
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 24, DECEMBER 15, 2016 6443

Decomposition Optimization Algorithms for
Distributed Radar Systems

Ying Ma, Sheng Chen, Fellow, IEEE, Chengwen Xing, Member, IEEE, Xiangyuan Bu, and Lajos Hanzo, Fellow, IEEE

Abstract—Distributed radar systems are capable of enhancing
the detection performance by using multiple widely spaced dis-
tributed antennas. With prior statistic information of targets, re-
source allocation is of critical importance for further improving the
system’s achievable performance. In this paper, the total transmit-
ted power is minimized at a given mean-square target-estimation
error. We derive two iterative decomposition algorithms for solving
this nonconvex constrained optimization problem, namely, the op-
timality condition decomposition (OCD)-based and the alternating
direction method of multipliers (ADMM)-based algorithms. Both
the convergence performance and the computational complexity
of our algorithms are analyzed theoretically, which are then con-
firmed by our simulation results. The OCD method imposes a
much lower computational burden per iteration, while the ADMM
method exhibits a higher per-iteration complexity, but as a benefit
of its significantly faster convergence speed, it requires less itera-
tions. Therefore, the ADMM imposes a lower total complexity than
the OCD. The results also show that both of our schemes outper-
form the state-of-the-art benchmark scheme for the multiple-target
case, in terms of the total power allocated, at the cost of some degra-
dation in localization accuracy. For the single-target case, all the
three algorithms achieve similar performance. Our ADMM algo-
rithm has similar total computational complexity per iteration and
convergence speed to those of the benchmark.

Index Terms—Alternating direction method of multipliers,
localization, multiple-input multiple-output radar, optimality
condition decomposition, resource allocation.

I. INTRODUCTION

MULTIPLE-input multi-output (MIMO) radar systems re-
lying on widely-separated antennas have attracted con-

siderable attention from both industry and academia. The family
of distributed MIMO radar systems is capable of significantly
improving the estimation/detection performance [1]–[6] by ex-
ploiting the increased degrees of freedom resulting from the
improved spatial diversity. In particular, distributed radar sys-
tems are capable of improving accuracy of target location and
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velocity estimation by exploiting the different Doppler estimates
from multiple spatial directions [7]–[10].

Naturally, the localization performance of MIMO radar sys-
tems relying on widely-spaced distributed antennas, quantified
in terms of the mean square estimation error (MSE), is deter-
mined by diverse factors, including effective signal bandwidth,
the signal-to-noise ratio (SNR), the product of the numbers of
transmit and receive antennas, etc [11]. Since the SNR is influ-
enced by the path loss, the target radar cross section (RCS) and
the transmitted power, the attainable localization performance
can be improved by increasing either the number of participat-
ing radars or the transmitted power. However, simply increasing
the amount of resources without considering the cooperation
among the individual terminals is usually far from optimal.

In most traditional designs, the system’s power budget is usu-
ally allocated to the transmit radars and it is fixed [6], [10],
which is easy to implement and results in the simplest network
structure. However, when prior estimation of the target RCS
is available, according to estimation theory, uniform power al-
location is far from the best strategy. In battlefields, a radar
system is usually supported by power-supply trucks, but un-
der hostile environments, their number is strictly limited. Thus,
how to allocate limited resources to multiple radar stations is of
great importance for maximizing the achievable performance. In
other words, power allocation substantially affects the detection
performance of multi-radar systems.

Recently, various studies used the Cramer-Rao lower bound
(CRLB) for evaluating the performance of MIMO radar systems
[11]–[16]. A power allocation scheme [12] based on CRLB was
designed for multiple radar systems with a single target. The
resultant nonconvex optimization problem was solved by re-
laxation and a domain-decomposition method. Specifically, in
[12] the total transmitted power was minimized at a given es-
timation MSE threshold. However the algorithm of [12] was
not designed for multiple-target scenarios, which are often en-
countered in practice. In [13] a power allocation algorithm was
proposed for the multiple-target case, which is equally applica-
ble to the single-target scenario.

Against this background, in this paper, we propose two iter-
ative decomposition methods, which are referred to as the opti-
mality condition decomposition (OCD) [17] and the alternating
direction method of multipliers (ADMM) [18] algorithms, in
order to minimize the total transmitted power while satisfying a
predefined estimation MSE threshold. These two algorithms can
be applied to both multiple-target and single-target scenarios.
The ADMM method has been widely adopted for solving con-
vex problems. In this paper, we extend the ADMM algorithm to
nonconvex problems and show that it is capable of converging.
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It is worth pointing out that Simonetto and Leus [19] applied
the ADMM method to solve a localization problem in a sensor
network by converting the nonconvex problem to a convex one
using rank-relaxation. However, the algorithm of [19] cannot
be applied to our problem, because the task of [19] is that of
locating sensors, which is not directly related to the signal wave-
form and power. Furthermore, the maximum likelihood (ML)
criterion can be used for solving this sensor localization prob-
lem. However, our task is to assign the power of every MIMO
radar transmitter, and at the time of writing it is an open chal-
lenge to design the ML estimator for this task [11]. The main
contributions of our work are as follows.

� We propose two iterative decomposition algorithms,
namely, the OCD-based and ADMM-based methods, for
both multiple-target and single-target scenarios. The con-
vergence of these two algorithms is analyzed theoretically
and verified by simulations. Both these two methods are ca-
pable of converging to locally optimal solutions. The com-
plexity analysis of the two algorithms is provided and it is
shown that the OCD method imposes a much lower com-
putational burden per iteration, while the ADMM method
enjoys a significantly faster convergence speed and there-
fore it actually imposes a lower total complexity.

� In the multiple-target case, we demonstrate that both of our
two algorithms outperform the state-of-the-art benchmark
scheme of [13], in terms of the total power allocated at the
expense of some degradation in localization accuracy. We
show furthermore that our ADMM-based algorithm and
the algorithm of [13] have similar convergence speed and
total computational complexity.

� In the single-target case, we show that all the three meth-
ods attain a similar performance, since the underlying op-
timization problems are identical. We also prove that the
closed-form solution of [12] is invalid for the systems with
more than three transmit radars and we propose a beneficial
suboptimal closed-form solution.

The paper is organized as follows. In Section II, the MIMO
radar system model is introduced and the corresponding opti-
mization problem is formulated. Our power allocation strate-
gies are proposed in Section III for both the multiple-target and
single-target cases, while our convergence and complexity anal-
ysis is provided in Section IV. Section V presents our simulation
results for characterizing the attainable performance of the pro-
posed algorithms which are then compared to the scheme of
[13]. Finally, our conclusions are offered in Section VI.

Throughout our discussions, the following notational conven-
tions are used. Boldface lower- and upper-case letters denote
vectors and matrices, respectively. The transpose, conjugate
and inverse operators are denoted by (·)T , (·)∗ and (·)−1 , re-
spectively, while Tr (·) stands for the matrix trace operation and
diag (x1 , x2 , · · · , xn ) or diag(x) is the diagonal matrix with the
specified diagonal elements. Additionally, diag (X1 , · · · ,XK )
and diag (x1 , · · · ,xK ) denotes the block diagonal matrices
with the specified sub-matrices and vectors, respectively, at the
corresponding block diagonal positions. The operator vdiag(X)
forms a vector using the diagonal elements of square matrix
X, while E{·} denotes the expectation operator and ⊗ is the

Fig. 1. Illustration of distributed radar network.

Kronecker product operator. The sub-matrix consisting of the
elements of the i1 to i2 rows and j1 to j2 columns of A is
denoted by [A][i1 :i2 ;j1 :j2 ] , and the ith row and jth column ele-
ment of A is given by [A]i,j . Similarly, [a][i1 :i2 ] is the vector
consisting of i1 th to i2 th elements of a. The magnitude operator
is given by | · |, and ‖ · ‖ denotes the vector two-norm or matrix
Frobenius norm. IK is the identity matrix of size K × K and 0
is the zero matrix/vector of an appropriate size, while 1 denotes
the vector of an appropriate size, whose elements are all equal
to one. Finally, �[ ] denotes the real part of a complex value and
j =

√
−1 represents the imaginary axis.

