
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 259

Genetic Algorithm Optimization for Blind Channel
Identification with Higher Order Cumulant Fitting

S. Chen, Y. Wu, and S. McLaughlin

Abstract—An important family of blind equalization algorithms
identify a communication channel model based on fitting higher
order cumulants, which poses a nonlinear optimization prob-
lem. Since higher order cumulant-based criteria are multimodal,
conventional gradient search techniques require a good initial
estimate to avoid converging to local minima. We present a novel
scheme which uses genetic algorithms to optimize the cumulant
fitting cost function. A microgenetic algorithm implementation
is adopted to further enhance computational efficiency. As is
demonstrated in computer simulation, this scheme is robust and
accurate and has a fast convergence performance.

Index Terms—Blind channel identification, genetic algorithm,
higher order cumulant fitting.

I. INTRODUCTION

M ANY digital communication channels are subject to in-
tersymbol interference (ISI) [1]–[3]. The ISI distortion

of a channel is due to the restricted bandwidth allocated to the
channel or the presence of multipath effects in the transmission
medium. At the receiver, the ISI must be compensated to
reconstruct the transmitted data symbols, and this is referred
to as channel equalization. Traditionally, an equalizer learns
the channel characteristics through an initial training period.
During training, the transmitter sends out a data sequence that
is known and available in proper synchronism at the receiver.
The receiver uses this sequence as the desired reference signal
to adjust the equalizer parameters. Once the channel char-
acteristics have been learned sufficiently well, the equalizer
can then switch to a decision-directed mode with the detected
symbol sequence serving as the reference signal. This decision-
directed adaptation allows an equalizer to track slow variations
in the channel characteristics during actual data transmission.

Training consumes valuable bandwidth resource and should
be avoided whenever possible. Furthermore, in multipoint
broadcast communication systems, it is impossible to have
a training period, and an equalizer must adjust itself based
only on noisy channel observations without access to the
desired reference. This is known as blind equalization. Blind
equalization techniques developed since the pioneering work
of Sato [4] can be categorized into three classes that either rely
on: 1) Bussgang-type techniques [4]–[9]; 2) higher order cu-
mulants (HOC’s) or equivalent higher order spectra [10]–[15];
or 3) a joint channel and data estimation approach [16]–[21].
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Blind equalizers based on HOC techniques are very general
and often achieve excellent practical results, provided that
sufficient signal samples are available to accurately estimate
higher order statistics.

For the second family of blind equalizers, a two-stage
strategy is usually adopted, which first identifies a channel
model using HOC fitting algorithms and then employs the
estimated channel model to design an equalizer [14], [15]. The
key step of this approach is its ability to obtain an accurate
channel model. Once this model is available, a variety of
existing equalizer design methods can be employed, ranging
from a simple linear inverse filter to a sophisticated maximum
likelihood sequence estimator [1], [22]–[24], depending on a
tradeoff between performance and complexity. HOC fitting
algorithms for blind channel identification are widely used in
practice due to their simplicity and computational efficiency.

Cost functions of HOC fitting, however, are multimodal,
and conventional gradient optimization techniques [14], [15]
may converge to “wrong” solutions unless a good initial value
for the channel parameters is provided, which is not always
possible. To overcome the problem of local minima, simulated
annealing (SA) has been implemented to optimize the HOC
fitting cost function [25]. Here we propose genetic algorithms
(GA’s) [26]–[31] for blind channel identification based on
HOC fitting. For this particular application, we believe that the
GA approach is more efficient than SA. Our simulation study
demonstrates that the GA-based scheme is robust to errors
in estimated HOC’s and can achieve a global optimal solution
regardless of initial value of channel estimate. Furthermore, the
number of parameters to be optimized in the problem of blind
channel estimation is usually small, and GA’s are particularly
effective for this kind of optimization problems. The micro-
GA GA) implementation [30] is adopted in our scheme to
further improve the convergence rate.

