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Genetic Algorithm Optimization for Blind Channel
|dentification with Higher Order Cumulant Fitting
S. Chen, Y. Wu, and S. McLaughlin

Abstract—An important family of blind equalization algorithms ~ Blind equalizers based on HOC techniques are very general
identify a communication channel model based on fitting higher and often achieve excellent practical results, provided that

order cumulants, which poses a nonlinear optimization prob- g ficient signal samples are available to accurately estimate
lem. Since higher order cumulant-based criteria are multimodal, . L
higher order statistics.

conventional gradient search techniques require a good initial . . .
estimate to avoid converging to local minima. We present anovel ~ For the second family of blind equalizers, a two-stage
scheme which uses genetic algorithms to optimize the cumulant strategy is usually adopted, which first identifies a channel

fitting cost function. A microgenetic algorithm implementation  model using HOC fitting algorithms and then employs the
is adopted to further enhance computational efficiency. As is egtimated channel model to design an equalizer [14], [15]. The
demonstrated in computer simulation, this scheme is robust and . . - .
accurate and has a fast convergence performance. key step of this approach is its ab|.I|ty to 'obtam an aqcurate
channel model. Once this model is available, a variety of
existing equalizer design methods can be employed, ranging
from a simple linear inverse filter to a sophisticated maximum
likelihood sequence estimator [1], [22]-[24], depending on a
I. INTRODUCTION tradeoff between performance and complexity. HOC fitting
ANY digital communication channels are subject to inalgor!thms for innq ch.ann.eI. identification are Widely'u'sed in
tersymbol interference (1SI) [1]-[3]. The ISI distortionPractice due 'to their S|mpI|c.|ty and computational effl'C|ency.
of a channel is due to the restricted bandwidth allocated to the“0St functions of HOC fitting, however, are multimodal,
channel or the presence of multipath effects in the transmissfdid conventional gradient optimization techniques [14], [15]
medium. At the receiver, the ISI must be compensated T2 converge to “wrong” solutions unless a good initial value
reconstruct the transmitted data symbols, and this is referf@f the channel parameters is provided, which is not always
to as channel equalization. Traditionally, an equalizer learR8SSiPle. To overcome the problem of local minima, simulated
the channel characteristics through an initial training periog"n€&ling (SA) has been implemented to optimize the HOC
During training, the transmitter sends out a data sequence thif?d cost function [25]. Here we propose genetic algorithms
is known and available in proper synchronism at the receivéPA'S) [26]-[31] for blind channel identification based on
The receiver uses this sequence as the desired reference sigif fitting. For this particular application, we believe that the
to adjust the equalizer parameters. Once the channel ¢ A approach is more efficient than SA. Our'S|muIat|on study
acteristics have been learned sufficiently well, the equaliZé¢monstrates that the GA-based scheme is robust to errors
can then switch to a decision-directed mode with the detectdeStimated HOC's and can achieve a global optimal solution
symbol sequence serving as the reference signal. This decisir@rgardless of initial value of channgl estl_mate. Furthermore,_the
directed adaptation allows an equalizer to track slow variatioA4Mber of parameters to be optimized in the problem of blind
in the channel characteristics during actual data transmissiGh@nne! estimation is usually small, and GA's are particularly
Training consumes valuable bandwidth resource and shofiféective for this kind of optimization problems. The micro-
be avoided whenever possible. Furthermore, in multipoift® (#GA) implementation [30] is adopted in our scheme to
broadcast communication systems, it is impossible to ha(f§ther improve the convergence rate.
a training period, and an equalizer must adjust itself based
only on noisy channel observations without access to the Il. BACKGROUND
desired reference. This is known as blind equalization. Blind Typically, a digital communication channel can be modeled
equalization techniques developed since the pioneering weik a finite impulse response filter (also known as a mov-
of Sato [4] can be categorized into three classes that either rgly average model) with an additive noise source [1]-[3].

on: 1) Bussgang-type techniques [4]-[9]; 2) higher order cgpecifically, the received signal at samplés given by
mulants (HOC's) or equivalent higher order spectra [10]-[15];

Index Terms—Blind channel identification, genetic algorithm,
higher order cumulant fitting.

