bl,q] = ul = 2l − √M − 1 and =[bl,q] = uq = 2q −√
M−1. Assume that source 1 is the desired user and the rest

of the sources are interfering users. The desired-user signal-
to-noise ratio (SNR) is given by SNR= |A1|2σ2

b/2σ2
n and the

desired signal-to-interferer i ratio (SIR) is SIRi = A2
1/A

2
i , for

2 ≤ i ≤ S, where σ2
b denotes the M -QAM symbol energy.

The received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T

can be expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (3)

where n(k) = [n1(k) n2(k) · · ·nL(k)]T , the system matrix
P = [A1s1 A2s2 · · ·ASsS ] with the steering vector for source
i given by si = [ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T , and the
transmitted symbol vector b(k) = [b1(k) b2(k) · · · bS(k)]T .
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Fig. 1. Decision thresholds associated with point c1bl,q assuming cR1 > 0
and cI1 = 0, and illustrations of symmetric distribution of Yl,q around c1bl,q .

A beamformer is employed, whose soft output is given by

y(k) = wHx(k) = wH(x̄(k) + n(k)) = ȳ(k) + e(k) (4)

where w = [w1 w2 · · ·wL]T is the beamformer weight
vector and e(k) is Gaussian distributed with zero mean and
E[|e(k)|2] = 2σ2

nwHw. Define the combined system impulse
response as wHP = wH [p1 p2 · · ·pS ] = [c1 c2 · · · cS ]. The
beamformer’s output can alternatively be expressed as

y(k) = c1b1(k) +
S∑

i=2

cibi(k) + e(k) (5)

where the first term in the righthand side of equation is
the desired user signal and the second term is the residual
multiuser interference. Note that, in any detection scheme, the
main tap c1 must be known, that is the desired user’s channel
and associated steering vector, namely p1 = A1s1, must be
known at the receiver. This fact is often overlooked. Provided
that c1 = cR1 +jcI1 satisfies cR1 > 0 and cI1 = 0, the symbol
decision b̂1(k) = b̂R1(k) + jb̂I1(k) can be made as

b̂R1(k) =





u1, if yR(k) ≤ cR1(u1 + 1)
ul, if cR1(ul − 1) < yR(k) ≤ cR1(ul + 1)

for 2 ≤ l ≤ √
M − 1

u√M , if yR(k) > cR1(u√M − 1)
(6)

b̂I1(k) =





u1, if yI(k) ≤ cR1(u1 + 1)
uq, if cR1(uq − 1) < yI(k) ≤ cR1(uq + 1)

for 2 ≤ q ≤ √
M − 1

u√M , if yI(k) > cR1(u√M − 1)
(7)

where y(k) = yR(k) + jyI(k) and b̂1(k) is the estimate
for b1(k) = bR1(k) + jbI1(k). Fig. 1 depicts the decision
thresholds associated with the decision b̂1(k) = bl,q . In
general, c1 = wHp1 is complex-valued and the operation

wnew =
cold
1∣∣cold
1

∣∣w
old (8)

can be used to make c1 real and positive. This rotation
operation is linear and it does not change the system’s SER.

III. ADAPTIVE MMSE BEAMFORMING

The traditional design for the beamformer (4) is the MMSE
solution, which can be implemented adaptively using the
classical LMS algorithm [11],[12]. The MMSE beamform-
ing design is computationally attractive, because it admits
the closed-form solution given the second order statistics
of the underlying system. Specifically, by minimising the
MSE criterion E[|b1(k)− y(k)|2], the MMSE solution for the
beamformer’s weight vector is given as

wMMSE =
(
PPH +

2σ2
n

σ2
b

IL

)−1

p1 (9)

where IL denotes the L × L identity matrix. To adaptively
implement the MMSE solution, the unknown second-order
statistics can be estimated based on a block of training data.
Furthermore, by considering a single-sample “estimate” of the
MSE, the stochastic adaptive LMS algorithm is derived as

w̃(k + 1) = ŵ(k) + µ (b1(k)− y(k))∗ x(k), (10)

ĉ1(k + 1) = w̃H(k + 1)p̂1, (11)

ŵ(k + 1) =
ĉ1(k + 1)
|ĉ1(k + 1)|w̃(k + 1), (12)

where y(k) = ŵH(k)x(k), p̂1 is an estimated p1, and (11)
and (12) implement the weight rotation operation. The step
size µ is the algorithmic parameter that should be set appro-
priately in order to ensure an adequate performance in terms
of convergence rate and steady-state MSE misadjustment.

