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a multi-layer perceptron structure. This provides further evidence that the neural network approach proposed recently by
Gibson et al. is a general solution to the problem of equalization in digital communications systems.

Résumé. On considére I’égalisation adaptative de canaux introduisant des interférences intersymboles non-linéaires. On

"en utilisant une une structure de perceptron multi-couche, les non-linéarités du canal et I'influence d’un bruit

additif coloré peuvent &tre corrigées avec succés. Par ailleurs, cela fournit la preuve que I'approche des réseaux de neurones
proposée récemment est une solution générale au probléme de I'égalisation dans les systémes de communications numériques

(cf. [Gibson et al.])..
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1. Introduction

High-speed data transmission over channels
having substantial amplitude and delay distortion
has become a common practice due to the develop-
ment of adaptive equalization techniques based on
the linear finite impulse Tesponse (FIR) channel
model. Non-linear distortion is now a significant
factor hindering further increase in the attainable
data rate. Although sources of channel non-
linearity such as non-linearity in data converters
may be regarded as memoryless, these non-linear
components are connected to or embedded in a
linear dynamic network and, consequently, the
overall channel response is a non-linear dynamic

0165-1684/90/803.50 © 1990 - Elsevier Science Publishers B.V.

mapping. That is, the received signal at each
sample instant is a non-linear function of the past
values of the transmitted symbols. Because non-
linear distortion varies with time and from place
to place, effective non-linear compensation should
be adaptive.

Channel equalization can be considered as a
deconvolution problem where an equalizer is con-
structed such that the impulse response of the
channel and equalizer combination is as close to
a delta function as possible. This approach is very
difficult to extend to correct non-linear intersymbol
interference, and so far only a few techniques have
been proposed based on a linear equalizer coupled
with some non-linear decision feedback or similar
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cancellation schemes [1]. By contrast, channel
equalization can also be viewed as a classification
problem where an equalizer is constructed as a
decision-making device to reconstruct the trans-
mitted symbol sequence as accurately as possible.
Gibson et al. [6] adopted this second approach
and, by formulating the equalization problem in a
geometric setting, derived an adaptive equalizer
which employed a neural network architecture,
namely, that of the multi-layer perceptron (MLP)
[7]. Although the original intention of [6] was to
equalize FIR channels with additive white noise,
the concepts developed are readily applicable to

finite non-linear channels with additive coloured.

noise, and this is demonstrated in the present study.

The paper is organized as follows. Section 2
introduces a general non-linear channel model. In
Section 3, the minimum bit error rate (BER)
equalizer of [6] is first described. By viewing this
optimal-BER equalizer as a classification mapping,
the influence of channel non-linearities and
coloured noise are then studied. Using simple
examples, it is shown that non-linearities and
coloured noise only change the location of the
classification boundary, and do not fundamentally
alter the nature of the equalization problem. The
ability of neural networks to realize a wide variety
of classification mappings [4, 5, 7] provides the
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basis for their use as adaptive equalizers and Sec-
tion 4 briefly summarizes the application of the
MLP as a channel equalizer. Some simulation
results are shown in Section 5 and final concluding
remarks are given in Section 6. Throughout the
discussion the transmitted data are assumed to be
binary taking values of either 1 or —1. The
approach is, however, not restricted to this specific
signalling method.

2. Channel model

The digital communications system considered
in this paper is shown in Fig. 1, where the ‘channel’
includes the effects of the transmitter filter, the
transmission medium, the receiver matched filter
and other components. The transmitted data
sequence x(t) is assumed to be an independent
sequence taking values from {1, 1} with an equal
probability. The channel output 4(¢) is corrupted
by an additive noise e(t). The observations
o(t),..., o(t—m+1) are passed to a channel
equalizer. The task of the equalizer at the sampling
instant ¢ is to produce an estimate of the input
symbol x(t—d) using the information contained

ino(t),..., o(t—m+1), where the integers m and
e(r)
+
2= . —f gl
o(1) o(t-1) o(t—m+1)

equalizer

l £(1-d)

Fig. 1. Schematic of data transmission system.
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d are known as the order and the delay of the
equalizer, respectively.

A widely used model for a linear dispersive
channel is the FIR model, which can be written as

o()= T 6x(t—i)+e(1), (1)

where the 6; are channel parameters. It is usually
assumed that e(?) is a Gaussian distributed white
noise with mean zero and variance o2. The white
noise assumption is, however, only an approxima-
tion because, although the channel noise itself is
generally Gaussian and white, the matched filter
at the receiver end will colour the noise.