Mg
or 3) a joint channel and data estimation approach [16]-[21]. (k) = (k) + e(k) = Z a;is(k — 1) + e(k) (1)
- - T
i=0
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are real valued. This corresponds to the use of a multilewehere o2 = E[s*(k)] is the symbol variance ané(0) = 1
pulse amplitude modulatiofl/-PAM) scheme with a symbol andé(r) = 0 for = £ 0. The fourth-order cumulant sequence

constellation defined by the set Cyr(11,72,73) Of {r(k)} is defined as
si=2-M-11<i<M. @)y (r1, 72, 73) =Elr(E)r(k + 71)r(k + m2)r(k + 73)]

For example, an 8-PAM scheme has a data symbol s@t { — E[r(k)r(k + m)]E[r(k + 72)r(k + 73)]

-5,-3,-1, 1, 3, 5, 7}. Extension to complex-valued channels — E[r(k)r(k 4+ m)]E[r(k + )7k + 73)]

and modulation schemes is straightforward. The reason for — Bl (k) (k + m)[Elr(k + m)r(k 4 79)]

concentrating on the simpler real-valued case is to avoid com-
plicated communication terminologies, which some readers (8)
might not be familiar with.

In the ideal situation where the ISl is absent, the receivdld
signal is given by U

can be shown that [32]

(k) = s(k — d) + e(k). 3) Car(T1,72,78) = Vas D Biligr, Bivgry Gicirs ©)
=L
The optimal decision process in this case is trivial and can

readily be shown to be where
s, r(k)y<-M+42 L = max{0, -7, —72,—73}
sk —d) = si, 2 1_<A{<_A2/[S (k) <2 —M, (4) U =min{ng,ne — 11,ne — 72,1 — 73} (20)
SM, 7(/{}) 2 M -2 and

where §(k — d) denotes the estimate afk — d). The ISI

distortion refers to the fact that, in reality, the received signal Ya,5 = Ca,5(71, 72, 73) |y =ry =rs =0 (11)

is a mixture of several transmitted data symbols. Even without ) )

noise, the threshold decision rule (4) is no longer reliabjé the kurtosis of the transmitted symbol sequerek)}.
because data symbols transmitted before and &fterd will The four-order cumulgnt is considered because th|rd-order
interfere with the decision regarding the transmitted symbgymulants of symmetric sequences are zero. The variafice

s(k — d). If the channel model and the kurtosisy, , are known in our application.
As is well known, the autocorrelation functions do not
a=lagay - ay,]" (5) carry any phase information but the HOC’s are very sensitive

is known, this ISI distortion can be removed or minimizeélp phase properties. The frequency response of the transfer

by employing an equalizer. Equalizer design given a knoanCtIon A(2) is defined by

channel model is a well-developed field, and a variety of A(W) = A —onpio = |AW)] exp(iZAw))
techniques are available [1], [22]-[24]. The channel model #=exp(e) ’
is generally unknown, however, and has to be identified first.

Blind channel identification refers to the determination of . ) .
the channel modek using only the noisy received signalWhere [ A(w)] is the am_plltude response arxdél(w)_ls the
{r(k)} and some prior knowledge of statistical properties ghase re_sPonse. Consider the simplest case with) ”
s(k). The problem is particularly difficult because the transfeg\’O + a1z7". Assume that we have two transfer functions
function of the channel efined by

w € [0 27) (12)