II. BACKGROUND

Typically, a digital communication channel can be modeled
as a finite impulse response filter (also known as a mov-
ing average model) with an additive noise source [1]–[3].
Specifically, the received signal at sampleis given by

(1)

where denotes the noiseless channel output, is the
channel order, are the channel taps, the symbol sequence

is independent and identically distributed, and is
a Gaussian white noise sequence with zero mean and variance

We assume that the channel and symbols
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are real valued. This corresponds to the use of a multilevel
pulse amplitude modulation -PAM) scheme with a symbol
constellation defined by the set

(2)

For example, an 8-PAM scheme has a data symbol set {7,
5, 3, 1, 1, 3, 5, 7}. Extension to complex-valued channels

and modulation schemes is straightforward. The reason for
concentrating on the simpler real-valued case is to avoid com-
plicated communication terminologies, which some readers
might not be familiar with.

In the ideal situation where the ISI is absent, the received
signal is given by

(3)

The optimal decision process in this case is trivial and can
readily be shown to be

(4)

where denotes the estimate of The ISI
distortion refers to the fact that, in reality, the received signal
is a mixture of several transmitted data symbols. Even without
noise, the threshold decision rule (4) is no longer reliable
because data symbols transmitted before and after will
interfere with the decision regarding the transmitted symbol

If the channel model

(5)

is known, this ISI distortion can be removed or minimized
by employing an equalizer. Equalizer design given a known
channel model is a well-developed field, and a variety of
techniques are available [1], [22]–[24]. The channel model
is generally unknown, however, and has to be identified first.

Blind channel identification refers to the determination of
the channel model using only the noisy received signal

and some prior knowledge of statistical properties of
The problem is particularly difficult because the transfer

function of the channel

(6)

is generally nonminimum phase. is said to be minimum
phase if all the zeros of are inside the unit circle of the

-plane. If has zeros outside the unit circle, it is non-
minimum phase. For nonminimum phase channels, methods
based on second-order statistics fail to work completely, and
higher order statistics have to be employed. The second-order
cumulant or autocorrelation function of the received
channel output sequence is well known to be

(7)

where is the symbol variance and
and for The fourth-order cumulant sequence

of is defined as

(8)

It can be shown that [32]

(9)

where

(10)

and

(11)

is the kurtosis of the transmitted symbol sequence
The four-order cumulant is considered because third-order
cumulants of symmetric sequences are zero. The variance
and the kurtosis are known in our application.

As is well known, the autocorrelation functions do not
carry any phase information but the HOC’s are very sensitive
to phase properties. The frequency response of the transfer
function is defined by

(12)

where is the amplitude response and is the
phase response. Consider the simplest case with

Assume that we have two transfer functions
defined by

and (13)

where is minimum phase since its zero
is inside the unit circle, and is nonminimum phase as
its zero is outside the unit circle. Both have the
same amplitude response but very different
phase responses, as illustrated in Fig. 1. In general, among
all the ’s with the same amplitude response the
one with minimum phase has the smallest phase deviation.
The autocorrelation functions (assuming noise-free) and the
diagonal slice of the fourth-order cumulants for the signals
produced by the two systems defined in (13) can be calculated,
and the results are summarized in Table I. It can be seen that
autocorrelations totally lose the phase information of the signal
but HOC’s can resolve the signal phase. Another advantage of
HOC-based techniques is that, unlike second-order statistics,
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Fig. 1. Phase responses ofA1(z) = 1:0 + 0:5z�1 and A2(z) = 0:5
+ 1:0z�1.

TABLE I
A COMPARISON OF CUMULANTS AND AUTOCORRELATIONS FOR

A(z) = a0 + a1z
�1 WITH a0 = 1:0; a1 = 0:5 (MINIMUM

PHASE) AND a0 = 0:5; a1 = 1:0 (NONMINIMUM PHASE). THE

RECEIVED CHANNEL OUTPUT IS r(k): AUTOCORRELATION

FUNCTIONS LOSE THE PHASE INFORMATION OF THE SIGNAL

HOC’s are insensitive to Gaussian noise. This can readily be
verified by comparing (9) with (7).

Assume that received signal samples are used
to compute the time estimate of the fourth-
order cumulant. is obtained by replacing the
moments in (8) with their respective sample averages based
on the samples of The optimal channel estimate
can be obtained by minimizing the following cumulant-fitting
cost function [15], [25]:

(14)

In the construction of the fourth-order cumulant-based cost
function (14), only the diagonal slice of is
used as this results in much reduced computational complexity.
Moreover, it has been found in practice that fitting cumulants
over their entire region of support does not give any significant
improvement in channel model estimation. It is obvious that
the accuracy of the estimated cumulant will
influence the result of this approach. To reduce the estimation
variance of the segment-average scheme [11]
is often used to compute In this approach,
blind channel estimation is formulated as a standard optimiza-
tion problem with the cost function This is attractive
since the concepts and principles of the related optimization
are widely understood.

