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Sparse Incremental Regression Modeling Using
Correlation Criterion with Boosting Search

S. Chen, X.X. Wang and D.J. Brown

Abstract—A novel technique is presented to construct sparse gener-
alized Gaussian kernel regression models. The proposed method ap-
pends regressors in an incremental modeling by tuning the mean vector
and diagonal covariance matrix of individual Gaussian regressor to best
fit the training data based on a correlation criterion. It is shown that
this is identical to incrementally minimize the modeling mean square
error. The optimization at each regression stage is carried out with a
simple search algorithm re-enforced by boosting. Experimental results
obtained using this technique demonstrate that it offers a viable alterna-
tive to the existing state-of-art kernel modeling methods for constructing
parsimonious models.

Keywords— Regression, Gaussian kernel model, incremental model-
ing, correlation, boosting

I. INTRODUCTION

A basic principle in nonlinear data modeling is the par-
simonious principle of ensuring the smallest possible model
that explains the training data. The state-of-art sparse ker-
nel modeling techniques [1]–[10] have widely been adopted
in data modeling applications. These existing sparse mod-
eling techniques typically use a fixed common variance for
all the regressors and select the kernel centers from the train-
ing input data. We present a flexible construction method for
generalized Gaussian kernel models by appending regressor
one by one in an incremental modeling. The correlation be-
tween a Gaussian regressor and the training data is used as
the criterion to optimize the mean vector and diagonal co-
variance matrix of the regressor. This approach is equivalent
to incrementally minimizing the modeling mean square error.
The optimization is carried out with a simple boosting search.
Because kernel means are not restricted to the training input
data and each regressor has an individually tuned diagonal
covariance matrix, our method can produce very sparse mod-
els that generalize well and it offers a viable alternative to the
existing state-of-art sparse kernel modeling methods.

Our proposed incremental modeling method is very differ-
ent from the cascade-correlation incremental learning [11].
In the cascade-correlation method, regression units are con-
structed on a variable space of increasing dimension, namely,
the inputs to a unit being the original inputs and the outputs
of the previously selected units. Our proposed method is a
truly incremental modeling from the input space to the out-
put space. It has a desired geometric property that a regressor
is constructed to fit the peak (in the sense of magnitude) of the
current modeling residual at each stage. This geometric prop-
erty is graphically illustrated in a simple one-dimensional
modeling problem. Our method also has advantages over
the radial basis function network training methods based on
clustering (e.g. [12]-[14]). In these clustering based learn-

S. Chen is with School of Electronics and Computer Science, University
of Southampton, Southampton SO17 1BJ, U.K.

X.X. Wang and D.J. Brown are with Department of Creative Technologies,
University of Portsmouth, Portsmouth PO1 3HE, U.K.

ing methods, the number of clusters or the model size must
be learned by other means, for example, via cross-validation
[15],[16]. Moreover, the regressor kernel variances also need
to be decided using some other appropriate techniques.

II. METHOD

Consider the problem of fitting the
�

pairs of training data�������	�
����
�����
with the regression model������������� � ����� � �!� � ���

(1)

where
�

is the " -dimensional input variable; � �
, #%$'&�$)( ,

denote the model weights; ( is the number of regressors;
and

�*� �,+!�
, #)$-&.$/( , denote the regressors. We allow

the regressor to be chosen as the generalized Gaussian kernel
function
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where
5 �

is the & th kernel center or mean vector and the co-
variance matrix

7 �
is diagonal. We will adopt an incremental

approach to build up the regression model (1) by appending
regressors one by one. Let us first introduce the following
notation � ?�I D� �)� �� ?KJ D� �)� ?KJ ; � D� L � J � J � � � � M #N$O&P$ �

(3)

Obviously,
� ?KJ D�

is the modeling error at
� �

after the Q th re-

gressor has been fitted and
� ?�I D�

is simply the desired output
for the input

� �
. Next define the mean square error (MSE) for

the Q -term regression model over the training data as

MSE J � #� 
� � �R�TS � ?KJ D�VU�W � #� 
� � ���YXZ � � L J�[ ���\� [ � [ ��� � �^]_ W
(4)

The incremental modeling process is terminated when
MSE JY`ba , where a is a preset modeling accuracy. The ter-
mination of the model construction process can alternatively
be decided by cross-validation [15],[16], and other termina-
tion criteria include the Akaike information criterion [17], the
optimal experimental design criteria [9] and the leave-one-
out generalization criterion [10].

At the Q th stage of modeling, the regressor

� J � ���
is fitted

to the training data set
��� � �6� ?cJ ; � D� ��
� ���

by tuning its mean
vector

5 J and diagonal covariance matrix
7 J . The correla-

tion function between the regressor and the training data set



2 IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. Y, MONTH 200Z

as given by� J � 5 J �97 J ��� � 
� ��� � J ��� � �^� ?KJ ; � D�
� � 
� ��� � WJ ��� � ��� � 
� ��� S � ?KJ ; � D� U W (5)

defines the similarity between

� J �����
and

��� � �6� ?KJ ; � D� ��
� ���
.

