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Abstract

The problem of constructing adaptive minimum bit error rate (MBER) decision feedback equalisers (DFEs) for binary
signalling is considered. Gradient and Gauss}Newton algorithms are considered for both conventional and state (or
space) translation forms of the DFE. The Hessian matrix for the Gauss}Newton algorithm is introduced for the "rst time.
Kernel density estimation is demonstrated to provide a convenient mechanism for approximating the BER as a smooth
function of the available data. This leads to the development of a number of block and serial adaptive algorithms.
Computer simulation is used to assess the performance of these algorithms. � 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In developing training strategies for linear combiner decision feedback equalisers (DFEs), it is convenient
to adopt a minimum mean squared error (MMSE) cost function as this facilitates the use of standard
adaptive "lter techniques such as the least mean squares (LMS) and recursive least squares (RLS) algorithms.
However it has long been understood that the MMSE cost function is not optimal in this application*the
minimum bit error rate (MBER) cost function being the more appropriate choice [9]. Further, the BER rate
of a DFE optimised using a MMSE criterion can be distinctly inferior to the true optimum solution [3]. In
general, the relative performance of equalisers designed using MMSE and MBER criteria is very dependent
upon speci"c channel conditions [3,4]. At low signal/noise ratios in particular there may be no signi"cant
bene"t in using a MBER criterion.
Two methods currently exist which can be classi"ed as training algorithms for minimum BER DFEs in

binary signalling. These are: the space or state translation algorithm of [2,3]; the approximate minimum bit
error rate (AMBER) algorithm of [11,13]. The former is a batch or block adaptive "lter in that the channel is
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estimated and this estimate used in turn to form an estimate of the theoretical BER. A gradient search
technique is used to "nd the weights that minimise the estimated BER. While this algorithm has been
demonstrated to work reliably in the presence of errors in the estimate of the channel impulse response, it is
not truly adaptive in the sense that it does not operate directly on the data but rather employs the
intermediate step of channel impulse response estimation. Further the gradient search algorithm can take
many iterative steps to converge to the solution. The latter is a stochastic gradient algorithm which is
identical to the signed error LMS algorithm except in the vicinity of the decision boundary where it is
modi"ed to continue updating the weights when the signed LMS algorithm would not. The algorithm is
appealing due to its computational simplicity and straightforward extension to the complex signalling case
[12]. The di$culty with it is in selection of the step size: a small step size is required to ensure convergence to
the min BER solution with the associated problem of slow initial convergence. A variant of the dual sign
algorithm [7] has been applied in an attempt to overcome this problem [12].
In this study the problem of constructing adaptiveMBERDFEs for binary signalling is addressed. Section

2 provides the necessary background and de"nition of terms. In Section 3 gradient and Gauss}Newton
algorithms are developed for the conventional DFE rather the translated form of [3]. In particular the
Hessian matrix for the Gauss}Newton algorithm has not appeared before. However the formulation is such
that it can be applied to both conventional and state-translation architectures. Kernel density estimation is
employed is Section 4 to approximate the bit error rate as a smooth function of the data. The advantage of
this approach is that an error does not need to be observed to guarantee an estimate of the error rate and the
smooth function is a convenient route to gradient and Gauss}Newton algorithms. Block and serial adaptive
algorithms in both conventional and state-translation form are presented. Section 5 provides an assessment
of the various algorithms based on computer simulations. Finally conclusions are drawn in section 6.

2. Background

The channel is modelled as a "nite impulse response "lter with an additive noise source, and the received
signal at sample k is

r(k)"r� (k)#e(k)"
����
�
���

a
�
s(k!i)#e(k), (1)

where r� (k) denotes the noiseless channel output; n
�
is the channel length and a

�
are the channel tap weights;

the Gaussian white noise e(k) has zero mean and variance ��
�
; the symbol sequence �s(k)� is independently

identically distributed and has a 2-PAM (2 state pulse amplitude modulation) constellation. The signal to
noise ratio (SNR) of the system is de"ned as

SNR"E[r� �(k)]/E[e�]"��
��

����
�
���

a�
� ����

�
(2)

where ��
�
"E[s�(k)] is the symbol variance.