With the exception of [25], existing algorithms for HOC
fitting employ gradient search techniques, yet the associated
cost functions are well known to be multimodal. Even with

measures of providing good initial channel estimates, it has
been observed that gradient algorithms sometimes converge to
local minima [14]. Using GA’s to optimize the cost function
(14) has the advantage of ensuring a global optimal channel
estimate in the limit. Moreover, a communication channel
model (5) typically contains a few tap coefficients. Thus the
number of parameters to be optimized in (14) is small, and
GA’s are often very efficient in solving this kind of “small-
dimensional” optimization problems. We also discovered in
simulation that GA’s are less sensitive to noisy errors in the
time estimate of

In reality, the channel order is unknown and needs to be
identified. Several model-order selection criteria can be applied
to determine the correct order [32]–[34], and they will not
be repeated here. This model-order selection process will add
considerably more computational complexity. A much simpler
method is to overfit with an upper bound Thus the
cost function used in the optimization process is modified as

(15)

Function (15) is more complicated than (14) because it con-
tains more local minima, and this will generally cause more
problems for gradient-based methods. The GA-based method,
however, should in principle be capable of identifying those
nonexisting taps with (near) zero values, since the true global
optimal values for nonexisting taps are zeros. This has been
confirmed in simulation. An inspection of the obtained channel
estimate will allow deleting those insignificant taps. Thus, the
proposed method has an additional advantage of much simpler
model-order selection.

III. M ETHOD

With the goal being to find a global optimum solution as
quickly as possible, we adopt the so-calledGA [30], which
appears to offer certain advantages. This version of GA uses
a population that is much smaller than typically employed,
which can make it less computationally burdensome. In [30], it
was reported that theGA can find optimal regions faster than
standard GA’s for selected optimization problems. Allowing a
single sequence of aGA to converge, however, may not be
very useful apart from quickly locating local optima. There-
fore, after such convergence, the population is reinitialized
randomly while the best individual found up to that point
is copied into the newly generated population. This iterative
reinitialization is repeated until no further improvement is
evidenced.

Each parameter has a search range of (1, 1) and is
coded into a 16-bit string. Although other choices of encoding
are clearly available, this is deemed sufficient for the task.
Reference [30] utilized a population size of five, but we
choose a value roughly two times the number of parameters,
in anticipation of facing more difficult problems that may
require a larger collection of individuals in the population.
The crossover rate is set to 1.0, with the number of crossover
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points typically set to four. No mutation is employed, as
the reinitialization routine serves to introduce diversity. Tour-
nament selection [30] is employed to determine parents for
reproduction.

More specifically, the procedure is summarized as follows.

Step 1) Given a set of received signal samples
assume an overlength and compute the re-
quired time estimate of the fourth-order cumulant,

for to form the
cumulant fitting cost function (15).

Step 2) With a set of randomly initialized channel param-
eter vectors where is the population
size, use the GA to optimize the cost function
(15). The fitness function value corresponding
to is defined as

(16)

In the case that is (near) zero, a very large
value is assigned to . The operation of the GA
involves two loops.

Step 2.1) The inner loop evaluates and evolves a pop-
ulation. Let be the best fitness value
of the current population. The population is
assumed to have converged if

(17)

where is a predefined small positive con-
stant.

Step 2.2) After the convergence of the inner loop, the
convergence of the outer loop is tested. Let

be the best channel estimate in the cur-
rent population and be the best channel
estimate recorded in the previous population.
The overall process has converged if

(18)

where the small positive scalardefines the
final search accuracy, and is
the Euclidean norm of the search space (as
the search range for each parameter is [1,
1]). Otherwise, the population is reinitialized,

is reset to and the inner
loop restarts.

To increase the chance of converging to a true global
optimum solution, a more robust outer loop test can be
employed which only terminates the overall process after the
test (18) has been satisfied for several consecutive times.