II. SYSTEM MODEL

The MIMO radar system consists of M transmit radars and N
receive radars which cooperate to locate K targets, as illustrated
in Fig. 1. The M transmit radars are positioned at the coordi-
nates (xtx

m , ytx
m ) for 1 ≤ m ≤ M , and the N receive radars are

positioned at (xrx
n , yrx

n ) for 1 ≤ n ≤ N , while the position of
target k is (xk , yk ). A set of mutually orthogonal waveforms
are transmitted from the transmit radars, and the corresponding
baseband signals are denoted by

{
sm (t)

}M

m=1 with normal-

ized power, i.e.,
∫

τm
|sm (t)|2 dt = 1, where τm is the duration

of the mth transmitted signal. Furthermore, the orthogonality
of the transmitted waveforms can always be guaranteed even
for different time delays, i.e.,

∫
τm

sm (t)s∗m ′(t − τ) dt = 0 for
m′ 	= m. The narrowband signals of the transmitted waveforms
have the effective bandwidth βm specified by

β2
m =

∫
W f 2 |Sm (f)|2 df
∫

W |Sm (f)|2 df
(Hz)2 , (1)

where W is the frequency range of the signals, and Sm (f) is the
Fourier transform of sm (t) transmitted from the mth transmit
radar. The transmitted powers of the different antennas, denoted
by p = [p1 p2 · · · pM ]T , are constrained by their corresponding
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minimum and maximum values specified by

pmin = [p1m in p2m in · · · pMm in ]T , (2)

pmax = [p1m a x p2m a x · · · pMm a x ]T . (3)

The upper bound pmm a x is determined by the design and
the lower bound pmm in is used to guarantee that the trans-
mit radar m operates at an appropriate SNR. Let the propa-
gation path spanning from the transmitter m to the target k
and from the target k to the receiver n be defined as the chan-
nel (m, k, n). Then the propagation time τ

(k
m,n of the channel

(m, k, n) can be calculated by τ
(k
m,n = (Rtx

m,k + Rrx
n,k )/c, where

c is the speed of light, Rtx
m,k =

√
(xtx

m − xk )2 + (ytx
m − yk )2

is the distance from transmitter m to target k, and Rrx
n,k =√

(xrx
n − xk )2 + (yrx

n − yk )2 is the distance from target k to

receiver n. The time delay τ
(k
m,n is used to estimate the position

of targets. For far field signals, by retaining only the linear terms
of its Taylor expansion, τ

(k
m,n can be approximated as a linear

function of xk and yk

τ (k
m,n 
 − xk

c

(
cos θ(k

m + cos ϕ(k
n

)

− yk

c

(
sin θ(k

m + sin ϕ(k
n

)
, (4)

where θ
(k
m is the bearing angle of the transmitting radar m to the

target k and ϕ
(k
n is the bearing angle of the receiving radar n to

the target k, both measured with respect to the x axis.
Let the complex-valued reflectivity coefficient h(k

m,n represent
the attenuation and phase rotation of channel (m, k, n). The
baseband signal at receive radar n can be expressed as

rn (t) =
K∑

k=1

M∑

m=1

√
pm h(k

m,nsm

(
t − τ (k

m,n

)
+ ωn (t), (5)

where ωn (t) is a circularly symmetric complex Gaussian white
noise, which is bandlimited to the system bandwidth W and
hence has a zero mean and E{|ωn (t)|2} = σ2 . In our work, the
path-loss κ

(k
m,n is chosen as

κ(k
m,n ∝ 1

(
Rtx

m,k

)2(
Rrx

n,k

)2 . (6)

Thus, given the complex target RCS ζ
(k
m,n , the channel coeffi-

cient h
(k
m,n is given by

h(k
m,n = ζ(k

m,n

√
κ

(k
m,n = h(k,Re

m,n + jh(k,Im
m,n , (7)

where h
(k,Re
m,n and h

(k,Im
m,n are the real and imaginary parts of

h
(k
m,n . Let us collect all the channel coefficients associated with

the target k in the (2MN × 1)-element real-valued vector as

hk =
[
h

(k,Re
1,1 · · ·h(k,Re

1,N · · ·h(k,Re
M,N h

(k,Im
1,1 · · ·h(k,Im

1,N · · ·h(k,Im
M,N

]T
.

(8)

Similarly, we introduce the (NM × 1)-element real vectors

∣
∣h(k

∣
∣2 =

[∣
∣h(k

1,1

∣
∣2 · · ·

∣
∣h(k

1,N

∣
∣2 · · ·

∣
∣h(k

M ,1

∣
∣2 · · ·

∣
∣h(k

M ,N

∣
∣2
]T

, (9)

∣
∣h(k

∣
∣ =
[∣
∣h(k

1,1

∣
∣ · · ·

∣
∣h(k

1,N

∣
∣ · · ·

∣
∣h(k

M ,1

∣
∣ · · ·

∣
∣h(k

M ,N

∣
∣
]T

. (10)

Upon defining h =
[
hT

1 hT
2 · · ·hT

K

]T
and the location vector

of the K targets as lx,y =
[
x1 y1 · · ·xK yK

]T
, all the system’s

parameters can be stacked into a single real-valued vector

u =
[
lTx,y hT]T . (11)

Since the received signal (5) is also a function of the time delays
τ

(k
m,n , we also define the following system parameter vector

ψ =
[
τ

(1
1,1 · · · τ

(1
1,N · · · τ (K

M,N hT]T . (12)

There exists a clear one-to-one relationship between u and ψ.
Let f(r|u) be the conditional probability density function

(PDF) of the observation vector r = [r1(t), r2(t), · · · , rN (t)]
conditioned on u. Similarly, we have the conditional PDF of r
conditioned on ψ. Then the unbiased estimate û of u satisfies
the following inequality [20]

E
{(

û − u
)(

û − u
)T} ≥ J−1(u), (13)

where the Fisher information matrix (FIM) J(u) is defined by

J(u) = E

{
∂

∂u
log f(r|u)

(
∂

∂u
log f(r|u)

)T
}

. (14)

Similarly, we have the FIM of ψ, denoted by J(ψ). The FIM
J(u) can be derived from J(ψ) according to

J(u) =

[
D 0

0 I2K M N

]

J(ψ)

[
D 0

0 I2K M N

]T

, (15)

where the (2K × KMN)-element block diagonal matrix D
takes the following form

D = diag
(
D(1 ,D(2 , · · · ,D(K ), (16)

with the (2 × MN)-element sub-matrix D(k given by

D(k =

⎡

⎢
⎢
⎢
⎣

∂τ
(k
1,1

∂xk
· · ·

∂τ
(k
M ,N

∂xk

∂τ
(k
1,1

∂yk
· · ·

∂τ
(k
M ,N

∂yk

⎤

⎥
⎥
⎥
⎦

= −1
c

⎡

⎣
cos
(
θ

(k
1

)
+cos

(
ϕ

(k
1

)
· · · cos

(
θ

(k
M

)
+cos

(
ϕ

(k
N

)

sin
(
θ

(k
1

)
+sin

(
ϕ

(k
1

)
· · · sin

(
θ

(k
M

)
+sin

(
ϕ

(k
N

)

⎤

⎦.