If non-linear distortions are taken into account,
the general channel model should be non-linear
and can be represented as

o(t)=g(x(1),...,x(t=n); @) +e(r), (2)
where g(-) is some non-linear function and
O=[d=~~5.1" (3)

is a channel parameter vector. Due to the physical
restriction, the dynamics of model (2) are always
stable. That is, a bounded input x(7) can only lead
to a bounded output 4(¢) where

6(1)=g(x(1), ..., x(t—n); O). (4)

Itis also clear that, if the states of x(1), . .. ,x(t—n)
are finite, 6(¢) can only take finite values. Both the
functional form g(-) and @ can be time-varying.
The finite non-linear channel model (2) is
obviously a generalization of the FIR model (1).
The non-linear model considered in [1], for
example, can be written in the form of (2) with
g(+) chosen to be a degree-3 polynomial of
x(t),...,x(t—n).

3. Influence of channel non-linearities and coloured
noise

This section describes a geometric formulation
of the equalization problem due to [6], and studies
the effects of channel non-linearities and coloured

noise to the equalization problem. Using similar
notation to that in [6], define

P,a(1)={6(1)eR™|x(t—d) =1},

Pra(=1)={6(1)eR™|x(t—d) = -1}, ®)

where R™ is the m-dimensional Euclidean space
and

o(1)=[6(1):+-6(t—m+1)17, (6)

P,4(1) and P, ,(-1) represent the two sets of
possible channel noise-free output vectors é(¢) that
can be produced from sequences of channel inputs
containing x(t—d)=1 and x(f— d)= -1, respec-
tively. The equalizer can be characterized by the
function

h:R™->{-1,1}, (7)
with

£(t—d)=h(o(1)), (8)
where  o(t)=[o(t):--o(t—=m+1)]T is the

observed channel output vector. Notice that given
values of m and d and knowledge of the channel
g(+) and O, the sets P,4(1) and P, 4(-1) are
known. If the distribution of the noise e(t) is
further provided, the conditional density functions
of observing the channel output vector o(t) given
6(t)e P, 4(1)and é(¢) e P, 4(—1), respectively, are
completely specified. Denote these two conditional
density functions as f; and S, respective]y. It has
been shown in [6] that the equalizer which is
defined by

ho(o(1)) = sgn (fe(o(1)))
=sgn (fi(o(1)) —f_,(o(1))) 9

achieves the minimum BER for the given order m
and lag d, where

_JL y=0,
sgn (y)—{_l, plaln (10)
represents a slicer. The set
{o(1) €R™ |fae(0(1)) = 0} (11)

is known as the decision region of the optimal
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BER equalizer and the decision boundary of this
equalizer consists of the set of points

{o(1)eR™|fs(0(2)) =0}. (12)

Consider the linear channel model 6(t)=
x(1)+0.5x(t—1) with the equalizer order m =2
and lag d = 0. The elements of the sets P, (1) and
P, o(—1) are illustrated in Fig. 2 using the symbols
‘diamond’ ¢ and ‘cross’ X, respectively. For a
Gaussian noise e(t) with

5 =[ E[e*(1)] Ele(t)e(t— 1)]]

Ele(t-1)e(t)]  E[e¥(t—1)]
=a§[ ! ”‘], (13)
P 1

where E[ -] is the expectation operator, the points

o of the optimal decision boundary satisfy
Jae(0) = a(L exp(—3(0-6,)"5 (0 - 4,))
—XZexp(—2(0—6.)"E " (0-4.)))
=0. (14)

Here « is a constant, the first sum is over all the
points 6+eP2,0(1) and the second sum over all
6_€P,,(—1). The optimal boundary for Gaussian
white noise with 02=0.2 is illustrated in Fig. 2,
where the region on the left half plane of the
boundary (including the boundary) is the optimal
decision region. For the same linear channel with
Gaussian coloured noise 2= 0.2 and p, = 0.48, the
optimal boundary under the same constraints m =
2 and d =0 is also shown in Fig. 2. It is seen that
coloured noise clearly affects the decision region.

The influence of channel non-linearities is now
investigated. The decision boundary of a non-

3 . } t } / }
o
1 1 1
o
o(t-1)0 g &
-1 1 1
-2 4 1
=3 + + +
-3 -2 -1 0 1 2 3

o(r)

Fig. 2. Channel output points and optimal decision boundary. Channel 4(r) = x(1)+0.5x(1-1), equalizer order m =2 and lagd=0;
solid line: Gaussian white noise with 02 =0.2; dashed line: Gaussian coloured noise with 02=0.2 and p;=0.48.