Mg ) _ =,—1 —_nc -1
A(z) = Z o (6) A1(2) =1.040.52 " andA3(2) = 0.5+ 1.0z (13)
=0 where A, (z) is minimum phase since its zerg = —0.5
is generally nonminimum phasei(z) is said to be minimum is inside the unit circle, andi,(z) is nonminimum phase as
phase if all the zeros afi(z) are inside the unit circle of the its zeroz, = —2.0 is outside the unit circle. Both have the

z-plane. If A(z) has zeros outside the unit circle, it is nonsame amplitude responsg1.25 + cos(w) but very different
minimum phase. For nonminimum phase channels, methgsisase responses, as illustrated in Fig. 1. In general, among
based on second-order statistics fail to work completely, aall the A(z)’'s with the same amplitude responfsé(w)|, the
higher order statistics have to be employed. The second-ordae with minimum phase has the smallest phase deviation.
cumulant or autocorrelation functiof,,.(7) of the received The autocorrelation functions (assuming noise-free) and the
channel output sequende(k)} is well known to be diagonal slice of the fourth-order cumulants for the signals
roduced by the two systems defined in (13) can be calculated,
Con(7) :E[T(k)f(k +7)] gnd the I‘eS)l/.HtS are su¥nmarized in Tablé I.)It can be seen that
) min{na;na =7} ) autocorrelations totally lose the phase information of the signal
=9 aitiyr | +6(m)oc (1) put HOC's can resolve the signal phase. Another advantage of
i=max{0,~7} HOC-based technigues is that, unlike second-order statistics,
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measures of providing good initial channel estimates, it has

3 . been observed that gradient algorithms sometimes converge to
= 2 r 8 1 local minima [14]. Using GA'’s to optimize the cost function
s 1L (14) has the advantage of ensuring a global optimal channel
2 H\\fjs estimate in the limit. Moreover, a communication channel
s} 0 oo /A 1 model (5) typically contains a few tap coefficients. Thus the
o 1k 1 1 number of parameters to be optimized in (14) is small, and
e T GA'’s are often very efficient in solving this kind of “small-
& 2T 2y dimensional” optimization problems. We also discovered in
-3 _ simulation that GA’s are less sensitive to noisy errors in the
o Ny 2 N . . é time estimate ofCy (71, 72,73).
omega (radian) In reality, the channel order, is unknown and needs to be
_ _ ; identified. Several model-order selection criteria can be applied
Tgi.[l)‘z_f_hase responses df () = 1.0 + 0527 and A>(2) = 05 4 determine the correct order, [32]-[34], and they will not

be repeated here. This model-order selection process will add
considerably more computational complexity. A much simpler

TABLE | . .
A COMPARISON OF CUMULANTS AND AUTOCORRELATIONS FOR method is to overfit with an upper bourid > n,. Thus the
A(z) = ap+arz~" WiITH ag = 1.0,¢; = 0.5 (MINIMUM cost function used in the optimization process is modified as
PHASE) AND a9 = 0.5,a; = 1.0 (NONMINIMUM PHASE). THE
RecevED CHANNEL OuTPUT IS 7(k). AUTOCORRELATION fro min{fg ,fq—7} 2
FUNCTIONS LOSE THE PHASE INFORMATION OF THE SIGNAL 2 A
s J4(a') = Z 04,1’(7_7 T, 7—) - ’74,5 Z a/ia/?-f—-r
r(k) H Minimum phase i Nonminimum phase T=—fig i=max{0,—7}
Ath-order 4, (0,0,07 /v, “ (ad + a}) = 1.0625 ‘ (¢f * a}) = 1.0625
cumulants | ( AL L D H apai = 0.125 ‘ apuy = 0.5 (15)
autocorrelation ( ‘2 (U\/U I {ag t a]) =125 [ (a2 4+ad) =195
functions AD/er | aar =05 | “aga =05 Function (15) is more complicated than (14) because it con-

tains more local minima, and this will generally cause more
problems for gradient-based methods. The GA-based method,
HOC’s are insensitive to Gaussian noise. This can readily Réwever, should in principle be capable of identifying those
verified by comparing (9) with (7). nonexisting taps with (near) zero values, since the true global
Assume thaiV received signal samplgs(k)};_, are used optimal values for nonexisting taps are zeros. This has been
to compute the time estimat€l,,(r1,72,73) of the fourth- confirmed in simulation. An inspection of the obtained channel
order cumulantCy (7,72, 73) is obtained by replacing the estimate will allow deleting those insignificant taps. Thus, the
moments in (8) with their respective sample averages baggdposed method has an additional advantage of much simpler
on the N samples ofr(k). The optimal channel estimaé#& model-order selection.
can be obtained by minimizing the following cumulant-fitting
cost function [15], [25]: m

