
160 IEEE SIGNAL PROCESSING LETTERS, VOL. 16, NO. 3, MARCH 2009

Reduced-Complexity Iterative Markov Chain MBER
Detection for MIMO Systems
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Abstract—A novel Markov chain (MC) representation aided
minimum bit error rate (MBER) detection method is proposed for
an -QAM modulated SDM/SDMA uplink system. Compared
to the conventional MBER scheme, the proposed MC-MBER
scheme is capable of reducing the complexity imposed with the
aid of its efficient detection candidate set generation assisted by
the Markov chain process. Our performance results demonstrate
that the MC-MBER multiuser detection (MUD) is capable of
reducing the computational complexity by a factor of eight in
comparison to the conventional MBER MUD in a rank-deficient
system transmitting four 4-QAM substreams with the aid of two
receive antennas, while achieving a BER performance comparable
to that of the MBER MUD.

Index Terms—Markov chain Monte Carlo, minimum bit error
rate, multiuser detection, soft interference cancellation.

I. INTRODUCTION

S INCE the invention of turbo codes by Berrou et al. [1],
iterative linear detection based on the minimum mean

square error (MMSE) criterion and exploiting the a priori in-
formation gleaned from a second decoder component has been
investigated in diverse receivers [2], [3]. Although the MMSE
detection criterion has been widely used for iterative multiuser
detections (MUDs), minimizing the MSE does not necessarily
guarantee the direct minimization of the system’s bit error ratio
(BER). By contrast, the family of minimum BER (MBER)
detectors [4]–[7] was designed to directly minimize the BER,
and hence, it was shown to outperform the MMSE solution.
However, the high BER performance of the MBER scheme
is achieved at the cost of a high computational complexity,
which may become particularly challenging in rapidly fading
propagation environments, requiring prompt MBER detector
weight updates or in iterative detection scenarios, where soft
information has to be exchanged between the detector and the
channel decoder. In recent years, studies of Markov chain simu-
lations have found reduced-complexity applications in wireless
communication systems [8]–[11]. More specifically in [11], the
iterative nonlinear Markov chain Monte Carlo (MCMC)-based
detector was designed with the aid of multidimensional Monte
Carlo integration for low-complexity near-optimum MUD.
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Fig. 1. Iterative receiver structure of an SDM/SDMA uplink.

Against this background, the novel contribution of this letter
is that a Markov chain representation aided MBER algorithm is
proposed for the sake of reducing the computational complexity
of the conventional MBER algorithm without degrading its per-
formance.

II. SYSTEM OVERVIEW

A. System Description

Assume an SDM/SDMA uplink scenario, where each of the
users has transmit antennas, while the base station (BS)

is equipped with an -element antenna array. At the th user,
the source bits are first channel encoded and then interleaved
by the user-specific interleaver . Next, the interleaved bits
are S/P converted to substreams and then mapped to the

-QAM symbols . Finally, a total
of -QAM symbols are simultaneously transmitted
via each transmit antenna of each user. For simplicity, we con-
sider perfectly synchronous transmissions of all the users, which
would require accurate adaptive timing advance control.

The receiver structure is shown in Fig. 1. Based on the turbo
detection principle, the receiver employs an iterative MUD in
the SDM/SDMA uplink. The receiver consists of two soft-input
soft-output (SISO) stages, namely, the SISO interference can-
cellation aided MUD and number of parallel single-user
SISO channel decoders. The MUD scheme employed demod-
ulates the received symbols and outputs the extrinsic informa-
tion in the form of log likelihood ratios (LLRs) with the aid
of the a priori LLRs , which are fed back from the channel
decoders to the detector. The extrinsic LLRs are then input
to the convolutional channel (CC) decoders of Fig. 1 after dein-
terleaving. The extrinsic LLRs of Fig. 1 are calculated at the
channel decoders, output and are interleaved again, before being
passed back to the MUD component as the a priori information.

B. Signal Model

Under the assumption of a frequency-flat channel en-
vironment, the received signals are given by
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the complex-valued expression of , where
are the -QAM symbols and

are the corresponding noise components having a
zero mean and a power of . Furthermore,
denotes the channel matrix.

Considering the MBER and MC-MBER schemes, it is con-
venient to represent the estimated signals by real-valued binary
expressions. Let us hence consider the transformation of the
above complex-valued -QAM signal model to the equivalent
real-valued binary signal model.

Let us assume first of all that the th user’s and the th an-
tenna’s -QAM symbol as well as the equivalent real-

valued binary symbols have the relationship

of , where

.