For a conventional linear-combiner DFE the decision variable z at time k is a linear combination of
received samples and past decisions:

z(k)"w�r(k)!b�s(
�
(k) (3)

where r(k)"[r(k) r(k!1) 2 r(k!m#1)]� is the channel observation vector, s(
�
(k)"[s( (k!d!1)

s( (k!d!2) 2 s( (k!d!n)]� is the past detected symbol vector, w"[w
�

w
� 2 w

���
]� is the feedfor-

ward coe$cient vector and b"[b
�

b
� 2 b

�
]� is the feedback coe$cients vector. The integers d, m and

n will be referred to as the decision delay, the feedforward delay and feedback orders, respectively. Without
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loss of generality, d"n
�
!1, m"n

�
and n"n

�
!1 will be used as this choice of DFE structure parameters

is su$cient to guarantee the linear separability of the subsets of the channel states related to the di!erent
decisions [3]. Alternatively the linear-combiner DFE can be expressed in state translated form [5]:

z(k)"w�(r(k)!F
�
s(
�
(k))"w�r�(k), (4)

where F
�
is constructed by partitioning the channel impulse response matrix F"[F

�
F

�
], where

F
�
"�

a
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�, (5)
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2 a
����

a
����

�. (6)

In the case of 2-PAM, the reconstructed symbols with lag d are obtained from the sign of the decision
variable z(k), i.e.

s( (k!d)"sgn(z(k)). (7)

3. Minimum bit error rate equalisation

The bit error rate (BER) observed at the output of the equaliser is dependent on the distribution of the
decision variable z(k) which in turn is a function of the equaliser tap weights. To be more speci"c, the
probability of error, P

�
, is

P
�
"P(sgn(s(k!d))z(k)(0). (8)

The sign adjusted decision variable z
�
(k)"sgn(s(k!d))z(k) is drawn from a Gaussian mixture. From the

de"nition of z(k),

z
�
(k)"sgn(s(k!d))(w�Fs(k)!b�s(

�
(k))# sgn(s(k!d))w�e(k) (9)

"sgn(s(k!d))z�(k)#e�(k), (10)

e(k)"[e(k) e(k!1) 2 e(k!d!n)]� is the vector of noise samples; s(k)"[s(k) s(k!1) 2

s(k!d!n
��
)]� is the vector of transmitted symbols. The "rst term on the right-hand side of (10),

sgn(s(k!d))z�(k), is the noise-free sign-adjusted equaliser output and is a member of a "nite set with
N

	
elements*these are the local means of the Gaussian mixture. Without noise the combination of channel

and DFE is a "nite state machine whose state is de"ned by the vector s(k). Thus if s(k)3�s
�

2 s
�
2 s


	
�, the

state s
�
uniquely de"nes the state of z�(k), r(k), s(k!d) and s(

�
(k)*label these z

�
, r

�
, s

�
and s(

��
respectively.

Note that while s(k) has N
	
states, s(k!d) has 2 possible values (2-PAM). However since s(k!d) is

a component of the vector s(k), the state of s(k) uniquely de"nes the value of s(k!d). The second term e�(k) is
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a zero mean Gaussian white noise process with variance ��
�
w�w de"ning the distribution about the local

means.
The probability density function p

	
(z

�
) is thus

p
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)"
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exp�!
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)z

�
)�

2��
�
w�w � (11)

and the probability of error is

P
�
"�

�

��

p
	
(z

�
) dz

�
. (12)

As in [3] the weights that minimise P
�
can be obtained using gradient search techniques. Here the

approach is `equaliser output referenceda, i.e. in terms of z(k) rather than the `equaliser input referenceda
technique discussed in [3] that is in terms of the noise free input vectors. There is a natural computational
advantage in dealing with scalars rather than vectors. Further the development is in terms of the conven-
tional feedforward and feedback coe$cients rather than the channel estimate associated with [3]. Thus the
gradient terms are
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and
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A gradient search technique would thus be de"ned:
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, (16)

where 	 is the step size.
As usual with gradient based algorithms the convergence can be slow, taking many iterations of the

algorithm to reach a solution. A Gauss}Newton algorithm is one way to improve the convergence
performance. However the Gauss}Newton technique requires evaluation of the Hessian. The Hessian for the
minimum BER linear DFE has four distinct terms. These are
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The Gauss}Newton algorithm is thus

�
w
���

b
���
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. (21)