This correlation criterion can be used to position and shape a
regressor. That is,

5 J and
7 J of the Q th regressor are chosen

to maximize � � J � 5 J �97 J � � . After the regressor positioning
and shaping, the corresponding weight is calculated by the
usual least squares solution

� J � � 
� ��� � ?KJ ; � D� � J � � � �� 
� ��� � WJ � � � � (6)

Selecting regressors by maximizing � � J � 5 J �87 J � � is identical
to incrementally minimizing the modeling MSE (4). Substi-
tuting (3) into (4) with � J given by (6) yields

MSE J ��� #� 
� � ���NS � ?KJ ; � D� U W��
	 # L � WJ � 5 J �87 J ���
(7)

Clearly maximizing � � J � 5 J �87 J � � is equivalent to minimiz-
ing MSE J with respect to

5 J and
7 J . An important tech-

nique to alleviate over-fitting and improve robustness of the
solution is to apply regularization [6]-[10]. The zero-order
regularization can readily be incorporated with our proposed
method by changing the least squares solution (6) into

� J � � 
� ��� � ?KJ ; � D� � J � � � �
�� � 
� ��� � WJ � � � � (8)

where



is a small positive regularization parameter.
The optimization for determining

5 J and
7 J can be per-

formed with guided random search methods, such as the ge-
netic algorithm [18],[19] and adaptive simulated annealing
[20],[21]. However, we perform this optimization by a simple
search which is re-enforced by boosting [22]–[24]. Let the
vector � J contain the mean vector

5 J and the diagonal co-
variance matrix

7 J . Given the training data
��� � �6� ?KJ ; � D� ��
� ���

,
the basic boosting search algorithm is summarized:

Initialization: Set iteration index � ���
, give the � randomly

chosen initial values for � J , � ? � DJ � � �9� � ? W DJ � � � ������� � � ?�� DJ � � � ,
with the associated weighting � � � � � � �� for #H$ & $
� , and
specify a small positive value a�� for terminating the search
and a maximum number of iterations (�� .

Step 1: Boosting
1. Calculate the loss of each point, namely cost [ � # L
� � J � � ? [ DJ � � �	� � , # $ �2$!�
2. Find � �#" �#$J � � � �&%('�)+*-,/. �

cost[ � # $0�/$1� � and�325476 �#$J � � �P�8%9':)+*;%=< �
cost[ � # $ �2$!� �

3. Normalize the loss

loss [ � cost [� ����R�
cost

� � #%$>�2$!�
4. Compute a weighting factor ? $ according to@ $ � ��[ ��� � [ � � � loss [ � ? $ � @ $# L @ $

5. For � � # ������� � � , update the distribution weightings

� [ � � � # �P�BA � [ � � � ? loss C$ for ? $ $ # �� [ � � � ? � ; loss C$ for ? $ED # �
6. Normalize the weighting vector� [ � � � # �4� � [ � � � # �� ������ � ��� � � # � � #N$>�H$F�
Step 2: Parameter updating
1. Construct the

� � � # � th point using the formula

� ?��HG � DJ � � �P� �� � ��� � � � � � # � � ? � DJ � � �
2. Construct the

� � �JI � th point using the formula� ?/�HG W DJ � � �P� � �#" �#$J � � � � � � �#" �#$J � � � L � ?��HG � DJ � � �6�
3. Choose a better point (smaller loss value) from � ?/�HG � DJ � � �

and � ?/�HG W DJ � � � to replace �3254�6 �H$J � � �
Set � � � � # and repeat from Step 1 until K�� ?/�HG � DJ � � � L
� ?/�HG � DJ � � L # � K ` a�� or ( � iterations have been reached.
Then choose the Q th regressor � J � � �#" �#$J � � �

The above basic boosting search algorithm performs a
guided random search and solution obtained may depend on
the initial choice of the population. To derive a robust algo-
rithm that ensures a stable solution, we augment it into the
following repeated boosting search algorithm.

Initialization: Specify a maximum repeating times (�L and
a small positive number a 6 for stopping the search

First generation: Randomly choose the � number of the
initial population � ? � DJ � � ? W DJ ������� � � ?�� DJ , and call the boosting
search algorithm to obtain a solution � �#" �#$J �M�*�

Repeat loop: For N � #PO*(QL
Set � ? � DJ � � �#" �#$J � N L # � , and randomly generate the other� L # points � ? � DJ for

I $O&�$R�
Call the boosting search algorithm to obtain a solution� �#" �#$J � N �
If K�� �#" �H$J � N L # � L � �#" �#$J � N � K ` a 6 , Exit loop