(17)

The matrix Cx,y associated with the CRLB for the unbiased
estimator of lx,y is the (2K × 2K)-element upper left block
sub-matrix of J−1(u), which can be derived as [11], [21]

Cx,y =
[
J−1(u)

]
[1:2K ;1:2K ] =

(
DPΨDT)−1

, (18)
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where P = IK ⊗ diag(p) ⊗ IN , and Ψ = diag
(
Ψ(1 , · · · ,

Ψ(K
)

is the (KMN × KMN)-element block diagonal ma-
trix with the kth sub-matrix defined as

Ψ(k = 8π2 (diag
(
β2

1 , · · · , β2
M

)
⊗ IN

)
diag

(∣
∣h(k

∣
∣2
)

. (19)

Let us denote the variances of the estimates of xk and yk by σ2
xk

and σ2
yk

, respectively. Then we have

K∑

k=1

(
σ2

xk
+ σ2

yk

)
≥ Tr (Cx,y ) , (20)

where Tr (Cx,y ) is a lower bound on the sum of the MSEs of the
localization estimator l̂x,y . By defining X = diag(p) ⊗ IN and
noting D of (16), we obtain the expression of the lower bound
for the kth target location estimate as [12], [22]

2∑

i=1

[Cx,y ]i+2(k−1),i+2(k−1)

=
2∑

i=1

[(
DPΨDT)−1

]

i+2(k−1),i+2(k−1)

= Tr

⎛

⎜
⎜
⎝

⎡

⎢
⎣

(
a(k

1,1

)T
p
(
a(k

1,2

)T
p

(
a(k

2,1

)T
p
(
a(k

2,2

)T
p

⎤

⎥
⎦

−1⎞

⎟
⎟
⎠ =

bT
k p

pTAkp
, (21)

where the second equation is obtained by first dividing the
(MN × 2) matrix

(
D(k
)T

into the two column vectors,
(
D(k
)T

=
[
d(k

1 d(k
2

]
, and generating the (N × 1) vectors

d(k
i,m =

[
d(k

i

]

[(m−1)N +1:mN ]
, i = 1, 2, 1 ≤ m ≤ M. (22)

Then a(k
i,j for 1 ≤ i, j ≤ 2 are given by

a(k
i,j = vdiag

(
diag

((
d(k

i,1

)T
, · · · ,

(
d(k

i,M

)T
)

Ψ(k

× diag
(
d(k

j,1 , · · · ,d(k
j,M

))
, (23)

while bk = a(k
1,1 + a(k

2,2 and Ak = a(k
1,1

(
a(k

2,2

)T − a(k
1,2

(
a(k

2,1

)T
.

Our task is to design a beneficial power allocation strategy
capable of achieving a localization accuracy threshold η. We
can use the weighting vk to indicate the localization accuracy
requirement for the kth target. The larger vk is, the higher ac-
curacy is required for the kth target. For a predetermined lower
bound of total MSE of all the targets, the transmit power of the
different transmit radars can then be appropriately allocated for
minimizing the total transmit power. This can be formulated as
the following optimization problem P1

P1 :

min
p

1Tp,

s.t.
K∑

k=1
vk

bT
k p

pT Ak p ≤ η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(24)

Because generally speaking Ak is not a positive definite matrix,
the optimization P1 is a nonconvex problem.

In [13], a similar optimization problem is formulated as

min
p

1Tp,

s.t. bT
k p

pT Ak p ≤ η̄, 1 ≤ k ≤ K,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,

(25)

given an equivalent localization accuracy threshold η̄. In [13],
a Taylor series based technique is applied to approximate the
inequality constraints in (25) in order to relax the nonconvex
optimization problem for the sake of obtaining a solution. Intu-
itively, the cost function associated with an optimal solution of
our problem P1 of (24) is generally smaller than that associated
with an optimal solution of (25), i.e., we can achieve a lower
power consumption. This is achieved at the potential cost of a
slightly reduced localization accuracy.

III. POWER RESOURCE ALLOCATION

A. Multi-Target Case

In order to solve the nonconvex problem P1 of (24), we have
to change it into a simpler form. Specifically, we have to change
the inequality constraint into an equality one, i.e.,

K∑

k=1

vk
bT

k p
pTAkp

≤ η ⇒
K∑

k=1

vk
bT

k p
pTAkp

= η. (26)

Lemma 1: An increase of the transmit power p results in a
reduction of the MSE, namely,

K∑

k=1

vk

bT
k

(
p + Δp

)

(
p + Δp

)TAk

(
p + Δp

) ≤
K∑

k=1

vk
bT

k p
pTAkp

. (27)

The proof of Lemma 1 is similar to that of single-target case
given in [12]. Thus, to achieve a reduced power consumption,
we can always set the MSE to its maximum tolerance. The
change of constraint as given in (26) leads to the problem P2,

P2 :

min
p

1Tp,

s.t.
K∑

k=1
vk

bT
k p

pT Ak p = η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(28)

Theorem 1: The solutions of P1 and P2 are identical.
The proof of Theorem 1 is straightforward. By introducing

the auxiliary variables

wk =
1

ηpTAkp
, 1 ≤ k ≤ K, (29)

and their corresponding lower and upper bounds

wkm in =
1

ηpT
maxAkpmax

, wkm a x =
1

ηpT
minAkpmin

, 1 ≤ k ≤ K,

(30)
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P2 is reformulated as the following optimization problem P3:

P3 :

min
p,w

1Tp,

s.t.
K∑

k=1
vkwkbT

k p = 1,

wkηpTAkp = 1, 1 ≤ k ≤ K,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,
wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K.

(31)

The following corollary is obvious.
Corollary 1: If p associated with w

k = 1

η
(
p
)T

Ak p
for

1 ≤ k ≤ K is an optimal solution of the problem P3 (31), p

is an optimal solution for the problem P1 of (24). Conversely,
if p is an optimal solution of the problem P1, together with
w

k = 1

η
(
p
)T

Ak p
for 1 ≤ k ≤ K it is an optimal solution of

the problem P3.
1) OCD-based method: The Lagrangian associated with the

optimization problem P3 is

L(p,w, λ,μ) = 1Tp + λ

(
K∑

k=1

vkwkbT
k p − 1

)

+
K∑

k=1

μk

(
wkηpTAkp − 1

)
, (32)

with w =
[
w1 w2 · · ·wK

]T
and μ =

[
μ1 μ2 · · ·μK

]T
, where λ

and μk for 1 ≤ k ≤ K are Lagrangian multipliers. We optimize
the Lagrangian (32) with respect to p, λ, wk and μk . Using the
steepest descent method, the search directions are related to the
Karush-Kuhn-Tucker (KKT) conditions by

Δp = ∇pL(p,w, λ,μ) = 1 + λ

(
K∑

k=1

wkvkbk

)

+
K∑

k=1

μkwkη
(
Ak + AT

k

)
p, (33)

Δλ = ∇−λL(p,w, λ,μ) = −
K∑

k=1

wkvkbT
k p + 1, (34)

Δwk = ∇wk
L(p,w, λ,μ)

= λvkbT
k p + μkηpTAkp, 1 ≤ k ≤ K, (35)

Δμk = ∇−μk
L(p,w, λ,μ)

= −
(
ηwkpTAkp + 1

)
, 1 ≤ k ≤ K, (36)

where we have Δp =
[
Δp1 Δp2 · · ·ΔpM

]T
. The primal and

dual variables are updated iteratively

p(n+1)
m =

[
p(n)

m − κ1Δp(n)
m

]pm m a x

pm m in

, 1 ≤ m ≤ M, (37)

λ(n+1) = λ(n) − κ2Δλ(n) , (38)

w
(n+1)
k = w

(n)
k − κ3Δw

(n)
k , 1 ≤ k ≤ K, (39)

μ
(n+1)
k = μ

(n)
k − κ4Δμ

(n)
k , 1 ≤ k ≤ K, (40)

where the superscript (n) denotes the iteration index and

[a]cb = min {max {a, b} , c} , (41)

while κi for 1 ≤ i ≤ 4 represent the step sizes for the primal
variables p, the dual variable λ, the primal variables w and the
dual variables μ, respectively. According to [23], an exponen-
tially decreasing step size is highly desired. Furthermore, since
p, λ, w and μ have very different properties and their impacts
on the Lagrangian are ‘unequal’, using different step sizes for
them makes sense. By combining these two considerations, we
set the four step sizes for p, λ, w and μ according to