Then, the equivalent real-valued binary signal model is given by

(1)

where we have

(2)

(3)

(4)

(5)

with , ,

, and . Note
that the equivalent real-valued noise components have the
power of . Throughout the rest of this letter, we
employ this real-valued signal model.

III. MARKOV CHAIN MBER DETECTION

In this section, we present our novel detection algorithm, fol-
lowing a brief introduction of the conventional MBER scheme.

A. Conventional MBER Detection

Let us define the number of legitimate trans-
mitted sequences of as , with

. Then, the error probability of the th sub-
stream signal can be expressed as [6]

(6)

with , where

is the a priori probability

of transmitting , and is the Gaussian Q-function.
Furthermore, is the weight vector corresponding
to and is the th column of . The soft estimates

are computed from the a priori LLRs
as . The

MBER weights are derived by minimizing the BER function
of (6) as follows:

(7)

In (6), the probability is a nonlinear function of the
weights ; therefore, in general, the optimization problem has
to be solved iteratively. Since the gradient of (6) is given by [6]

(8)

with , the simplified conjugate gradient
(SCG) algorithm [4] provides an efficient solution for this op-
timization problem. As described in [6], the symbols estimated
by the MBER detector is non-Gaussian. Thus, the exact expres-
sion of the extrinsic information has to be employed, which is
given by

(9)

where we have

(10)

(11)

Clearly, the calculation of the MBER weight gradient in (8)
imposes a high computational complexity, which increases ex-
ponentially with the value of . It may be readily shown that an
unlikely signal set of resulting in a small value of
does not substantially contribute to the gradient expression of
(8). Thus, we introduce the Markov chain (MC) representation
method that efficiently extracts a likely set of signals from the

legitimate sequences for the sake of reducing the
computational complexity associated with the gradient calcu-
lation in (8) without degrading the BER performance of the
full-complexity MBER scheme.

B. Principle of Markov Chain MBER Detection

The MCMC algorithm is based on two different techniques,
i.e., MC representation and Monte Carlo integration. While the
former is employed to find the most likely detection candidates
according to the associated probability distributions, the latter
is used to approximate the integral of interest on the basis of
the detection candidates calculated by the MC representation. In
our MC-MBER detector, only the MC representation is used to
generate the most likely number of signals

, which are our detection candidates in this letter. The
detection candidates are then input to the MBER detector.

Several algorithms have been designed for finding the most
likely decision candidate set with the aid of an MC process
[10]. In this contribution, we employ the most popular so-called
Gibbs-Sampler, which assists us in sampling the detection can-
didates set, with the aim of finding the most likely ones [11].
Fig. 2 portrays a flowchart of the Gibbs-Sampler algorithm em-
ployed in our SDM/SDMA system, where the algorithmic steps
are as follows.
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Fig. 2. Flowchart depicting the structure of Gibbs-Sampler used in the SDM/
SDMA system.

1) Initialization: The initialization block of the Gibbs-Sam-
pler of Fig. 2 randomly generates binary signals

, which represent one of the le-
gitimate signal sequences of (4) in our -QAM SDM/SDMA
system.

2) Sample Generation: In the sample generation block of
Fig. 2, the signals generated during the
th loop are calculated based on the st signals , on

the a priori LLRs , on the received signals and on the esti-
mated channels . To be more specific, the th element
of the signals is calculated from the conditional probability
[11]

(12)

with

where we have
and
. When a real-valued random variable ,

which is uniformly distributed between 0 and 1, happens to
be lower than the probability , the

th element is set to , otherwise, to . This sample
generation block is activated for iterations; thus, a total of

signals are generated.
3) Sample Collection: Finally, in the sample collection

block, the signals generated in the last iterations are
collected as the most likely detection solutions identified by the
Gibbs-Sampler. Here, the first iterations
are selected as the burn-in period indicating that these initial
detection candidates are typically discarded, which allows
the solution to converge at the most likely values from the
randomly generated initial solutions .

It is clear that the number of detection candidates gen-
erated by the Gibbs-Sampler of Fig. 2 are mutually correlated
since all of the signals are originated from the initial conditions

. Therefore, parallel Gibbs-Samplers may be invoked

to avoid the problem of having highly correlated successive
Gibbs-Sampler solutions [10]. The employment of this method
results in an increased number of detection candidates .

Having completed the generation of the Gibbs-Sampler’s de-
tection candidate set of signals, only number
of detection candidates are retained from the Gibbs-Sam-
pler solution set, also ensuring that the identical detection candi-
dates of the parallel Gibbs-Samplers are removed, which results
in . Note that using a single Gibbs-Sampler may
generate even identical detection candidates, especially when
the absolute values of the a priori LLRs and/or the SNR are
sufficiently high. Then, these detection candidates are
used for calculating the gradient in (8) by replacing and
by and , respectively. Typically, becomes sig-
nificantly lower than , which is an explicit benefit of
the rapid convergence of the Gibbs-Sampler detailed in Fig. 2.