IV. ADAPTIVE MSER BEAMFORMING

However, since the SER is the true performance indicator, it is
desired to consider the optimal MSER Beamforming solution.
Denote the Nb = MS number of legitimate sequences of b(k)
as bi, 1 ≤ i ≤ Nb. The noise-free part of the received signal
x̄(k) only takes values from the finite signal set defined by
X 4

= {x̄i = Pbi, 1 ≤ i ≤ Nb}. The set X can be partitioned
into M subsets, depending on the value of b1(k) as Xl,q

4
=

{x̄i ∈ X : b1(k) = bl,q}, 1 ≤ l, q ≤ √
M . Similarly the

noise-free part of the beamformer’s output ȳ(k) only takes
values from the scalar set Y 4

= {ȳi = wH x̄i, 1 ≤ i ≤ Nb},
and Y can be divided into the M subsets conditioned on b1(k)

Yl,q
4
= {ȳi ∈ Y : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (13)

The following two lemmas, summarising the properties of
the signal subsets Yl,q , 1 ≤ l, q ≤ √

M , are useful in the
derivation of the SER expression for the beamformer (4).
Lemma 1: The subsets Yl,q , 1 ≤ l, q ≤ √

M , satisfy the
shifting properties

Yl+1,q = Yl,q + 2c1, 1 ≤ l ≤
√

M − 1, (14)

Yl,q+1 = Yl,q + j2c1, 1 ≤ q ≤
√

M − 1, (15)

Yl+1,q+1 = Yl,q + (2 + j2)c1, 1 ≤ l, q ≤
√

M − 1. (16)
Proof of lemma 1 is straightforward.



Lemma 2: The points of Yl,q are distributed symmetrically
around the symbol point c1bl,q with respect to the two
horizontal decision boundaries and the two vertical decision
boundaries that separate Yl,q from the other subsets.
Lemma 2, as illustrated in Fig. 1, is a direct consequence of
symmetric distribution of the symbol constellation (2).
For the beamformer with weight vector w, denote

PE(w) = Prob{b̂1(k) 6= b1(k)}, (17)

PER(w) = Prob{b̂R1(k) 6= bR1(k)}, (18)

PEI
(w) = Prob{b̂I1(k) 6= bI1(k)}. (19)

It is then easy to see that the SER is given by

PE(w) = PER
(w) + PEI

(w)− PER
(w)PEI

(w). (20)

The conditional probability density function (PDF) of y(k)
given b1(k) = bl,q is a Gaussian mixture defined by

p(y|bl,q) =
1

Nsb2πσ2
nwHw

Nsb∑

i=1

e
− |y−ȳ

(l,q)
i

|2

2σ2
nwHw , (21)

where Nsb = Nb/M is the size of Yl,q , ȳ
(l,q)
i = ȳ

(l,q)
Ri

+
jȳ

(l,q)
Ii

∈ Yl,q , and y = yR + jyI . Noting that c1 is real and
positive and taking into account the symmetric distribution of
Yl,q (lemma 2), for 2 ≤ l ≤ √

M − 1, the conditional error
probability of b̂R1(k) 6= ul given bR1(k) = ul is

PER,l(w) =
2

Nsb

Nsb∑

i=1

Q(g(l,q)
Ri

(w)), (22)

where
Q(u) =

1√
2π

∫ ∞

u

e−
z2
2 dz, (23)

and

g
(l,q)
Ri

(w) =
ȳ
(l,q)
Ri

− cR1 (ul − 1)

σn

√
wHw

. (24)

Further taking into account the shifting property (lemma 1), it
can be shown that

PER(w) = γ
1

Nsb

Nsb∑

i=1

Q(g(l,q)
Ri

(w)), (25)

where γ = 2
√

M−2√
M

. It is seen that PER
can be evaluated

using (real part of) any single subset Yl,q . Similarly, PEI can
be evaluated using (imaginary part of) any single Yl,q as

PEI
(w) = γ

1
Nsb

Nsb∑

i=1

Q(g(l,q)
Ii

(w)) (26)

with

g
(l,q)
Ii

(w) =
ȳ
(l,q)
Ii

− cR1 (uq − 1)

σn

√
wHw

. (27)

Note that the SER is invariant to a positive scaling of w.
The MSER solution wMSER is defined as the weight vector
that minimises the upper bound of the SER given by

PEB (w) = PER(w) + PEI (w), (28)

that is,
wMSER = arg min

w
PEB (w). (29)