. METHOD
N min{ng,ne —7} 2 With the goal being to find a global optimum solution as
J@) = > |Cun(rmm)—yas Y. @il | . quickly as possible, we adopt the so-calje@A [30], which
r=—ng i=max{0,—7} appears to offer certain advantages. This version of GA uses

(14) a population that is much smaller than typically employed,
which can make it less computationally burdensome. In [30], it
In the construction of the fourth-order cumulant-based costs reported that theGA can find optimal regions faster than
function (14), only the diagonal slice @4,(71,72,73) is standard GA'’s for selected optimization problems. Allowing a
used as this results in much reduced computational complexiingle sequence of aGA to converge, however, may not be
Moreover, it has been found in practice that fitting cumulantery useful apart from quickly locating local optima. There-
over their entire region of support does not give any significafdre, after such convergence, the population is reinitialized
improvement in channel model estimation. It is obvious thaandomly while the best individual found up to that point
the accuracy of the estimated cumulm (11,7, 73) Will is copied into the newly generated population. This iterative
influence the result of this approach. To reduce the estimatiminitialization is repeated until no further improvement is
variance ofC4, (11,72, 73), the segment-average scheme [11dvidenced.
is often used to computé?47,,(n,72,r3). In this approach, Each parameter has a search range -of,(1) and is
blind channel estimation is formulated as a standard optimizaeded into a 16-bit string. Although other choices of encoding
tion problem with the cost functiorfy(a). This is attractive are clearly available, this is deemed sufficient for the task.
since the concepts and principles of the related optimizati®eference [30] utilized a population size of five, but we
are widely understood. choose a value roughly two times the number of parameters,
With the exception of [25], existing algorithms for HOCin anticipation of facing more difficult problems that may
fitting employ gradient search techniques, yet the associateduire a larger collection of individuals in the population.
cost functions are well known to be multimodal. Even witiThe crossover rate is set to 1.0, with the number of crossover
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points typically set to four. No mutation is employed, awhere a; ; is the jth element ofa;. In the population ini-
the reinitialization routine serves to introduce diversity. Toutialization, the taps of each channel vector first take values
nament selection [30] is employed to determine parents fandomly from the interval{1, 1), and each chosen model is
reproduction. then normalized according to (19). Whenever a new generation
More specifically, the procedure is summarized as follows produced, each member of the population is also normalized.
Step 1) Given a set of received signal samgle@:)}_;, This ensures that each member of the population is inside
assume an overlength, and compute the re- the feasible set of channel models. Without this normalization
quired time estimate of the fourth-order cumulantneasure, mating will inevitably produce some population
0471,(77 7,7) for —f, < 7 < 7, to form the members that are far outside the possible set of candidate
cumulant fitting cost function (15). channel models, and function evaluations for these members
Step 2) With a set of randomly initialized channel paranWill merely waste computation.
eter vectors{a;}.”,, wheren, is the population It is well known that sign and time-shift ambiguities exist
size, use theuGA to optimize the cost function in blind channel identification based on HOC fitting. Sign
(15). The fitness function valug; corresponding ambiguity is manifested by the fact that both the true channel

to a; is defined as a and —a are global optimal solutions of (15) [or (14)]. Time-
shift ambiguity can be illustrated in the following example.