A “normalization” measure is developed from (9) to im-
prove the rate of convergence. We make sure that every
candidate satisfies

(19)

where is the th element of In the population ini-
tialization, the taps of each channel vector first take values
randomly from the interval (1, 1), and each chosen model is
then normalized according to (19). Whenever a new generation
is produced, each member of the population is also normalized.
This ensures that each member of the population is inside
the feasible set of channel models. Without this normalization
measure, mating will inevitably produce some population
members that are far outside the possible set of candidate
channel models, and function evaluations for these members
will merely waste computation.

It is well known that sign and time-shift ambiguities exist
in blind channel identification based on HOC fitting. Sign
ambiguity is manifested by the fact that both the true channel

and are global optimal solutions of (15) [or (14)]. Time-
shift ambiguity can be illustrated in the following example.
Let the true channel model be with

and Suppose that is
used. Then and

are all global optimal solutions of (15).
These “ambiguity” problems are common to blind equalization
techniques. A solution to time-shift ambiguity is to fix one
of the channel coefficients. We do not fix a tap value but
instead check if the first tap of a population member is zero
(absolute value smaller than a threshold), and if so, a shifting
is performed to ensure that the first tap is always nonzero.

In practice, the convergence performance of the algorithm
can only be observed through the best value of the cost
function In simulation, the performance of the
algorithm can also be assessed by the following mean tap
error (MTE)

(20)

where with for is the true channel. In (20),
is used if converges to otherwise is

used. This is necessary as bothand are correct global
optimal channel estimates for HOC fitting cost functions (see
the above discussion on sign ambiguity).

IV. RESULTS

Simulation was conducted to test the proposed scheme using
two channels taken from [2]. The impulse response of these
two channels are given by

Channel 1
Channel 2

(21)

respectively. There were 8-PAM data symbols transmitted, and
50 000 noisy received data samples were used to compute the
time estimate of the fourth-order cumulant. The signal-to-noise
ratio (SNR) in the simulation was defined as

(22)

All the results were obtained by averaging over 100 different
runs. Each run used a different sequence of noisy received
data samples and a different randomly initialized population.
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(a)

(b)

Fig. 2. (a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 1, 8-PAM, and SNR= 20 dB.

(a)

(b)

Fig. 3. (a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 1, 8-PAM, and SNR= 30 dB.

Figs. 2–4 depict evolutions of the cost function
and the MTE for channel 1 with different SNR conditions
and assumed channel lengths respectively. Tables II and
III summarize the blind identification results (meanstandard
deviation) for channel 1 with SNR’s of 20 and 40 dB,
respectively. Simulation results for channel 2 are similarly
given in Figs. 5–7 and Tables IV and V. It is well known that
channel 2 is much more difficult to equalize than channel 1,
and this was reflected in terms of accuracy in our simulation
results.

(a)

(b)

Fig. 4. (a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 1, 8-PAM, and SNR= 40 dB.

TABLE II
IDENTIFICATION RESULTS FORCHANNEL 1 WITH 8-PAM AND SNR= 20 dB

TABLE III
IDENTIFICATION RESULTS FORCHANNEL 1 WITH 8-PAM AND SNR= 40 dB

Computational complexity of the proposed scheme is sum-
marized in Table VI, where is the number of generations
for the GA to achieve convergence. In the derivation of
this theoretical complexity, we have used a population size of

and only taken into account the computational
requirements of cumulant calculation and function evaluation.
Computational complexity of genetic operations are typically
negligible, compared with the complexity of cost function
evaluation. For the channels tested in the simulation, the GA-
based scheme typically required a few hundreds of generations
to obtain an adequate solution. Thus the required number
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(a)

(b)

Fig. 5. (a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 2, 8-PAM, and SNR= 20 dB.

(a)

(b)

Fig. 6. (a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 2, 8-PAM, and SNR= 30 dB.

of function evaluations for the scheme was typically a few
thousand, as confirmed in Figs. 2–7.

V. DISCUSSION

Some observations can readily be drawn from the simulation
results. In the simulation, the GA-based scheme always
converged close to a global optimal channel estimate and
the optimization process converged quickly. Compared with
other existing methods of HOC fitting, the method appears

(a)

(b)

Fig. 7. (a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 2, 8-PAM, and SNR= 40 dB.