κi = cie
−αn with 0 ≤ α � 1, for 1 ≤ i ≤ 4, (42)

where ci > 0 for 1 ≤ i ≤ 4 are different constants.
The choice of the initial values for the primal variables pm ,

1 ≤ m ≤ M , influences the convergence performance. Ideally,
they should be chosen to be close to their own specific optimal
values so as to enhance the convergence speed. For practical
reason, the initialization should be easy and simple to realize
too. Hence we opt for the initial powers of

p(0) = pequ =
1
η

K∑

k=1

vk
bT

k 1
1TAk1

1, (43)

which is obtained by setting all the elements of p to be equal.
Then, wk is initialized according to

w
(0)
k =

1
ηpT

equAkpequ
, 1 ≤ k ≤ K. (44)

The iterative procedure of (37) to (40) is repeated until∥
∥p(n+1) − p(n)

∥
∥ becomes smaller than a preset small positive

number or the maximum number of iterations is reached.
Remark 1: It is difficult to find a closed-form solution from

the set of KKT conditions, because Ak for 1 ≤ k ≤ K are
generally non-invertible. Hence our algorithm finds a locally
optimal point in an iterative manner. It is also worth noting
that the standard OCD [17] is typically based on a Newton-
type algorithm, but our proposed OCD method is a steepest
descent algorithm. The reason is that the Hessian matrix for the
Lagrangian L(p,w, λ,μ) of (32) is not invertible.

2) ADMM-based method: ADMM was originally proposed
for solving convex problems in a parallel manner [18]. Let us
now discuss how to apply the ADMM method for solving the
nonconvex problem P3. By introducing an auxiliary vector z =
p, (29) can be rewritten as

p = z and ηwkzTAkp = 1, 1 ≤ k ≤ K. (45)

Therefore, P3 can be reformulated into the problem P4:

P4 :

min
p,w ,z

1Tp,

s.t.
K∑

k=1
vkwkbT

k p = 1,

p = z,
wkηzTAkp = 1, 1 ≤ k ≤ K,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M,
wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K.

(46)
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This problem is convex with respect to p, z and wk , respectively.
An augmented Lagrangian is constructed as follows

L(p,w, z,d0 , d1 ,d2) = 1Tp +
ρ0

2
‖p − z‖2 + dT

0 (p − z)

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη − 1

∣
∣2 +

K∑

k=1

d2,k

(
wkzTAkpη − 1

)

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1

∣
∣
∣
∣
∣

2

+d1

(
K∑

k=1

wkvkbT
k p −1

)

(47)

where d0 =
[
d0,1 · · · d0,M

]T
, d1 and d2 =

[
d2,1 · · · d2,K

]T

are the dual variables corresponding to the constraints p = z,∑K
k=1 wkvkbT

k p = 1 and wkzTAkpη = 1 for 1 ≤ k ≤ K, re-

spectively, while ρ0 , ρ1 and ρ2 =
[
ρ2,1 · · · ρ2,K

]T
are the

penalty parameters. Note that the augmented Lagrangian (47)
is quadratic. For convenience, we scale the dual variables as
e = 1

ρ0
d0 , μ = 1

ρ1
d1 and γ =

[
γ1 · · · γK

]T
with γk = 1

ρ2 , k
d2,k

for 1 ≤ k ≤ K. Then, from (47) we obtain the following aug-
mented Lagrangian

L(p,w, z, e, μ,γ) = 1Tp +
ρ0

2
‖p − z + e‖2 − ρ0

2
‖e‖2

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη − 1 + γk

∣
∣2 −

K∑

k=1

ρ2,k

2

∣
∣γk

∣
∣2

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1 + μ

∣
∣
∣
∣
∣

2

− ρ1

2
|μ|2 . (48)

We can find the saddle point of the augmented Lagrangian (48)
by minimizing the Lagrangian over the primal variables p, w
and z, as well as maximizing it over the dual variables e, μ
and γ, in an alternative way. In particular, we update the primal
variables p, w and z separately one by one. Furthermore, after
the update of the dual variables e, μ and γ, we adjust the penalty
parameters ρ0 , ρ1 and ρ2 . We now summarize our ADMM-
based procedure.

Initialization: Let us also opt for the equal power initialization
p(0) = pequ of (43). The other primal variables are initialized

as w
(0)
k = 1

ηpT
e q u Ak pe q u

for 1 ≤ k ≤ K of (44), and

z(0) = pequ . (49)

The initial penalty parameters, ρ
(0)
0 , ρ

(0)
1 and ρ

(0)
2,k for 1 ≤ k ≤

K, are typically set to a large positive value, say, 500. Next, the
dual variables are initialized as follows. Choose μ(0) = 1 and
γ

(0)
k = 1 for 1 ≤ k ≤ K, while every element of e(0) is set to 1

too. Then we set the iteration index n = 0.
Iterative Procedure: At the (n + 1)th iteration, perform:

� Step 1: Update the primal variables p. Upon isolating all
the terms involving p in the Lagrangian (48), we have

min
p

1Tp +
ρ

(n)
0

2

∥
∥
∥p − z(n) + e(n)

∥
∥
∥

2

+
ρ

(n)
1

2

∣
∣
∣
∣
∣

K∑

k=1

w
(n)
k vkbT

k p − 1 + μ(n)

∣
∣
∣
∣
∣

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣
∣w

(n)
k

(
z(n)
)T

Akpη − 1 + γ
(n)
k

∣
∣
∣
∣

2

,

s.t. pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M, (50)

which is a constrained convex optimization. Setting the
derivative of the objective function to zero yields the (n +
1)th estimate of p as follows. First compute

p̄(n+1)=
[
p̄

(n+1)
1 · · · p̄(n+1)

M

]T
=
(
P(n+1)

1

)−1
p(n+1)

2 ,

(51)

P(n+1)
1 =ρ

(n)
0 IM + ρ

(n)
1

(
K∑

k=1

w
(n)
k vkbk

)

×
(

K∑

k=1

w
(n)
k vkbT

k

)

+
K∑

k=1

ρ
(n)
2,k

×
(
w

(n)
k (Ak )Tz(n)η

)(
w

(n)
k

(
z(n)
)T

Akη

)T

,

(52)

p(n+1)
2 = − 1 + ρ

(n)
0

(
z(n) + e(n)

)

+ ρ
(n)
1

(
K∑

k=1

w
(n)
k vkbk

)
(
1 − μ(n)

)

+ ρ
(n)
2,k

(
w

(n)
k (Ak )Tz(n)η

)(
1 − γ

(n)
k

)
. (53)

The final estimate is then given by

p(n+1)
m =

[
p̄(n+1)

m

]pm m a x

pm m in

, 1 ≤ m ≤ M. (54)

� Step 2: Update the primal variables w. The optimization
involving w is also a constrained convex problem

min
w

ρ
(n)
1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p(n+1) − 1 + μ(n)

∣
∣
∣
∣
∣

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣
∣wk

(
z(n)
)T

Akp(n+1)η−1+γ
(n)
k

∣
∣
∣
∣

2

,

s.t. wkm in ≤ wk ≤ wkm a x , 1 ≤ k ≤ K. (55)

The solution is given by

w
(n+1)
k =

[
w

(n+1)
k,1

w
(n+1)
k,2

]wk m a x

wk m in

, 1 ≤ k ≤ K, (56)
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where

w
(n+1)
k,1 =ρ

(n)
1 vkbT

k p(n+1)

⎛

⎝1−μ(n)−
∑

k ′ 	=k

vk ′bT
k ′p(n+1)

⎞

⎠

+ ρ
(n)
2,k

((
z(n)
)T

Akp(n+1)η

)(
1 − γ

(n)
k

)
,

(57)

w
(n+1)
k,2 = ρ

(n)
1

(
vkbT

k p(n+1)
)2

+ ρ
(n)
2,k

((
z(n)
)T

Akp(n+1)η

)2

. (58)

� Step 3: Update the primal variables z. Isolating all the
terms involving z, the optimization is an unconstrained
convex problem

min
z

ρ
(n)
0

2

∥
∥
∥p(n+1) − z + e(n)

∥
∥
∥

2

+
K∑

k=1

ρ
(n)
2,k

2

∣
∣
∣w(n+1)

k zTAkp(n+1)η − 1 + γ
(n)
k

∣
∣
∣
2
.