Signal Processing



S. Chen et al. /| Adaptive equalization of finite nonlinear channels 111

3 : : : t :
2 1 1
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o(r=1)p 1 1
X o
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-1 1 1
-2 1 1
-3 } : } ; f
-3 -2 0 1 2 3

o(r)

Fig. 3. Channel output points and optimal decision boundary. Channe] o(t)=0(1) +0.16%(1) —0.26%(1) and o(t)=x(t) +0.5x(t-1),
Gaussian white noise with a'§=0.2; equalizer order m =2 and lag d =0.

linear channel 4(t)=4(¢) +0.16%(1) - 0.26%(1),
where 6(t)=x(1)+0.5x(¢ - 1), with Gaussian
white noise is plotted in Fig. 3. In this case, channel
non-linearities only slightly influence the decision
region. This is however not always the case and a
severe example is shown in Fig. 4 where the shaded
region is the optimal decision region. It is seen
that channel non-linearities dramatically change
the optimal decision region. In particular the sets
P, (1) and P,4(~1) are no longer linearly separ-
able. It is known that a nonzero lag d generally
permits a better equalization performance. This
becomes apparent by examining the sets P, .(1)
and P, ,(—1) and the optimal equalizer boundary
for different values of d. For the same channel
described in Fig. 4, Fig. 5 shows P,,(1), Py (-1)
and the corresponding  optimal boundary.
Theoretically non-linearities may make the ele-

ments of P, ,(1) and P, ,(-1) so close or even
overlapped for certain values of d that reconstruc-
tion of the channel input sequence in a noisy
situation becomes virtually impossible and this is
demonstrated by Fig. 6.

Further illustration is given in Figs. 7 and 8,
where the effects of channel non-linearities and
coloured noise are vividly demonstrated. Although
polynomial channel models and Gaussian noise
are used in the above demonstration, the results
are valid for the general model (2) with non-
Gaussian additive noise. Some general observa-
tions can be summarized. For given equalizer order
m and lag d, the equalization solution is deter-
mined by the channel model and noise statistics.
Specifically P, ;(1) and P, 4(—1) are determined
by the channel model g(-) and 6. This channel
knowledge together with the distribution of the

Vol. 20, No. 2, June 1990
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Fig. 4. Channel output points and optimal decision region. Channel 4(¢) = 6(1)—0.96%(t) and 6(t)=x(t)+0.5x(t—1), Gaussian
white noise with o2 =0.2; equalizer order m =2 and lag d =0.
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2 & 4
1 J 1
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Fig. 5. Channel output points and optimal decision boundary. Channel 6(¢) = 6(t) —0.963(¢) and o(t)=x(1)+0.5x(t —1), Gaussian
white noise with o2 =0.2; equalizer order m =2 and lagd=1.
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Fig. 6. Channel output points and optimal decision region. Channel 6(1)=6(t)—0.563(t) and 6(t)=x(t)+0.5x(t—1), Gaussian
‘ white noise with o2 =0.2; equalizer order m=2and lag d =,
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Fig. 7. Channel output points and optimal decision region. Channe] o(r) =0.5x(t)+x(1~ 1), Gaussian white noise with 02=0.2;
equalizer order m =2 anq lag d =0.
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Fig. 8. Channel output points and optimal decision region. Channel 6(¢)
Gaussian coloured noise with o=0.2 and I

additive noise completely specify the optimal
decision region or the mapping £, (). Finally we
emphasize that the optimal boundary can be highly
non-linear so that any linear equalizer structure is
inherently suboptimal and this motivates the
investigation of non-linear architectures capable
of realizing such a boundary.

4. Multi-layer perceptrons as adaptive channel
equalizers

Section 3 demonstrates the need to use non-
linear structures. We now examine a particular
non-linear structure, namely, MLP. First its archi-
tecture and classification capabilities are briefly
described. An MLP and the structure of its basic
computing unit or node are shown in Fig. 9. A

Signal Processing

o(r)
= 6(1)+0.16%(1)+0.056°(1) and 6() = 0.5x(t) +x(t—1),

=0.48; equalizer order m=2 and lag d =0.