TABLE IV
IDENTIFICATION RESULTS FORCHANNEL 2 WITH 8-PAM AND SNR= 20 dB

TABLE V
IDENTIFICATION RESULTS FORCHANNEL 2 WITH 8-PAM AND SNR= 40 dB

TABLE VI
COMPUTATIONAL COMPLEXITY OF THE PROPOSED�GA. Ng IS THE

NUMBER OF GENERATIONS FOR THEALGORITHM TO CONVERGE, N IS THE

NUMBER OF SAMPLES, AND n̂a IS THE ASSUMED CHANNEL LENGTH

more accurate and robust. This is demonstrated by very small
standard deviations of estimated channel taps over different
runs with randomly chosen channel populations. We also
performed a range of simulations using four- and 16-PAM
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data symbols and reducing the length of data samples for
cumulant computation to 20 000. The results, not shown, are
similar to those reported here. For other existing methods of
HOC fitting, it is common that estimation accuracy will reduce
and estimation variance will increase as SNR decreases. For
the GA-based method, the simulation results suggest that, at
least for the two channels tested, SNR has little effect on
convergence rate and estimation accuracy. As was expected,
our method is capable of identifying nonexisting channel taps
with (near) zero values (at least an order smaller than values
for existing taps). This is particularly important when an
overlengthed channel model is used to avoid time-consuming
model-order selection.

For this particular application, the convergence rate of
the GA-based scheme is faster than that of the SA-based
scheme reported in [25]. All the HOC-fitting algorithms have
the same requirements of cumulant computation. Since the
computational complexity per function evaluation is similar
for GA and SA, we can compare their complexity by their
required numbers of function evaluations. The number of
function evaluations required for the GA scheme to converge
was typically a few thousand in the simulation. This is
compared favorably with the SA scheme. The number of
function evaluations for the SA algorithm of [25] is

where and are the lengths of the
two loops for step adjustment and is the number of
“temperature reductions.” Quoting the figures from [25] with

and the required number of
function evaluations for the channels used in our simulation
study would nearly be 30 000.

REFERENCES

[1] S. U. H. Qureshi, “Adaptive equalization,”Proc. IEEE, vol. 73, pp.
1349–1387, Sept. 1985.

[2] J. G. Proakis,Digital Communications. New York: McGraw-Hill,
1983.

[3] C. F. N. Cowan and P. M. Grant,Adaptive Filters. Englewood Cliffs,
NJ: Prentice-Hall, 1985.

[4] Y. Sato, “A method of self-recovering equalization for multilevel
amplitude-modulation systems,”IEEE Trans. Commun., vol. COM-23,
pp. 679–682, 1975.

[5] D. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,”IEEE Trans. Commun., vol.
COM-28, pp. 1867–1875, 1980.

[6] J. R. Treichler and B. G. Agee, “A new approach to multipath correction
of constant modulus signals,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, no. 2, pp. 459–472, 1983.

[7] G. Picchi and G. Prati, “Blind equalization and carrier recovering using
a stop-and-go decision-directed algorithm,”IEEE Trans. Commun., vol.
COM-35, pp. 877–887, 1987.

[8] N. K. Jablon, “Joint blind equalization, carrier recovery, and timing
recovery for high-order QAM signal constellations,”IEEE Trans. Signal
Processing, vol. 40, pp. 1383–1398, June 1992.

[9] S. Chen, S. McLaughlin, P. M. Grant, and B. Mulgrew, “Multi-stage
blind clustering equalizer,”IEEE Trans. Commun., vol. 43, no. 3, pp.
701–705, 1995.

[10] K. S. Lii and M. Rosenblatt, “Deconvolution and estimation of transfer
function phase and coefficients for non-Gaussian linear processes,”Ann.
Statist., vol. 10, pp. 1195–1208, 1982.

[11] G. B. Giannakis and J. M. Mendel, “Identification of nonminimum
phase system using higher order statistics,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. 37, pp. 360–377, 1989.

[12] H.-H. Chiang and C. L. Nikias, “Adaptive deconvolution and identifi-
cation of nonminimum phase FIR systems based on cumulants,”IEEE
Trans. Automat. Contr., vol. 35, pp. 36–47, 1990.