It is well known that equalisation is a classi"cation problem. The coe$cient vector of the equaliser [w� b�]�
is orthogonal to the hyperplane that is used to separate the two classes in hyperspace. Since it is the
orientation of this vector that de"nes the decision boundary, the size of the vector has no e!ect on the BER.
Thus it is not necessary to constrain the size of this vector apart from avoiding the degenerative case where its
size is zero and hence no hyperplane can be de"ned. The size of the vector is thus a nuisance parameter in the
optimisation procedure. One convenient way to remove it is to re-scale it after every iteration of the
algorithm. From consideration of the expressions for the gradient and the Hessian it is obvious that rescaling
by the size of the vector w simpli"es many of the expressions. Thus

w�
���

"

w
���

�w�
���

w
���

, (22)

b�
���

"

b
���

�w�
���

w
���

. (23)

The convergence performance of the gradient (G) and Gauss}Newton (GN) algorithms is illustrated in
Fig. 1 for a 3-tap channel at a signal/noise ratio of 15 dB. Both algorithms are initialised with the coe$cients
of the Wiener minimum mean squared error (MMSE) DFE. It is clear that the Gauss}Newton learning
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Fig. 1. Convergence comparison of gradient (G) and
Gauss}Newton (GN) algorithms for known channel and
estimated channel: channel impulse response �0.25, 0.5, 1.0�;
SNR"15 dB.

Fig. 2. Distribution of signed decision variable.

strategy o!ers a better convergence performance than the gradient technique both when the channel impulse
response is known a priori and when the channel is estimated from the data*in this case 64 samples.

4. Adaptive algorithms

The key to developing adaptive algorithms is the p.d.f. p
	
(z

�
) of the signed decision variable. Several

techniques are available for estimating this scalar p.d.f., the simplest of which is box counting [10]. However
it is well known that box counting requires large amounts of data for reliable estimates. Further it does not
exploit the a priori knowledge of the structure of the p.d.f. that is available in this case. Kernel density
estimation is known to produce far more reliable estimates with short data records and in particular is
extremely natural when dealing with Gaussian mixtures.
Consider the case where K training samples of the transmitted symbols �s(k)� and K associated received

samples �r(k)� are available (ignoring end e!ects). Given a set of weights w and b, a kernel density estimate of
the p.d.f. is

p(
	
(z

�
)"

1

K�2�

�
�w�w

�
�
���

exp�!
(z

�
!sgn(s(k!d))z(k))�

2
�
�
w�w �. (24)

The usual problem associated with kernel density estimation is in selecting the radius parameter 

�
. However

in this case it is clearly related to the noise r.m.s. �
�
which is usually known roughly or can be estimated on

line. In [10] a lower bound of



�
"�

4

3K�
�
�

�
�

(25)

is suggested.
To illustrate the power of kernel density estimation in this application consider Fig. 2 which shows the

p.d.f. of the signed decision variable at the output of a DFE for a channel at SNR of 15 dB. The p.d.f.
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estimates are constructed using 100 received samples. It is clear that while the box counting method gives
a good estimate of the underlying p.d.f. at the points at which it is evaluated, it provides little information
about the tails of the distribution. In particular it is the p.d.f. in the range z

�
(0 which is needed in order to

evaluate the BER, cf. Eq. (12). The kernel density estimate provides better estimates of the tails of the
distribution than the box counting method. A second and compelling reason for using Eq. (24) is that it
provides an estimate of the p.d.f. in the form of smooth di!erentiable function*a necessity for developing
gradient and Gauss}Newton optimisation techniques.
Starting with an estimate of the p.d.f. a block (or batch) adaptive "lter algorithm follows in an analogous

manner to the steepest decent or Gauss}Newton algorithms of Section 3. Two strategies are possible
depending on whether a conventional or state translation DFE is employed. For the former, the summations
over the states in (13), (14), (17), (18), (19) and (20) are replaced with summations over available data as in (24).
In the latter an estimate of the channel impulse response is "rst formed from the data using a standard least
squares method. Then, using this channel estimate as the actual channel impulse response, the state-
translated output states �r�

�
"r

�
!F

�
s(
��
� are generated. The gradient algorithm reduces to (13) with the

output vectors r
�
replaced with the state-translated output vectors r�

�
. The Hessian reduces to Eq. (17) alone

and the Gauss}Newton further reduces to

w
���

"w
�
!	�

��P
�

�w��w�
��

�
�
�P

�
�w �

�

. (26)

The same concepts can also be employed to develop an LMS-style update algorithm to train a MBER
DFE. The key to developing the LMS algorithm from its related steepest decent algorithm is to replace the
ensemble average of the gradient with a single point estimate of the gradient. In a similar manner, at sample
k a point estimate of the p.d.f. is simply

p(
	
(z

�
(k))"

1

�2�

�
�w�w

exp�!
(z

�
!sgn(s(k!d))z(k))�

2
�
�
w�w �. (27)

An LMS style update follows from Section 3 by replacing the exact p.d.f. with this crude estimate assuming
that the weights are rescaled after each update such that w�(k)w(k)"1 we have

w(k#1)"w(k)#
	

�2�

�

(r(k)!w(k)z(k))exp�!

z�(k)

2
�
�
�sgn(s(k!d)), (28)

b(k#1)"b(k)!
	