node computes the weighted sum of the inputs,
adds a node threshold and passes the result
through a non-linear function a(-) called the node
activation function. An MLP consists of layered
nodes. All the nodes in a layer are fully connected
to the nodes in adjacent layers, but there is no
connection between the nodes within the same
layer and no bridging layer connection. The archi-
tecture of an MLP can be summarized as m — n, —
+++—m, where m denotes the dimension of the
input space and n;, i=1,..., I are the numbers
of nodes in the respective layers. The input-output
relationship of an MLP can therefore be described

" by anon-linear function f: R™ - R™. It can be easily

verified that the computation of the classification
mapping f requires N; multiplications, where
1-1
Niy=mn,+ ¥ nn,,. (15)

i=1
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For our channel equalization application, the
output layer requires only one node. Such an MLP

n; nodes produces a mapping f:R™ >R and itg decision
- output layer / region is the set of points
{oeR™|f(0)=0}. (16)
" In the simplest case, that is a single-node percep-
n;_; nodes - A .
) tron, the decision region is the half space bounded
hidden layer / -1 by the linear boundary wTo+,u, =0, where w and
w are the vector of weights and the node threshold,

: respectively. It is clear that the classification capa-

bility of a single-layer perceptron is the same as

that of a linear equalizer and will not meet the

— requirement of realizing non-linear boundaries. If

hidden layer 1 however the number of layers is increased to two
Or more, we are able to generate very complicated

decision regions with highly non-linear boundaries

[4, 5, 7]. This capability of the MLP provides the

Justification for using (16) to realize the optimal

equalizer decision region (11). Although any

m dapute bounded decision region in R™ can be realized to
within any specified accuracy by a two-layer per-
ceptron [4], a very large number of hidden-layer
nodes may be required to do so. A three-layer
perceptron can achieve the same classification

a(ﬁ Wi+ ) accuracy with less hidden nodes compared with a

- two-layer perceptron. We therefore employ the

three-layer architecture in our application.

Figure 10 illustrates the schematic of using a
three-layer perceptron as an adaptive channel
equalizer, where in the training mode d(t)=

x(t—d) and during the data transmission d(t)=

outputs

Fig. 9. Multilayer perceptron architecture and node structure,

.—,_ 2(1—d)
=S —

d(r) -

[o(t)o( -m+1)]" MLP () +
—_—

m—n;—n,—1 -

L e(1)

Fig. 10. Three-layer perceptron as adaptive equalizer.
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X(t—d). The structure of a three-layer perceptron
equalizer will be represented as (m—n;—n,—
1, d). The selection of a node activation function
is not critical and a wide variety of functions can
be used [4]. A practical constraint is that a(-)
should be differentiable in order to use gradient-
descent training algorithms, and a common choice
of a(-) is the sigmoid function

1
a(y) =m~, (17)

Because in our application the transmitted data
take binary values 1 or —1, it is appropriate to
choose the node activation function as

_l-exp(-y)
a(y)—\Hexp(_y)- (18)

Training an MLP to perform a particular task
can be achieved either using a smoothed stochastic
gradient algorithm commonly known as the back-
propagation algorithm [8] or using a recursive
Gauss-Newton algorithm called the recursive pre-
diction error algorithm [2, 3]. For a feedforward
type of neural network such as an MLP, both
algorithms utilize the parallel structure of the
network to perform two sweeps through the
network at each recursion ¢, The input signals o(r)
are propagated forward on the first sweep and, as
the signals pass through a layer in the network, all
the nodes in that layer compute their own outputs
simultaneously. The error signal £(t) obtained at
the top of the network is then propagated down
the network on the second sweep. As this signal,
accompanied by the gradient information, propa-
gates back through a layer, all the nodes in that
layer update their own weights and threshold
simultaneously. Let = be the vector of all the
weights and thresholds inside an MLP and denote
Ve(1) as the gradient of &2(t) with respect to E.
The operation of the back-propagation algorithm
is as follows:

A()=yA(1=1)+B(=VeX(1)),
E(t)=E(t—l)+A(t),

al Processing

(19)

where 8 and ¥y are the adaptive gain and a momen-
tum parameter respectively, and = () is the esti-
mate of = at . It can be shown that the computa-
tional complexity of the algorithm is an order of
N, foran m—n,—- - *—n, MLP, where

Ni=(m+Dm+ 3 (n+ 1), (20)

is the dimension of = Although the recursive
prediction error algorithm achieves faster conver-
gence and is less sensitive to the initial values of
network weights compared with the back-propaga-
tion algorithm, it is computationally more com-
plex. The detailed description of this algorithm
can be found in [3] and therefore will not be
repeated here. The development of new training
algorithms is actively pursued within the neural
network - community. The back-propagation
algorithm may be the only one that can meet the
real-time requirements of high-speed data trans-
mission at the present time.