(59)

Solving (59) yields the (n + 1)th estimate of z as

z(n+1) =
(
Z(n+1)

1

)−1
z(n+1)

2 , (60)

where

Z(n+1)
1 = ρ

(n)
0 IM +

K∑

k=1

ρ
(n)
2,k

(
w

(n+1)
k Akp(n+1)η

)

×
(
w

(n+1)
k Akp(n+1)η

)T
, (61)

z(n+1)
2 = ρ

(n)
0

(
p(n+1) + e(n)

)

+
K∑

k=1

ρ
(n)
2,k

(
w

(n+1)
k Akp(n+1)η

)(
1 − γ

(n)
k

)
.

(62)

� Step 4: Update the dual variables e, μ and γ. Maximizing
the Lagrangian (48) with respect to the dual variables yields

e(n+1) = e(n) + p(n+1) − z(n+1) , (63)

μ(n+1) = μ(n) +
K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1, (64)

γ
(n+1)
k = γ

(n)
k + w

(n+1)
k

(
z(n+1)

)T
Akp(n+1)η − 1,

1 ≤ k ≤ K. (65)

� Step 5: Update the penalty parameters ρ0 , ρ1 and ρ2 . The
penalty parameters are updated at the end of each iteration
for the first a few iterations to speed up the convergence. At
the (n + 1)th iteration, associated with the three penalty
parameters of ρ

(n)
0 , ρ

(n)
1 and ρ

(n)
2 , we have three primal

residuals

r
(n+1)
0 =

∥
∥p(n+1) − z(n+1)

∥
∥, (66)

r
(n+1)
1 =

∣
∣
∣

K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1
∣
∣
∣, (67)

r
(n+1)
2,k =

∣
∣
∣wk

(
z(n+1))TAkp(n+1)η − 1

∣
∣
∣,

1 ≤ k ≤ K, (68)

as well as three respective dual residuals

s
(n+1)
0 =

∥
∥ρ(n)

0

(
z(n+1) − z(n))∥∥, (69)

s
(n+1)
1 =

∥
∥s(n+1)

1a

∥
∥, (70)

s
(n+1)
2,k =

√(
s

(n+1)
2a,k

)2 +
∥
∥s(n+1)

2b,k

∥
∥, 1 ≤ k ≤ K, (71)

where

s(n+1)
1a = μ(n+1)ρ

(n)
1

(
K∑

k=1

(
w

(n)
k − w

(n+1)
k

)
vkbk

)

+ ρ
(n)
1

(
K∑

k=1

w
(n)
k vkbk

)

×
(

K∑

k=1

(
w

(n)
k − w

(n+1)
k

)
vkbT

k p(n+1)

)

,

(72)

s
(n+1)
2a,k = ρ

(n)
2,k

(
z(n))TAkp(n+1)η

×
(
w

(n+1)
k

(
z(n) − z(n+1))TAkp(n+1)η − 1

)

+ γ
(n+1)
k ρ

(n)
2,k

((
z(n)−z(n+1))TAkp(n+1)η

)
,

(73)

s(n+1)
2b,k = ρ

(n)
2,k w

(n)
k ηAT

k z(n)

×
((

w
(n)
k

(
z(n))T − w

(n+1)
k

(
z(n+1))T

)

× Akp(n+1)η
)

+ γ
(n+1)
k ρ

(n)
2,k ηAT

k

×
(
w

(n)
k z(n) − w

(n+1)
k z(n+1)

)
. (74)

The exact definitions of the dual residuals can be found in
Appendix A.
The penalty parameter ρ0 is updated as follows

ρ
(n+1)
0 =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
0 , if r

(n+1)
0 ≥ εs

(n+1)
0 ,

1
τ ρ

(n)
0 , if s

(n+1)
0 ≥ εr

(n+1)
0 ,

ρ
(n)
0 , otherwise,

(75)

where the scalars τ > 1 and ε > 1 with typical values of
τ = 2 and ε = 10. The idea behind this penalty parameter
update is to balance the primal and dual residual norms

r
(n+1)
0 and s

(n+1)
0 , i.e., to keep r

(n + 1 )
0

s
(n + 1 )
0

≤ ε and s
(n + 1 )
0

r
(n + 1 )
0

≤ ε,



6450 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 24, DECEMBER 15, 2016

as they both converge to zero [18], [25]. The related dual
variables are rescaled to remove the impact of changing ρ0
according to

e(n+1) =
ρ

(n)
0

ρ
(n+1)
0

e(n) . (76)

Similarly, ρ1 is updated according to

ρ
(n+1)
1 =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
1 , if r

(n+1)
1 ≥ εs

(n+1)
1 ,

1
τ ρ

(n)
1 , if s

(n+1)
1 ≥ εr

(n+1)
1 ,

ρ
(n)
1 , otherwise.

(77)

The related dual variable is then scaled according to

μ(n+1) =
ρ

(n)
1

ρ
(n+1)
1

μ(n) . (78)

Likewise, ρ2,k for 1 ≤ k ≤ K are updated according to

ρ
(n+1)
2,k =

⎧
⎪⎪⎨

⎪⎪⎩

τρ
(n)
2,k , if r

(n+1)
2,k ≥ εs

(n+1)
2,k ,

1
τ ρ

(n)
2,k , if s

(n+1)
2,k ≥ εr

(n+1)
2,k ,

ρ
(n)
2,k , otherwise,

(79)

and the corresponding dual variables are rescaled as

γ
(n+1)
k =

ρ
(n)
2,k

ρ
(n+1)
2,k

γ
(n)
k , 1 ≤ k ≤ K. (80)

� Termination of the iterative procedure. The iterative pro-
cedure is terminated when

∥
∥p(n+1) − p(n)

∥
∥ becomes

smaller than a predefined small positive value or the preset
maximum number of iterations is reached. Otherwise, set
n = n + 1 and go to Step 1.

Remark 2: The ADMM combines the advantages of the dual
ascent and the augmented Lagrangian method. The dual as-
cent approach deals with the complicated constraints, while the
augmented Lagrangian method is capable of enhancing the con-
vergence rate and the robustness of the algorithm.

Remark 3: We deal with the optimization problem (24), and
in every iteration of our OCD and ADMM methods, we have
a closed-form update value. By contrast, Garcia et al. [13] deal
with the optimization problem (25), and in every iteration, an
inner iterative loop is required for computing an updated value
by the algorithm of [13].