�2�

�

exp�!

z�(k)

2
�
�
�sgn(s(k!d))s(

�
(k). (29)

For a state-translation DFE, Eq. (28) is modi"ed by replacing r(k) with r�(k),

w(k#1)"w(k)#
	

�2�

�

(r�(k)!w(k)z(k))exp�!
z�(k)

2
�
�
�sgn(s(k!d)), (30)

where

r�(k)"r(k)!F
�
(k)s(

�
(k). (31)

Eq. (29) is not used, rather an LMS algorithm is used to form an estimate of the impulse response vector
a"[a

�
a
� 2 a

����
]�:

a(k#1)"a(k)#2	�
s(k!d)

s(
�
(k) ��r(k!d)!a�(k)�

s(k!d)

s(
�
(k) ��. (32)
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This estimate of the impulse response provides the elements of the matrix F
�
. Note that Eq. (31) can be

implemented e$ciently using the state-translation structure considered in Ref. [2]. For the sake of discussion
the above techniques based on point estimates of the p.d.f. will be called `least bit error ratea (LBER)
algorithms.
An alternative approach is the approximateminimum-BER (AMBER) algorithm of [11]. Its DFE form for

2-PAM can be expressed as follows:

w(k#1)"w(k)#2	I(k)sgn(e(k))r(k), (33)

b(k#1)"b(k)!2	I(k)sgn(e(k))s(
�
(k), (34)

where the error is

e(k)"s(k!d)!w�(k)r(k)#b�(k)s(
�
(k) (35)

and the indicator function is

I(k)"�
�
(1!sgn(s(k!d)z(k)!�)). (36)

The parameter � is the nonnegative threshold which permits the weights to be updated in the region of the
decision boundary.
Although the LBER and AMBER have been developed using di!erent philosophies it is useful to compare

them with respect to the parameter update mechanism. In the simplest form of AMBER [11], the threshold
parameter � is zero and the algorithm only updates when a decision error is observed. When the algorithm is
initialised the equaliser is unlikely to separate the noise free states and hence the indicator function will be on
most of the time in which case AMBER is equivalent to the signed error LMS algorithm cf. [8]. When the
algorithm has converged to a point where it separates the noise free states correctly its BER performance will
be similar to the Wiener MMSE DFE. However in this region errors will be predominately caused by
thermal noise. Thus the probability of the algorithm updating may be low and hence further convergence
may be slow. Introducing the variable � essentially de"nes a region around the decision boundary where the
algorithm will continue to update even when errors do not occur. This region is de"ned by

�w�r!b�s(
�
�(�. (37)

In the LBER algorithm the e!ect of the distance from the decision boundary is controlled by the exponential
term exp(!z�/(2
�

�
)). This can be viewed as a soft distance measure. The size of an update is a continuous

and decreasing function of the distance from the boundary. The distance is scaled by the kernel radius


�
which in turn is a function of the noise r.m.s. �

�
.

5. Results

The convergence performance of a conventional DFE (block adaptive) and the state-translation DFE
using a block of 128 training samples is illustrated in Fig. 3. Both gradient and Gauss}Newton forms are
included. The algorithms are initialised using a least squares estimate of the Wiener MMSE DFE. For
reference, the performance with exact knowledge of the channel is included. The results shown in Fig. 3 are
typical of observations over a range of channels that were tested with SNR'14 dB. (As indicated in [3], at
low SNR there is little bene"t in using an MBER criterion instead of a MMSE criterion for training a DFE.)
These observations can be summarised in four speci"c comments.

(i) The gradient version of the state-translation DFE is the most robust and converges to the minimum
BER solution in all case observed.
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�The e!ect of changing the step-size 	 (gear shifting) was not investigated. Rather the approach was to attempt to provide a level
playing "eld against which to compare the algorithms. Thus a step size was chosen for the LMS algorithm based on knowledge of the
variance of the signal at the input to the equalizer*as might be done in practice. This same value of 	 was then used for the other
algorithms.