The upper bound (28) is very tight, that is, very close to
PE(w). Therefore, the solution obtained by minimising this
upper bound is practically equivalent to that of minimising
PE(w). Unlike the MMSE solution, the MSER solution does
not admits a closed-form solution. However, the optimisation
problem (29) can be solved using a gradient algorithm [22].
It is worth emphasising that there exist infinitely many MSER
solutions which forms an infinite half line in the beamforming
weight space. This helps numerical optimisation, as any point
in this line is an MSER solution. In our experience, we have
not found a case in which the optimisation algorithm converges
to some local minima of the SER surface.
In practice, the system matrix P is unknown (except its first
column). Therefore adaptive implementation is required to
realise the MSER beamforming. The PDF p(y) of y(k) can be
estimated using the Parzen window estimate [23]-[25] based
on a block of training data. This leads to an estimated SER for
the beamformer. Minimising this estimated SER based on a
gradient optimisation yields an approximated MSER solution.
To derive a sample-by-sample adaptive algorithm, consider a
single-sample “estimate” of p(y)

p̃(y, k) =
1

2πρ2
n

e
− |y−y(k)|2

2ρ2
n (30)

and the corresponding one-sample SER “estimate” P̃EB (w, k).
Using the instantaneous stochastic gradient of ∇P̃EB

(w, k) =
∇P̃ER

(w, k) +∇P̃EI
(w, k) with

∇P̃ER(w, k) =
γ

2
√

2πρn

e
− (yR(k)−ĉR1

(k)(bR1
(k)−1))2

2ρ2
n

× (−x(k) + (bR1(k)− 1)p̂1) (31)

and

∇P̃EI
(w, k) =

γ

2
√

2πρn

e
− (yI (k)−ĉR1

(k)(bI1
(k)−1))2

2ρ2
n

× (jx(k) + (bI1(k)− 1)p̂1) (32)

gives rise to the adaptive LSER algorithm [22]

w̃(k + 1) = ŵ(k) + µ
(
−∇P̃EB (ŵ(k), k)

)
, (33)

ĉ1(k + 1) = w̃H(k + 1)p̂1, (34)

ŵ(k + 1) =
ĉ1(k + 1)
|ĉ1(k + 1)|w̃(k + 1), (35)

The step size µ and the kernel width ρn are the two algorithmic
parameters that should be set appropriately in order to ensure
an adequate performance in terms of convergence rate and
steady-state SER misadjustment. As emphasised in Section II,
the column p1 of the system matrix associated with the desired
user must be known in receiver. Usually, the steering vector
s1 associated with the desired user is known at receiver. The
desired user’s channel A1 can always be estimated accurately
during training. Thus, in the following simulation study, we
assume a perfect p1 at receiver.
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Fig. 2. Locations of the user sources with respect to the three-element linear
array with λ/2 element spacing, λ being the wavelength, where θ < 65◦.

V. SIMULATION STUDY

The system consisted of four users and a three-element antenna
array. Fig. 2 shows the locations of the four users graphically,
where the angular separation between the desired user and the
interfering user 4 was θ < 65◦.
Non-fading system. The modulation scheme was 16-QAM
and all the channels Ai, 1 ≤ i ≤ 4, were time-invariant. With
all the four users having an equal signal power, Figs. 3 to
5 compare the SER performance of the MSER beamforming
solution to that of the MMSE beamforming solution under the
conditions of a) the minimum anugular separation between
the desired user 1 and the interfering user 4 being θ = 32◦,
b) θ = 30◦ and c) θ = 28◦, respectively. For the case of equal
user power with the minimum anugular separation θ = 32◦,
the MSER beamforming solution had an SNR gain of 2 dB
over the MMSE solution at the SER level of 10−3, as can be
seen from Fig. 3. When the minimum anugular separation of
the system was reduced to θ = 30◦, as depicted in Fig. 4,
the SNR gain of the MSER beamformer over the MMSE one
was increased to 4 dB. With the minimum anugular separation
further reduced to θ = 28◦, the MMSE beamforming solution
became incapable of removing the interference and exhibited
a high SER floor, as illustrated in Fig. 5. In contrast, the
MSER beamformer remained capable of effectively removing
the interference and achieving an adequate SER performance.
A near-far situation was next simulated. Under the conditions
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Fig. 3. Comparison of SER performance for the non-fading system with
θ = 32◦ and SIRi = 0 dB for 2 ≤ i ≤ 4.
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Fig. 4. Comparison of SER performance for the non-fading system with
θ = 30◦ and SIRi = 0 dB for 2 ≤ i ≤ 4.
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Fig. 5. Comparison of SER performance for the non-fading system with
θ = 28◦ and SIRi = 0 dB for 2 ≤ i ≤ 4.