f; = = 1 . (16) Let the true channel model be = [a0 a1 ---an, ]t with

Jy(a;) ap # 0 and a,, # 0. Suppose thath, = n, + 2 is

L used. Then[ag a1 ---a,, 0 0]%,[0 ao a1---a,, 0%, and
In the case that,(a;) is (near) zero, a very large [y ¢ 4, 4, ---a, ]* are all global optimal solutions of (15).

value is assigned t¢;. The operation of the{GA  Thege “ambiguity” problems are common to blind equalization
involves two loops. techniques. A solution to time-shift ambiguity is to fix one

Step 2.1) The inner loop evaluates and evolves a pagk the channel coefficients. We do not fix a tap value but

ulation. Let fi.sc be the best fitness valueinstead check if the first tap of a population member is zero

of the current population. The population isabsolute value smaller than a threshold), and if so, a shifting
assumed to have converged if is performed to ensure that the first tap is always nonzero.

- In practice, the convergence performance of the algorithm
Z(fbest — £1) < Afiest (17) can only be observed through the best value of the cost
o function Ji(apest)- In simulation, the performance of the

_ _ . algorithm can also be assessed by the following mean tap
where « is a predefined small positive con-grror (MTE)

stant.
. 2
Step 2.2) After the convergence of the inner loop, the MTE = || £ Qyest — a| (20)

convergence of the outer loop is tested. Leknereq with a:
T

- X ; = 0 for ¢ >n, is the true channel. In (20),
anes; D the best channel estimate in the cur-5  is ysed ifay,..; converges to—a, otherwisedc.; is
rent population an@g.. be the best channel

_ ‘ g ~'used. This is necessary as batland —a are correct global
estimate recorded in the previous populationynima| channel estimates for HOC fitting cost functions (see
The overall process has converged if the above discussion on sign ambiguity).

|@est — GRec|| < 8/ 4(ng + 1) (18)

where the small positive scalardefines the  Simulation was conducted to test the proposed scheme using

final search accuracy, ang/4(n,+1) iS two channels taken from [2]. The impulse response of these
the Euclidean norm of the search space (a@o channels are given by

the search range for each parameter-i4,[ h | B . T
1]). Otherwise, the population is reinitialized,ChanneI 1 a=[-021 -050 072 0.36 0.21] . }
@Rec IS reset t0are. = @nes, and the inner Channel 2 o =1[0.227 0460 0.688 0.460 0.227]

loop restarts. (21)

To increase the chance of converging to a true globalspectively. There were 8-PAM data symbols transmitted, and
optimum solution, a more robust outer loop test can 000 noisy received data samples were used to compute the

employed which only terminates the overall process after thghe estimate of the fourth-order cumulant. The signal-to-noise
test (18) has been satisfied for several consecutive times. ratio (SNR) in the simulation was defined as

A “normalization” measure is developed from (9) to im- "
prove the rate of convergence. We make sure that every SNRIEV‘Q(]C)] /E[GQ(]C)] — 2 <Z az) /02' (22)

IV. RESULTS

candidatea; satisfies

1=0
fia . C4.(0,0,0) All the results were obtained by averaging over 100 different
Z o ’T (19) runs. Each run used a different sequence of noisy received
7=0 ”

data samples and a different randomly initialized population.
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Fig. 2.
averaged over 100 different runs. Channel 1, 8-PAM, and SN& dB.

averaged over 100 different runs. Channel 1, 8-PAM, and SNBO dB.