[13] D. Hatzinakos and C. L. Nikias, “Blind equalization using a tricepstrum-
based algorithm,”IEEE Trans. Commun., vol. 39, pp. 669–682, May
1991.

[14] F.-C. Zheng, S. McLaughlin, and B. Mulgrew, “Blind equalization of
nonminimum phase channels: Higher order cumulant based algorithm,”
IEEE Trans. Signal Processing, vol. 41, pp. 681–691, Feb. 1993.

[15] J. K. Tugnait, “Blind equalization and estimation of digital communi-
cation FIR channels using cumulant matching,”IEEE Trans. Commun.,
vol. 43, no. 2/3/4, pp. 1240–1245, 1995.

[16] M. Ghosh and C. L. Weber, “Maximum-likelihood blind equalization,”
in Proc. SPIE, vol. 1565, pp. 188–195, San Diego, CA, 1991.

[17] N. Seshadri, “Joint data and channel estimation using blind trellis search
techniques,”IEEE Trans. Commun., vol. 42, no. 2/3/4, pp. 1000–1011,
1994.

[18] K. Giridhar, J. J. Shynk, and R. A. Iltis, “A modified Bayesian algorithm
with decision feedback for blind adaptive equalization,” inPreprints 4th
IFAC Int. Symposium Adaptive Systems in Control and Signal Processing,
France, 1992, pp. 737–742.

[19] E. Zervas, J. Proakis, and V. Eyuboglu, “A quantized channel approach
to blind equalization,” inProc. ICC’92, Chicago, 1992, vol. 3, pp.
351.8.1–351.8.5.

[20] J. G. Proakis, “Adaptive algorithms for blind channel equalization,” in
Proc. 3rd IMA Conf. Mathematics Signal Processing, Univ. of Warwick,
U.K., 1992.

[21] S. Chen and Y. Wu, “Maximum likelihood joint channel and data
estimation using genetic algorithms,”IEEE Trans. Signal Processing,
vol. 46, pp. 1469–1473, May 1998.

[22] D. Williamson, R. A. Kennedy, and G. W. Pulford, “Block decision
feedback equalization,”IEEE Trans. Commun., vol. 40, pp. 255–264,
Feb. 1992.

[23] S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive Bayesian equalizer
with decision feedback,”IEEE Trans. Signal Processing, vol. 41, pp.
2918–2927, Sept. 1993.

[24] G. D. Forney, “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,”IEEE Trans.
Inform. Theory, vol. IT-18, no. 3, pp. 363–378, 1972.

[25] J. Ilow, D. Hatzinakos, and A. N. Venetsanopoulos, “Blind equaliz-
ers with simulated annealing optimization for digital communication
systems,”Int. J. Adapt. Contr. Signal Process., vol. 8, pp. 501–522,
1994.

[26] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: Univ. of Michigan Press, 1975.

[27] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA.: Addison-Wesley, 1989.

[28] J. J. Grefenstette, “Optimization of control parameters for genetic
algorithms,” IEEE Trans. Syst. Man. Cybern., vol. SMC-16, no. 1, pp.
122–128, 1986.

[29] L. Davis, Ed., Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold, 1991.

[30] K. Krishnakumar, “Micro-genetic algorithms for stationary and nonsta-
tionary function optimization,” inProc. SPIE Intell. Cont. Adapt. Syst.,
vol. 1196, pp. 289–296, 1989.

[31] L. Yao and W. A. Sethares, “Nonlinear parameter estimation via the
genetic algorithm,”IEEE Trans. Signal Processing, vol. 42, pp. 927–935,
Apr. 1994.

[32] J. M. Mendel, “Tutorial on higher-order statistics (spectra) in signal pro-
cessing and system theory: Theoretical results and some applications,”
Proc. IEEE, vol. 79, pp. 278–305, Mar. 1991.

[33] G. B. Giannakis and J. M. Mendel, “Cumulant-based order determi-
nation of non-Gaussian ARMA models,”IEEE Trans. Acoust., Speech,
Signal Processing, vol. 38, pp. 1411–1423, Aug. 1990.

[34] C. L. Nikias and A. P. Petropulu,Higher-Order Spectra Analysis—A
Nonlinear Signal Processing Framework. Englewood Cliffs, NJ:
Prentice-Hall, 1993.