that θ = 30◦, user 1 and user 2 had the same signal power
but users 3 and 4 had 2 dB more power than users 1 and
2, Fig. 6 compares the performance of the two beamform-
ers. By comparing Fig. 4 with Fig. 6, it can be seen that,
when facing stronger interfering users 3 and 4, the MMSE
solution faltered while the MSER solution sufferred from
very little degradation. This clearly demonstrated that the
MSER beamformer is more robust in near-far situations than
the MMSE beamformer. Lastly, the performance of both the
LMS and LSER beamformers are compared with those of the
theoretic MMSE and MSER solutions in Fig. 7 under the same
conditions as those of Fig. 4. The superiority of the adaptive
LSER beamformer over the adaptive LMS beamformer is
clearly demonstrated in Fig. 7, where it can be seen that the
performance of the adaptive LMS beamformer was notably
deviated from its theoretic MMSE solution at high SNRs
while the adaptive LSER beamformer closely followed its
theoretic MSER solution even at high SNR values. Appropriate
values for the step size µ as well as the kernel width ρn

were found empirically, and the SER performance presented in
Fig. 7 for the two adaptive beamformers were calculated after
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Fig. 7. SER performance comparsion of adaptive beamformers for the non-
fading system with θ = 30◦ and SIRi = 0 dB for 2 ≤ i ≤ 4.

convergence. Influence of µ and ρn to the SER performance
were further investigated in the following fading simulation.
Fading system. The modulation scheme was 64-QAM. Fading
channels were simulated, where magnitudes of Ai for 1 ≤
i ≤ 4 were Rayleigh processes with the normalised Doppler
frequence f̄D and each channel Ai had the root mean power of√

0.5 + j
√

0.5. Thus the average SIRi = 0 dB for 2 ≤ i ≤ 4.
Continuously fluctuating fading was used, which provided a
different fading magnitude and phase for each transmitted
symbol. The transmission frame structure consisted of 50 train-
ing symbols followed by 450 data symbols. Decision-directed
adaptation was employed during data transmission, in which
the adaptive beamforming detector’s decision b̂1(k) was used
to substitute for b1(k). The SER of an adaptive beamforming
detector was calculated based on Monte Carlo simulation using
at least 2 × 105 frames, depending on the value of f̄D. Two
initialisations were used for the LSER algorithm, where the
initial weight vector w(0) was set to either wMMSE of the
initial channel condition or [0.1+j0.0 0.1+j0.0 0.1+j0.0]T ,
and the performance were observed to be very similar for these
two initialisations.
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Fig. 8. Comparison of SER performance for the two normalised Doppler
frequencies f̄D = 10−4 and 10−3 with the minimum angular separation
θ = 27◦. The LMS algorithm has a step size µ = 0.0002, while the LSER
algorithm has a step size µ = 0.00005 and a kernel width ρn = 4σn.

Given the minimum angular separation θ = 27◦, Fig. 8
compares the SER of the adaptive LSER beamformer with
that of the LMS-based one, for the two normalised Doppler
frequencies f̄D = 10−4 and 10−3. It can be seen from Fig. 8
that the SER performance of the LSER beamformer degraded
only slightly when the fading rate increased from f̄D = 10−4

to 10−3. This demonstrates that the LSER algorithm has an
excellent tracking ability, capable of operating in fast fading
conditions. We next investigated the influence of the adaptive
algorithm’s parameters. Given f̄D = 10−4, Fig. 9 show the
influence of the adaptive algorithm’s parameters, µ for the
LMS, and µ and ρn for the LSER, on the SER performance
for a low average SNR value of 15 dB, while Fig. 10 depicts
the results for a high average SNR value of 30 dB. These
results also explain how we came to use µ = 0.0002 for the
LMS and µ = 0.00005 and ρn = 4σn for the LSER in the
simulation. Lastly, given f̄D = 10−3, we varied the minimum
angular separation θ uniformly in [20◦, 50◦] and averaged the
SER performance. The results are plotted in Fig. 11.

VI. CONCLUSIONS

An adaptive MSER beamforming technique has been studied
for multiple antenna aided multiuser communication sys-
tems with QAM signalling. An adaptive implementation of
the MSER beamforming solution, referred to as the LSER
technique, has been evaluated in the simulation. The results
obtained in this study clearly show that the adaptive LSER
beamforming is capable of operating successfully in fast
fading conditions and it consistently outperforms the adaptive
LMS beamforming benchmarker.
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