o TABLE 1
- 10000 \ T‘””Z ,,,,,,,,, IDENTIFICATION RESULTS FORCHANNEL 1 wiTH 8-PAM anD SNR = 20 dB
'% 5 true estimate (meant standard deviation)
E 1000 + ng =4 Ny, — 4 N, =25 Tl = 6
L; ap | -0.21 ] -0.2097540.01183 | -0.21124+£0.01483 | -0.21098+0.01414
8 a; | -0.50 |-0.4995740.00548 | -0.4997540.00632 | -0.49835+0.00707
I asz 0.72 0.7209240.00447 | 0.7196540.00447 | 0.72087+0.00348
o r | | T ay | 0.36 | 0.3578840.00775 | 0.3585940.01000 | 0.35823+0.01049
ay 0.21 0.2107340.01265 | 0.2105840.01140 | 0.20870+0.01301
0 100}(:)unc2t(i)(())]§) Evi?ffmj‘sooo 5000 as | — — -0.0004140.02236 | -0.0018440.02236
@ ag — — -0.0017340.02315
- TABLE 1lI
""""" IDENTIFICATION RESULTS FORCHANNEL 1 wiTH 8-PAM anD SNR = 40 dB
m true estimate (meant standard deviation)
E n, = 1 N, — 4 Ty =D N, =6
ag | -0.21 | -0.21029£0.01000 | -0.21384+0.01304 | -0.20801-£0.03135
a, | -0.50 |-0.4993140.00548 | -0.4976940.00632 | -0.491704+0.07092
0001 b — ap | 0.72 | 0.7198940.00447 | 0.7207120.00447 | 0.71788£0.02302
e - . e Gy 0.36 0.36004+0.00837 | 0.35800+0.00837 | 0.35821+£0.01095
0 1000 2000 3000 4000 5000 ay 0.21 0.21070+0.01378 | 0.209241+0.01304 | 0.20900+£0.03493
Function Evaluations as -0.00103-+0.03033 | -0.00679+0.03795
(b) ag -0.00265+0.02665

Fig. 3.

Figs. 2—4 depict evolutions of the cost functi(f@(abest)

results.

(a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 1, 8-PAM, and SNBO dB.

Computational complexity of the proposed scheme is sum-
marized in Table VI, whereV, is the number of generations

and the MTE for channel 1 with different SNR conditiondor the uGA to achieve convergence. In the derivation of
and assumed channel lengthg, respectively. Tables Il and this theoretical complexity, we have used a population size of
Il summarize the blind identification results (melsstandard 7, = 2(72, +1) and only taken into account the computational
deviation) for channel 1 with SNR’s of 20 and 40 dBfequirements of cumulant calculation and function evaluation.
respectively. Simulation results for channel 2 are similargomputational complexity of genetic operations are typically
given in Figs. 5—7 and Tables IV and V. It is well known thanegligible, compared with the complexity of cost function
channel 2 is much more difficult to equalize than channel ¢yaluation. For the channels tested in the simulation, the GA-

and this was reflected in terms of accuracy in our simulatidrased scheme typically required a few hundreds of generations
to obtain an adequate solution. Thus the required number
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averaged over 100 different runs. Channel 2, 8-PAM, and SNEO dB.

100000 TABLE IV
Taps 7 IDENTIFICATION RESULTS FORCHANNEL 2 WiTH 8-PAM anD SNR = 20 dB
_§ 10000 b 2 ] true estimate (mean+ standard deviation)

g ! Ng =4 fl, =4 fig = H g =6
& ao | 0.227 | 0.22731£0.02828 | 0.22221+0.03116 | 0.2174340.03450
g 1000 J a; | 0460 | 0.4572740.03114 | 0.45679+0.035641 | 0.4548140.04919
© ay | 0.688 | 0.68913-0.02646 | 0.68095+0.02569 | 0.67108+0.04254
S — as | 0.460 | 0.457444:0.02280 | 0.16426£0.02775 | 0.16870+0.05119
100 : : : : as | 0.227 | 0.2256440.02811 | 0.223224+0.02720 | 0.222651+0.01658
0 1000 2000 3000 4000 5000 as — - 0.01577+0.08837 | 0.01514+0.08081
Function Evaluations a6 0.003594-0.06961

(@)
TABLE V
.l " Tans 7 ] IDENTIFICATION RESULTS FORCHANNEL 2 WITH 8-PAM aND SNR = 40 dB
P 6 true cstimate (meant standard deviation)