The computational complexity of the MC-MBER detector,
which is required for calculating the gradient of the BER with
respect to the weights in (8), can be reduced by a factor of

in comparison to that of the full-complexity MBER
scheme, although the MC-MBER detector imposes the addi-
tional computation of the Gibbs-Sampler-based reduced set of

signals.

IV. PERFORMANCE ANALYSIS

In this section, we present our performance results character-
izing the proposed MC-MBER aided system employing

receive antennas at the BS and supporting users, each
having transmit antennas and using 4-QAM transmis-
sions, which results in the -element equiv-
alent channel matrix . For comparison, the performance of
the MMSE and MBER detectors is also considered. Each user
has a different random interleaver having a length of 200 000
bits and employs the same half-rate recursive systematic con-
volutional (RSC) code having a constraint length of 5 and the
octally represented generator polynomials of (35, 23). For each
user, number of 4-QAM modulated symbols are trans-
mitted over frequency flat Rayleigh fading channels, where the
total bandwidth efficiency is 4 bits/s/channel use, corresponding
to 4 bits/s/Hz in case of zero Nyquist access bandwidth.

A. BER Performance

Fig. 3 shows the achievable BER performance of the
MC-MBER detector in conjunction with both and

, as well as that of the MMSE and MBER detectors. The
other parameters of the Gibbs-Sampler were set to
and . Furthermore, the corresponding perfect can-
cellation based single-stream bound is also plotted in Fig. 3.
The MC-MBER curves of both and exhibit
good BER results, which are close to that of the full-complexity
MBER detector, while MMSE detector exhibits 4 dB worse
performance at the BER of in this challenging rank-de-
ficient scenario. It can be also concluded that the MC-MBER
detector’s performance in this simulation is essentially unaf-
fected by the number of parallel chains . This is owing to
the fact that the MC-MBER is capable of directly reducing the
BER, as far as the number of detection candidates includes
the transmitted signals to be detected. This is beneficial in terms
of reducing the computational complexity imposed, since the
total number of parallel chains is reduced.
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Fig. 3. BER performance of the MMSE, MBER, and MC-MBER detectors
using � � � iterations in a 4-QAM SDM/SDMA scenario employing � � �,
� � �, and� � �. The MC-MBER detector invoked� � � or� � �

Markov chains having a burn-in period of � � � and � � �� signals
generated in a single Gibbs-Sampler.

Fig. 4. Number of detection candidates � generated by the Gibbs-Sampler
and used for calculating the gradient of the MC-MBER weights in (8), where
� was averaged over all the iterations � at each SNR. The value of � �

� � � � ��� used for the full-complexity MBER detector is also plotted.

B. Computational Complexity

Fig. 4 shows the number of detection candidates used
for calculating the gradient of the MC-MBER weights in (8),
where the number was averaged over all the iterations at
each SNR. The number used for the
full-complexity MBER scheme is also plotted in Fig. 4. For the
MC-MBER scheme, we had . More specifically, in
case of , the number of detection candidates tended
to be unity upon increasing the SNR.

Table I shows the computational complexity required to cal-
culate the weights for the full-complexity MBER and for the
MC-MBER detectors at the SNR dB in our SDM/SDMA
system. The complexity was evaluated in terms of the number
of real-valued operations, expressed as the sum of real-valued
multiplications and real-valued additions. Furthermore, since
the MC-MBER detector requires both the Gibbs-Sampler and
the SCG algorithms, both their complexity is characterized as

TABLE I
COMPLEXITY AT SNR � � dB IN THE SDM/SDMA SYSTEM

well as the total complexity in Table I. The total complexity of
the MC-MBER detector using was found to be a factor
of eight lower than that of the full-complexity MBER scheme.
Additionally, it is seen in both the MC-MBER detectors using
both and that the Gibbs-Sampler constitutes
the dominant factor in the total complexity in comparison to the
SCG algorithm.

V. CONCLUSION

In this letter, we proposed a reduced-complexity Markov
chain representation aided MBER detector designed for the
SDM/SDMA uplink. Our simulation results revealed that the
complexity of the MC-MBER MUD is a factor of eight lower
than that of the MBER MUD in an 4-QAM modulated rank-de-
ficient system having receive antennas and
users, each employing receive antennas, while keeping
the BER performance comparable to that of the MBER MUD.

It is also predicted that the complexity advantage of the
MC-MBER scheme over the MBER scheme increases upon
increasing , since the number of detection candidates
does not increase exponentially.
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