B. Single-Target Case

The target index k can be dropped and then the optimization
is simplified to the problem P5

P5 :

min
p

1Tp,

s.t. bT p
pT Ap ≤ η,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(81)

In the single-target case, the optimization (25) is identical to the
problem P5. Similar to the multi-target case, the problem P5 is

equivalent to the optimization problem P6:

P6 :

min
p,w

1Tp,

s.t. wbTp − 1 = 0,

wηpTAp − 1 = 0,

pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(82)

This problem is nonconvex due to its equality constraint.
1) OCD-based method: The Lagrangian of (82) is

L(p, w, λ, μ) = 1Tp + λ
(
wbTp − 1

)
+ μ

(
wηpTAp − 1

)
,

(83)

where λ and μ are the dual variables. The gradients of this
Lagrangian are given by

Δp= ∇pL(p, w, λ, μ)=1+λ (wb)+μwη
(
A+AT)p,

(84)

Δλ= ∇−λL(p, w, λ, μ) = −wbTp + 1, (85)

Δw= ∇w L(p, w, λ, μ) = λbTp + μηpTAp, (86)

Δμ= ∇−μL(p, w, λ, μ) = −ηwpTAp − 1, (87)

Given λ(0) , μ(0) and

p(0) = pequ =
1
η

bT1
1TA1

1, (88)

p, λ, w, μ are updated in the following iterative procedure

p(n+1)
m =

[
p(n)

m − κ1Δp(n)
m

]pm m a x

pm m in

, 1 ≤ m ≤ M, (89)

λ(n+1) = λ(n) − κ2Δλ(n) , (90)

w(n+1) = w(n) − κ3Δw(n) , (91)

μ(n+1) = μ(n) − κ4Δμ(n) , (92)

where again the step sizes are chosen according to (42). The
iterative procedure is repeated until

∥
∥p(n+1) − p(n)

∥
∥ becomes

smaller than a preset threshold.
2) ADMM-based method: Similar to the multi-target case,

we reformulate the problem P6 as

min
p,z

1Tp,

s.t. ηzTAp − bTp = 0,
z = p,
pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(93)

Then, by introducing an augmented Lagrangian, we have

max
e,μ

min
p,z

1Tp + ρ0
2 ‖p − z + e‖2

+ ρ1
2

∥
∥ηzTAp − bTp + μ

∥
∥2

,

s.t. pmm in ≤ pm ≤ pmm a x , 1 ≤ m ≤ M.

(94)

With the initialization of p(0) = z(0) = pequ , e(0) = 1, μ(0) =
1, and ρ

(0)
0 and ρ

(0)
1 set to a large positive number, each iteration

involves the following steps.
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� Step 1: Update p. Isolating all the terms involving p, the
optimization is a constrained convex problem, leading to

p̄(n+1)

=
(
ρ

(n)
0 IM + ρ

(n)
1

(
ηATz(n) − b

)

×
(
η
(
z(n))TA − bT

))−1(
− 1 + ρ

(n)
0

(
z(n) − e(n))

− ρ
(n)
1 μ(n)(ηATz(n) − b

))
, (95)

p(n+1)
m =

[
p̄(n+1)

m

]pm m a x

pm m in

, 1 ≤ m ≤ M. (96)

� Step 2: Update z. Isolating all the terms involving z, the
problem is an unconstrained convex problem, leading to

z(n+1) =
(
ρ

(n)
0 IM + ρ

(n)
1

(
ηAp(n+1))(ηAp(n+1))T

)−1

×
(
ρ

(n)
0

(
p(n+1) + e(n))

+ ρ
(n)
1 ηAp(n+1)(bTp(n+1) − μ(n))

)
. (97)

� Step 3: Update e and μ. The dual variables are updated
according to

μ(n+1) = μ(n) +η
(
z(n+1))TAp(n+1)−bTp(n+1), (98)

e(n+1) = e(n) + p(n+1) − z(n+1) . (99)

� Step 4: Update the ρ0 and ρ1 at the first a few iterations. By
defining the primal and dual residuals r

(n+1)
0 and s

(n+1)
0

as

r
(n+1)
0 =

∥
∥p(n+1) − z(n+1)

∥
∥, (100)

s
(n+1)
0 =

∥
∥ρ(n)

0

(
z(n) − z(n+1))∥∥, (101)

the updated ρ
(n+1)
0 is given by (75), and the dual variable

e(n+1) is rescaled according to (76). Similarly, define the
primal and dual residuals r

(n+1)
1 and s

(n+1)
1 as

r
(n+1)
1 =

∣
∣
∣η
(
z(n+1))TAp(n+1) − bTp(n+1)

∣
∣
∣, (102)

s
(n+1)
1 =

∥
∥
∥μ(n+1)ρ

(n)
1 ηAT(z(n) − z(n+1))+ ρ

(n)
1 η

×
(
ηATz(n)− b

)(
z(n)− z(n+1))TAp(n+1)

∥
∥
∥.

(103)

The updated ρ
(n+1)
1 is given by (77), and the rescaled dual

variable μ(n+1) is given by (78).
3) A closed-form approximate solution: An equivalent La-

grangian associated with the problem P5 is L(p, λ) = 1Tp +
λ
(
ηpTAp − bTp

)
, whose KKT conditions are

1 + λ
(
η
(
A + AT)p − b

)
= 0, (104)

ηpTAp − bTp = 0. (105)

The authors of [12] obtained the closed-form optimal solution
λ and p by jointly solving the two equations (104) and (105).

In particular, they calculated p̄ from (104) as

p̄ =

(
A + AT

)−1

η

(
b − 1

λ 1
)

, (106)

and then obtained p by imposing the power constraints

p
m = [p̄

m ]pm m a x
pm m in

, 1 ≤ m ≤ M. (107)

Unfortunately, this closed-form ‘optimal’ solution is gener-
ally invalid because in general A + AT is not invertible.

Lemma 2: The rank of A + AT is no more than 3.
Proof:

rank
(
A + AT) ≤ rank

(
a1,1
(
a2,2
)T − a1,2

(
a2,1
)T

+ a2,2
(
a1,1
)T − a2,1

(
a1,2
)T)

≤ rank
(
a1,1
(
a2,2
)T)+ rank

(
a1,2
(
a2,1
)T)

+ rank
(
a2,2
(
a1,1
)T) ≤ 3.

The second inequality is due to the fact that a1,2 = a2,1 .
Clearly, for any system with more than 3 transmit radars, the

solution of (106) is invalid, and the minimum eigenvalue ξmin of
A + AT is negative. We propose an approximate closed-form
solution by replacing the invalid

(
A + AT

)−1
in (106) by the

valid regularized form

B =
(
A + AT +

(
|ξmin | + ε

)
IM

)−1
, (108)

where ε is a small positive number, such as, ε = 0.0001. Thus
the ‘unconstrained’ power allocation is given as

p̄� =
B
η

(
b − 1

λ�
1
)

, (109)

where λ� is obtained by substituting p̄� into (105) and taking
the positive solution as

λ� =
−b +

√
b2 − 4ac

2a
, (110)

with
⎧
⎪⎨

⎪⎩

a = bTBTABb − bTBb,

b = −21TBTATBbT + 2bTB1,

c = 1TBTAB1 − 1TB1.

(111)

The solution p� is then obtained by projecting p̄� onto the
feasible region. This closed-form solution is inferior to the OCD-
based and ADMM-based solutions in terms of its achievable
performance, owing to its suboptimal nature.

IV. CONVERGENCE AND COMPLEXITY ANALYSIS

Recall from Section II and III that our optimization problem
P1 of (24) is nonconvex, and both our ADMM and OCD algo-
rithms are based on a Lagrangian function approach. It is widely
acknowledged that the zero duality gap cannot be guaranteed
for general nonconvex problems. However, Yu and Lui [24]
proposed a theorem which guarantees the zero duality gap for
the nonconvex problem that meets the ‘time-sharing condition’.
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In Appendix B, we proved that our optimization problem P1
satisfies the time-sharing condition of [24]. Hence, the strong
duality holds for P1. We are now ready to prove that both our
two algorithms can converge to a local optimal point under some
assumptions.

A. Convergence of the Proposed Algorithms

1) The ADMM-based algorithm: We first point out again
that since our problem is nonconvex, the ADMM-based algo-
rithm can only guarantee to converge to a local optimal solu-
tion. The convergence of the ADMM method is proved for the
convex optimization problem in [18], while Magnússon et al.
[25] extended the convergence results to the nonconvex case.
The convergence of our ADMM-based algorithm will be fur-
ther illustrated in Section V using simulations.