0.1 b 5 ] n, —4 N, =4 T, =5 N, =16
E ap | 0.227 | 0.22698+0.01304 | 0.21768-+0.03162 | 0.20608+0.05339
= e, a; | 0.460 1 0.45168+0.01789 | 0.45670£0.03674 | 0.44640+£0.05131
0.01 ¢ e e g @, | 0.688 | 0.6934240.01111 | 0.6837840.02881 | 0.67003-+0.04837
as | 0.460 | 0.45715£0.01817 | 0.16087+£0.03674 | 0.47454£0.05119
0.001 9 as | 0.227 1 0.23020£0.01549 | 0.2244240.03619 | 0.23998-£0.05908
- ‘ ‘ ‘ ‘ as — 0.0184240.08156 | 0.0118540.08532
0 1000 2000 3000 4000 5000 as — -0.00529+0.06671

Fig. 6.

(b)

(a) Cost function and (b) MTE versus number of function evaluations
averaged over 100 different runs. Channel 2, 8-PAM, and SNBO dB.

averaged over 100 different runs. Channel 2, 8-PAM, and SN& dB.

TABLE VI
CoMPUTATIONAL COMPLEXITY OF THE PROPOSEDGA. Ny IS THE

NUMBER OF GENERATIONS FOR THEALGORITHM TO CONVERGE, N IS THE

NUMBER OF SAMPLES, AND 71, |S THE ASSUMED CHANNEL LENGTH

Complexity of

of function evaluations for the scheme was typically a fewcumulant computation

multiplications:

(8, +5)N — 1

Fralta — 1) + 5

additions:

(47, + 3N — 20,(Ne —2) — 2

multiplications:
additions:

thousand, as confirmed in Figs. 2—7. 3A2 + 107, + 5

'fzz +An, + 1

Complexity per
function evaluation

Number of

V. DISCUSSION

function evaluations

2(n, + )N,

Some observations can readily be drawn from the simulation
results. In the simulation, the:GA-based scheme alwaysmore accurate and robust. This is demonstrated by very small
converged close to a global optimal channel estimate astndard deviations of estimated channel taps over different
the optimization process converged quickly. Compared withns with randomly chosen channel populations. We also
other existing methods of HOC fitting, the method appeaperformed a range of simulations using four- and 16-PAM
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data symbols and reducing the length of data samples for] G. B. Giannakis and J. M. Mendel, “Identification of nonminimum
cumulant computation to 20000. The results, not shown, are phase system using higher order statistitSEE Trans. Acoust., Speech,

similar to those reported here. For other existing methods

@b

HOC fitting, it is common that estimation accuracy will reduce

and estimation variance will increase as SNR decreases.

least for the two channels tested, SNR has little effect on

convergence rate and estimation accuracy. As was expecl[éﬂ,

our method is capable of identifying nonexisting channel taps
with (near) zero values (at least an order smaller than valuiés]
for existing taps). This is particularly important when an

overlengthed channel model is used to avoid time-consumi
model-order selection.

ne)

For this particular application, the convergence rate &7
the GA-based scheme is faster than that of the SA-based
scheme reported in [25]. All the HOC-fitting algorithms havélél
the same requirements of cumulant computation. Since the
computational complexity per function evaluation is similar

for GA and SA, we can compare their complexity by thei

F9]

required numbers of function evaluations. The number of
function evaluations required for the GA scheme to converge]
was typically a few thousand in the simulation. This is

compared favorably with the SA scheme. The number
function evaluations for the SA algorithm of [25] {3, +

1)N7NsTieq, Where Ng and Nr are the lengths of the
two loops for step adjustment arfl.q is the number of

&1

[22]

|

the GA-based method, the simulation results suggest that, a

“temperature reductions.” Quoting the figures from [25] with

Nr

= 40, Ns = 20 and T;.q = 5, the required number of 2

function evaluations for the channels used in our simulation

study (7, = 6) would nearly be 30000.
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