End for
Choose the Q th regressor as � J � � �#" �H$J � N �
The algorithmic parameters that need to be chosen appro-

priately are the population size � , termination criterion a � and
maximum number of iterations (�� in the boosting search as
well as the maximum number of repeating times ( L and the
stopping criterion a 6 for the repeating loop. To simplify the
algorithm tuning, we can simply fix (�� and (QL without the
need to specify a � and a 6 . In the following modeling experi-
ments, the value of � , ( � and ( L were chosen empirically
to ensure that the incremental modeling procedure produced
consistent final models with the same levels of modeling ac-
curacy and model sparsity for different runs. The stopping
threshold a for the incremental modeling procedure should
ideally be set to a value slightly larger than the system noise
variance. Since the system noise level is generally unknown a
priori, an appropriate value for a has to be learned during the
modeling process. Alternative, the Akaike information crite-
rion [17] and the optimal experimental design criteria [9] can
be employed to terminate the model construction procedure
without the need to specify a modeling accuracy a .
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Fig. 1. Incremental modeling procedure for the simple function fitting problem: in (a)–(f), the light curves are the modeling errors of the previous stage,���������
	� , and the dark curves are the fitted current regressors, � ��
�� ��� ��� , for ��������� , respectively.

III. EXPERIMENTAL RESULTS

Two examples were used to illustrate the proposed sparse
modeling approach. The first example was a one-dimensional
simulated data set and was chosen to demonstrate graphically
the motivation and desired property of the incremental regres-
sion procedure using the correlation criterion. The second
example was a real-data set.
Example 1. The 500 points of training data were generated
from � ��� �P�8��� # � �! ,/."�� �  ,/. ���$#%� � :
with equal-spaced

�'&)(
L # � � # ��* , where

:
was a Gaussian

white noise with zero mean and variance 0.01. With a popula-
tion size � �+#

, the maximum number of iterations ( � � I �
and the maximum repeating times ( L � # � together with
the modeling accuracy set to a � �,� � # I , the incremental
modeling consistently produced models of - Gaussian re-
gressors with the same MSE . � �,� � #!# for a large number
of different runs. We also used the Akaike information cri-
terion [17] and the optimal experimental design criteria [9]
to stop the selection procedure, rather than specifying the
modeling accuracy a , and the results obtained are identical.
The construction process in a typical run is illustrated graph-
ically in Fig. 1 (a)–(f), where the effectiveness of regressor
tuning based on the correlation criterion is clearly demon-
strated. In Fig. 2 (a), the model output from the constructed
6-term model is superimposed on the noisy training data, and
the final modeling errors are shown in Fig. 2 (b).
Example 2. This example constructed a model representing
the relationship between the fuel rack position (input / � � � )
and the engine speed (output

��� � � ) for a Leyland TL11 tur-
bocharged, direct injection diesel engine operated at a low
engine speed. Detailed system description and experimen-
tal setup can be found in [25]. The data set contained 410
samples. The first 210 data points were used in training and
the last 200 points in model validation. The training data set
was constructed with

� � � ��� & � and
� � �0( � � & L # � / � & L

# � / � & L I �1*32
for & �54 �76F������� � I # � . We used the proposed

approach to fit a generalized Gaussian regression model to
this data set. With � �'498

, (Q� � - � and (QL � I �
together

with a � ��� �(� �:#;#
, the incremental modeling produced in re-

peated runs consistent models of 9 Gaussian regressors with
the MSE values of

��� �(� �:#;4
and
�,� � �(�<#;#

over the training and
testing sets, respectively. Fig. 3 (a) depicts the model predic-
tion

�� � � � for a typical 9-term model obtained, in compari-
son with the system output

��� � � . The corresponding model
prediction error @ � � � � ��� � � L �� � � � is shown in Fig. 3 (b).
We also ran the experiments using the Akaike information
and optimal experimental design criteria to stop the model-
ing process, and the results obtained were similar to those
obtained with given the modeling accuracy of a ����� �(�(�<#;#

.
Various existing state-of-art kernel modeling techniques

had been used to fit this data set in [9],[10]. These kernel
modeling techniques can only choose the kernel mean vectors
from the training input data points and use a single fixed com-
mon variance for all the regressors. The best Gaussian kernel
model with an optimal single common variance of =

W � # � -:>
obtained by one of the existing state-of-art kernel modeling
techniques required at least 20 model regressors to achieve
the same modeling accuracy (see [10]). In comparison, the
proposed modeling approach resulted in a much sparser 9-
term generalized Gaussian kernel model.

IV. CONCLUSIONS

An incremental modeling technique has been presented
to construct sparse generalized Gaussian regression models.
The proposed technique can tune the mean vector and diag-
onal covariance matrix of individual Gaussian regressor to
best fit the training data incrementally based on the corre-
lation between the regressor and the training data. A simple
boosting search algorithm has been adopted for regressor tun-
ing at each modeling stage. Experimental results using this
construction technique have demonstrated that it offers a vi-
able alternative to the existing state-of-art kernel modeling
methods for constructing parsimonious regression models.
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Fig. 2. Incremental modeling results for the simple function fitting problem:
in (a) outputs �� � of the final 6-term model are superimposed on the noisy
training data � � , and (b) shows the final modeling errors.
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