2) The OCD-based algorithm: Again, since our optimiza-
tion problem is nonconvex, the OCD-based algorithm can only
find a locally optimal solution. Collect all the primal variables

of the Lagrangian (32) together as y =
[
pT wT

]T
and denote

the cost function and the constraints of P3 respectively by

f(y) = 1Tp, (112)

g0(y) =
K∑

k=1

vkwkbT
k p − 1, (113)

gk (y) = wkηpTAkp − 1, 1 ≤ k ≤ K. (114)

According to Theorem 2 in Section 8.2.3 and Lemma 5 in
Section 2.1 of [26], to prove the convergence of the OCD al-
gorithm, we have to prove that the second derivatives ∇2f(y)
and ∇2gk (y) for 0 ≤ k ≤ K satisfy the Lipschitz condition in
a neighbourhood of the optimal primal point y . Note that

∇2f(y) = 0, (115)

∇2g0(y) =

⎡

⎢
⎢
⎢
⎣

0 v1b1 · · · vK bK

v1bT
1

...
vK bT

K

0

⎤

⎥
⎥
⎥
⎦

, (116)

∇2gk (y) = η

⎡

⎢
⎢
⎣

wk

(
Ak +AT

k

)
0
(
Ak +AT

k

)
p 0

0(
Ak +AT

k

)
pT

0
0

⎤

⎥
⎥
⎦ ,

1 ≤ k ≤ K. (117)

Since ∇2f (y) and ∇2g0 (y) are constants, they satisfy the
required Lipschitz condition. For pmin ≤ p ≤ pmax , all the el-
ements in the matrix ∇2gk (y), where 1 ≤ k ≤ K, are finite.
Therefore, it is easy to find a constant ς satisfying

∥
∥∇2gk (y1) −∇2gk (y2)

∥
∥ ≤ ς ‖y1 − y2‖ . (118)

Thus ∇2gk (y) satisfies the required Lipschitz condition too.
According to [26], under the assumption that the Hessian ma-

trix of the Lagrangian (32) with respect to y at the minimum pri-
mal point y =

(
p ,w

)
is positive definite, the Hessian matrix

TABLE I
COMPLEXITY PER ITERATION OF THE OCD-BASED ALGORITHM

TABLE II
COMPLEXITY PER ITERATION OF THE ADMM-BASED ALGORITHM

of the Lagrangian (32) with respect to the primal and dual vari-
ables is negative definite at the optimal point

(
p ,w , λ ,μ

)
.

Then there exists a positive number κ = min
i

−�
[
ξ̄i

] ∣∣ξ̄i

∣
∣−2

,

where ξ̄i are the eigenvalues of the Hessian matrix of the La-
grangian (32) with respect to the primal and dual variables at(
p ,w , λ ,μ

)
. Consequently, as long as the maximum of

the four step sizes κmax = max
1≤i≤4

κi satisfies the condition of

κmax ≤ κ, our scheme (37)–(40) will converge to the locally
optimal point

(
p ,w , λ ,μ

)
when starting from a neigh-

bourhood of
(
p ,w , λ ,μ

)
, according to [26]. In practice,

κ is unknown. It is advisable to choose sufficiently small step
sizes κi , 1 ≤ i ≤ 4, in order to ensure the convergence of the
OCD scheme.

Remark 4: A positive-definite Hessian matrix of the La-
grangian (32) with respect to y at y is a sufficient condition
for the convergence of the OCD scheme. If this Hessian matrix
is semi-positive definite, we cannot prove the convergence of
the OCD scheme based on the result of [26]. By adopting an
exponentially decaying step size κmax ∝ e−αn , we ensure that
our OCD algorithm works well in any situation.

B. Complexity of Proposed Algorithms and Algorithm of [13]

The complexity of our OCD and ADMM algorithms are sum-
marized in Tables I and II, respectively. For the ADMM-based
algorithm, since the penalty parameters are only updated in
the first few iterations, the complexity associated with this part
of operation is omitted. Additionally, we assume that Gauss-
Jordan elimination is used for matrix inversion and, therefore,
the number of flops required by inverting an M × M matrix is
M 3 + M 2 + M . For the OCD-based algorithm, the complexity
of computing the four step sizes is negligible and therefore it
is also omitted. Clearly, the complexity of the ADMM-based
algorithm is on the order of M 3 per iteration, which is denoted
by O

(
M 3
)
, while the complexity of the OCD-based algorithm

is on the order of O
(
M 2
)

per iteration. It will be shown by our
simulation results that the convergence speed of the ADMM
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TABLE III
COMPLEXITY PER ITERATION OF THE ALGORITHM GIVEN IN [13], WHERE nin IS THE AVERAGE NUMBER OF INNER

ITERATIONS IN INNER OPTIMIZATION PROCEDURE

TABLE IV
SYSTEM PARAMETERS

algorithm is at least one order of magnitude faster than that of
the OCD algorithm. Therefore, despite its higher per-iteration
complexity, the ADMM algorithm actually imposes a lower total
complexity, compared to the OCD algorithm.

The benchmark scheme of [13] invokes two iterative loops for
solving the optimization problem (25). Specifically, at each outer
iteration, the parameters of the inner quadratic constrained lin-
ear programming (QCLP) problem are updated, and the QCLP
problem is then solved iteratively in the inner iterative loop. We
assume that the interior-point method is used for solving this
inner QCLP, which requires nin iterations on average. Based on
the above discussions, the complexity of the algorithm of [13] is
summarized in Table III, where it is seen that the complexity per
inner iteration is on the order of O

(
M 3
)
. Thus the complexity

of our ADMM-based algorithm is only marginally higher than
that of the algorithm in [13], because they are both on the order
of O

(
M 3
)

per iteration. The algorithm of [13] requires a total
of nounin iterations to converge, where nou is the number of
iterations for the outer iterative loop. As it will be shown in
the simulation results, the number of iterations required for the

ADMM-based algorithm to converge is very close to the total
number of iterations nounin required by the algorithm of [13].
In this sense, both algorithms require a similar total complexity
for solving their associated optimization problems. Although
our OCD-based algorithm enjoys a much lower complexity per
iteration than the algorithm of [13], it imposes a higher total
complexity.

V. SIMULATION RESULTS

Let us now evaluate the performance of the proposed al-
gorithms using a MIMO radar system having M = 5 trans-
mit radars and N = 7 receive radars. The algorithm of [13] is
used as the benchmark. Fig. 2 depicts both the triple-target and
single-target cases considered. The system parameters of both
the triple-target and single-target cases are listed in Table IV. The
localization accuracy threshold η is set to 15 m2 for the triple-
target case and 10 m2 for the single-target case. The exponential
decaying factor is empirically chosen to be α = 0.0005 for the
four step sizes of the OCD algorithm.
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Fig. 2. Illustration of the MIMO radar system for: (a) three-target application,
and (b) single-target application.

Fig. 3. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, for the three-target
case with v1 = 1, v2 = 2 and v3 = 1.

A. Triple-Target Case

We consider the two sets of the importance weightings for
the three targets given by: i) v1 = 1, v2 = 2 and v3 = 1, and
ii) v1 = v2 = v3 = 1. For the sake of a fair comparison to the
algorithm of [13], the effects of these weightings have to be taken
into consideration, and the target estimation error thresholds
for the three constraints of the optimization problem (25) are
suitably scaled as

bT
1 p

pTA1p
≤ η̄1 ,

bT
2 p

pTA2p
≤ η̄2 ,

bT
3 p

pTA3p
≤ η̄3 ,

with η̄1 = 1
3v1

η, η̄2 = 1
3v2

η and η̄3 = 1
3v3

η. For our ADMM
algorithm, the initial values of the dual variables are set to
e(0) = [1 1 1 1 1]T , μ(0) = 1 and γ

(0)
k = 1 for 1 ≤ k ≤ 3, while

all the initial penalty parameters are set to 500. For our OCD

Fig. 4. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, for the three-target
case with v1 = v2 = v3 = 1.

algorithm, the initial values of the dual variables are set to
λ(0) = 1 and μ

(0)
k = 1 for 1 ≤ k ≤ 3. Additionally, the four

constants in the four step sizes of the OCD algorithm are set to
c1 = 0.3, c2 = 1.0, c3 = 1.5 and c4 = 1.1 for the scenario i),
while they are set to c1 = 0.3, c2 = 0.9, c3 = 1.5 and c4 = 1.1
for the scenario ii). These parameters were found empirically to
be appropriate for the corresponding application scenarios. For
the algorithm of [13], we use the CVX software to solve its inner
QCLP problem. In our simulations, we observe that the CVX
converges within 25 to 35 iterations. Therefore, we will assume
that the average number of inner iterations for the algorithm of
[13] is nin = 30.