Fig. 3. Convergence comparison of gradient (G) and
Gauss}Newton (GN) block adaptive algorithms: channel im-
pulse response �0.25, 0.5, 1.0�; SNR"15dB.

Fig. 4. Convergence comparison of LMS-DFE, AMBER-DFE,
LBER conventional DFE and LBER state translation DFE:
channel impulse response �0.5, 1.0�; SNR"16 dB.

(ii) The gradient version of the conventional DFE does not converge as fast as the equivalent state-
translation DFE and is not as robust in that divergence is occasionally observed.

(iii) The Gauss}Newton version of the state-translation DFE is the fastest converging of all. However,
instances of divergence are occasionally observed.

(iv) The Gauss}Newton version of the conventional DFE generally diverges. When it does converge it is
faster than the gradient form.

These observations lead to the following conclusions. If a gradient based block adaptive "lter is required
then the state-translation form provides an attractive solution. However, if the rapid convergence of
a Gauss}Newton algorithm is required it is better to estimate the channel "rst and proceed as in Section 3.
The convergence performance of four LMS-style adaptive DFEs is compared in Figs. 4 and 5. These are

the LBER conventional DFE of Eqs. (28) and (29); a state translation LBER DFE of Eqs. (30)}(32); the
AMBER DFE of Eqs. (33)}(36) with �"0.1; an LMS conventional DFE.
In Fig. 4 the channel impulse response is �0.5,1.0�with a SNR of 16 dB. The BERs are evaluated using Eqs.

(11) and (12) and averaged over an ensemble of 20 runs. The step size 	 for all algorithms was set at 1/18 to
ensure fairly fast convergence for the bench mark LMS algorithm.� Fig. 4 demonstrates the promise of the
LBER approach in that both the the LBER-conventional-DFE and the LBER-state-translation-DFE
outperform the LMS and AMBER algorithms. However this result is atypical of the LBER-conventional-
DFE. In many cases the LBER-conventional-DFE is no better than AMBER and, since AMBER is
extremely simple computationally, it would be the preferred choice.
A more typical example is illustrated in Fig. 5 where the channel impulse response is �0.25,0.5,1.0� with

a SNR of 17 dB. Here the step size for all algorithms was set at 1/30. Under these conditions there is little to
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Fig. 5. Convergence comparison of LMS-DFE, AMBER-DFE,
LBER conventional DFE and LBER state translation DFE:
channel impulse response �0.25, 0.5, 1.0�; SNR"17 dB.

Fig. 6. Convergence comparison of LMS-DFE, AMBER-DFE,
LBER conventional DFE and LBER state translation DFE:
channel impulse response �0.227, 0.466, 0.688, 0.466, 0.277�;
SNR"19 dB.

distinguish the LBER-conventional-DFE from the AMBER DFE and the LMS DFE. It should be noted
however that in both "gures the LBER-state-translation-DFE outperforms all the other algorithms.
For completeness the results for a 5-tap mixed phase channel are shown in Fig. 6. The channel

impulse response is �0.227,0.466,0.688,0.466,0.227� with a SNR of 19 dB. The results are similar to those
of Fig. 5.
The computational burden of the state translation DFE of Eqs. (28) and (32) is similar to that of the LMS

i.e. it grows linearly with the number of coe$cients. There are some di!erences the primary one being the
evaluation of the exponential function*in practice this might be achieved by the combination of a look-up
table and linear interpolation. Unfortunately there are not as yet any theoretical results to provide
a relationship between channel size and performance. However it would be reasonable to expect that a DFE
designed using a minimum BER cost function rather than a minimum MSE cost function will perform
better*as the former cost function is of prime importance in a digital communications system. However, the
degree of improvement will be highly dependent on channel conditions.

6. Conclusions

The problem of constructing adaptive MBER DFEs for binary signalling has been considered. Both
gradient and Gauss}Newton algorithms have been formulated in such a manner as to facilitate application
to conventional and state-translation architectures. The Hessian matrix for the Gauss}Newton
algorithm has not appeared before. Kernel density estimation has been demonstrated to provide a
convenient mechanism for approximating the BER as a smooth function of the available data. Block and
serial adaptive algorithms in both conventional and state-translation form have been developed from this
premise. A computer simulation study of the various algorithms leads to following conclusions: for block
processing a combination of channel estimation and GN BER minimisation provides a robust and fast
converging solution; for LMS-style training the LBER state translation DFE outperforms existing
algorithms.
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