In general there should be enough hidden nodes
in order to generate a sufficiently complex
classification mapping. On the other hand, if too
many hidden nodes are employed, the convergence
of the training process can be very slow. Because
a priori knowledge of the optimal classification
mapping to be realized is not available, it is very
difficult, if not impossible, to work out precisely
the optimal numbers of nodes required at each
hidden layer. In the following simulation study,
ny and n,, the numbers of nodes in the first and
second layers, were chosen after some
experimentation. The number of adjustable par-
ameters (weights and thresholds) in a three-layer
perceptron equalizer is usually quite large. The
high dimensionality is a common price for employ-
ing a non-linear architecture.

5. Simulation results

In the first example, the channel is given in Fig,
4. A data sequence of 500 points was generated
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using simulation to train a (2-9-3-1,0) perceptron
equalizer. The training algorithm used was the
recursive prediction error algorithm and training
was repeated several times using the same data
sequence. The decision region formed by the
trained perceptron equalizer is shown in Fig. 11,
where it is seen that the set P, (1) is correctly
within the decision region and the decision region
is close to the optimal one.

The channel for the second example is as that
given in Fig. 8 and an identical procedure as that
for the first example was used to train a (2-9-3-
1,0) perceptron equalizer. The decision region
obtained by the trained perceptron equalizer is
given in Fig. 12. Again the set P, (1) lies correctly
within the decision region and this region is very
close to the optimal one shown in Fig. 8.

The aim of the third example is to compare the
bit error rates achieved by the optimal and percep-

tron equalizers for different signal-to-noise ratios.
The channel model is

6(t)=4(1)+0.26%1),
o(t) =0.3482x(¢) +0.8704x(z—1)
+0.3482x (¢ —2).

The additive noise is given by e(f)=
0.8£(7)+0.6£(t—1) where (1) is a Gaussian white
sequence. For m=3 and d =1, the optimal BER
Wwas computed according to (9) using simulated
data. The performance was averaged over 10 runs
and each run had 9000 points of different realiz-
ations of stochastic processes x(¢) and e(t). The
performance of a (3-9-5-1,1) perceptron
equalizer was next investigated. Each run started
from different random initial weights and the data
sequence was first used to train the perceptron
equalizer by the back-propagation algorithm. The

3 ; ; ;
2 i
X
1 &
%
o(1-1) g 4
X
-1 - -+
X
2 1
-8 : : : :
-3 -2 -1 0 1 2 3

o(r)

Fig. 11. Decision region formed by perceptron equalizer. Channe] 0(t)=6(1)-0.96%(t) and 6(1)=x(1)+0.5x(t - 1), Gaussian white
noise with o2 =0.2; perceptron equalizer: (2-9-3-1, 0).
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o(r-1) g 1

44

-3 ‘i

-3 -2

0 1 2 3
o(r)

Fig. 12. Decision region formed by perceptron equalizer. Channel 0(t)=6(1)+0.16%(t)+0.056%(¢) and 0(t)=0.5x(r)+x(t-1),
Gaussian coloured noise with o> =0.2 and py = 0.48; perceptron equalizer: (2-9-3-1, 0).

BER was then computed for the same data by the
trained perceptron equalizer. The averaged results
are shown in Fig. 13 where it is seen that the
perceptron equalizer enjoys a performance which
is close to that achieved by the optimal equalizer.

6. Conclusions

By viewing the equalization problem as a
classification problem, the influence of channel
non-linearities and additive coloured noise to the
optimal bit-error-rate solution has been investi-
gated. It has been shown that the neural network
approach offers equal effectiveness for adaptively
equalizing linear or non-linear channels with white
or coloured additive noise and it provides a general

Signal Processing

solution to the problem of channel distortion in
digital communications systems. Simulation
results have been included to support the analysis.
However, at present there are some practical
difficulties associated with this neural network
approach, notably, the danger of being trapped in
local minima of the mean square error surface and
the slow convergence using the back propagation
algorithm during the training process. These and
other issues such as how to select hidden layer
nodes have to be resolved before the real-time
implementation can be addressed. These existing
problems point to various areas which are worth
further study. Using alternative non-linear archi-
tectures such as a polynomial-perceptron structure
to approximate the optimal equalizer solution is
another area currently under investigation.
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Fig. 13. Comparison of bit error rates achieved by optimal and perceptron equalizers. (a) optimal equalizer; (b) perceptron equalizer.
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