Fig. 3 compares the total power allocations p and the aggre-

gate localization accuracy results of
∑3

k=1
bT

k p
pT Ak p obtained by

the three algorithms for the scenario i), while Fig. 4 depicts the
results for the scenario ii). It can be seen that the number of
iterations required by the ADMM-based algorithm to converge
is similar to the total number of iterations nounin required by
the algorithm of [13], while the convergence speed of the OCD-
based algorithm is considerably slower than that of the other
two algorithms. As expected, our algorithms outperform the al-
gorithm of [13] in terms of its total power consumption, albeit
at the expense of some degradation in localization accuracy.
Table V details how our algorithms trade the localization accu-
racy against the transmit power, in comparison to the algorithm
of [13]. Specifically, for the scenario of i), our ADMM algorithm
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TABLE V
PERFORMANCE COMPARISON OF THREE ALGORITHMS FOR THE THREE-TARGET CASE

The average results are obtained over 1000 random simulation experiments.

Fig. 5. Convergence performance of three algorithms, in terms of (a) total
power consumption, and (b) aggregate localization accuracy, in comparison
with the EPA and the closed-form solution, for the single-target case.

achieves 28.9% power saving at the cost of 25.3% degradation
in aggregate localization accuracy, while our OCD algorithm
trades 27.9% power saving against 27.9% degradation in local-
ization accuracy. For the equal weighting scenario of ii), the
savings in power achieved by our two algorithms are consid-
erably smaller but the losses in localization accuracy are also
significantly smaller, compared with the scenario i). To obtain
statistically relevant comparison, we carry out 1000 simulations
by randomly locating all the transmit radars and receive radars at
the radius R = 3000(0.5 + εx) m with the angular rotations of
θ = 2πεy , where εx and εy are uniformly distributed in [0, 1.0].

The average power saving and degradation in localization accu-
racy over the 1000 random experiments are listed in the last two
rows of Table V.

B. Single-Target Case

The four constants in the four step sizes of the OCD al-
gorithm are set to c1 = c2 = 1.0 and c3 = c4 = 0.3, which is
empirically found to be appropriate for this application scenario.
Fig. 5 characterizes the performance of our ADMM-based and
OCD-based algorithms as well as the algorithm of [13]. As ex-
pected, all the three algorithms attain the same performance,
both in terms of total power allocated and localization accu-
racy, since the underlying optimization problems are identical
in the single-target case. In terms of convergence speed, our
ADMM-based algorithm outperforms the algorithm of [13],
while the OCD-based algorithm is considerably slower than the
algorithm of [13]. In Fig. 5 (a), we also characterize the equal-
power allocation (EPA) scheme and the closed-form solution of
SubSection III-B3. It can be seen that our closed-form solu-
tion performs significantly better than the EPA scheme, but it
is inferior to the other three iterative algorithms because the
suboptimal nature of this closed-form solution.

VI. CONCLUSION

The target localization problem of distributed MIMO radar
systems has been investigated, which minimizes the power of
the transmit radars, while meeting a required localization ac-
curacy. We have proposed the OCD-based and ADMM-based
iterative algorithms to solve this nonconvex optimization prob-
lem. Both the algorithms are capable of converging to a local
optimum. The OCD algorithm imposes a much lower compu-
tational complexity per iteration, while the ADMM algorithm
achieves a much faster convergence. For the multi-target sce-
nario, we have shown how our proposed approach trades the
power saving with some degradation in localization accuracy,
compared with that of state-of-the-art scheme [13]. We have also
demonstrated that our ADMM-based algorithm and the existing
state-of-the-art scheme have similar computational complexity
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and convergence speed. For the single-target scenario, we have
confirmed that our algorithms and the benchmark attain the same
performance in terms of both power consumption and localiza-
tion accuracy, because the underlying optimization problems
become identical.

APPENDIX

A. Derivation of Updating Formulae for Penalty Parameters

The optimal solution to the P4 of (45) should be primal and
dual feasible, that is,

p(n+1) − z(n+1) = 0, (119)

K∑

k=1

w
(n+1)
k vkbT

k p(n+1) − 1 = 0, (120)

wk

(
z(n+1))TAkp(n+1)η − 1 = 0, 1 ≤ k ≤ K, (121)

∂L′(p, z(n+1) ,w(n+1) ,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂p
= 0, (122)

∂L′(p(n+1) , z(n+1) ,w,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂w
= 0, (123)

∂L′(p(n+1) , z,w(n+1) ,d(n+1)
0 , d

(n+1)
1 ,d(n+1)

2

)

∂z
= 0, (124)

where L′(p,w, z,d0 , d1 ,d2
)

is the Lagrangian of (45), which
can be separated into three parts

L′(p,w, z,d0 , d1 ,d2
)

= 1Tp + dT
0 (p − z)

︸ ︷︷ ︸
L ′

0 (p,z,d0 )

+

d1

(
K∑

k=1

wkvkbT
k p − 1

)

︸ ︷︷ ︸
L ′

1 (p,w ,d1 )

+
K∑

k=1

d2,k

(
wkzTAkpη − 1

)

︸ ︷︷ ︸
L ′

2 (p,w ,z,d2 )

.

(125)

However, the ADMM-based algorithm uses the augmented
Lagrangian of

L(p,w, z,d0 , d1 ,d2) = 1Tp +
ρ0

2
‖p − z‖2 + dT

0 (p − z)
︸ ︷︷ ︸

L0 (p,z,d0 )

+
ρ1

2

∣
∣
∣
∣
∣

K∑

k=1

wkvkbT
k p − 1

∣
∣
∣
∣
∣

2

+ d1

(
K∑

k=1

wkvkbT
k p − 1

)

︸ ︷︷ ︸
L1 (p,w ,d1 )

+
K∑

k=1

ρ2,k

2

∣
∣wkzTAkpη−1

∣
∣2 +

K∑

k=1

d2,k

(
wkzTAkpη−1

)

︸ ︷︷ ︸
L2 (p,w ,z,d2 )

,

(126)

which can be divided into three parts, and all the primal and
dual variables are updated one by one. Thus, in every iteration,
there exist primal and dual residuals.

Specifically, in the (n + 1)th iteration, the primal residuals
are given by r

(n+1)
0 of (65), r

(n+1)
1 of (66), and r

(n+1)
2,k for

1 ≤ k ≤ K of (67), while the dual residuals are defined via

dr =
√
‖dr0‖2 + ‖dr1‖2 + ‖dr2‖2 , (127)

with

dr0 =
∂L
(
p, z(n) ,w(n) ,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂p

−
∂L′(p, z(n+1) ,w(n+1) ,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂p
,

(128)

dr1 =
∂L
(
p(n+1) , z(n) ,w,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂w

−
∂L′(p(n+1) , z(n+1) ,w,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂w
,

(129)

dr2 =
∂L
(
p(n+1) , z,w(n+1) ,d(n)

0 , d
(n)
1 ,d(n)

2

)

∂z

−
∂L′(p(n+1) , z,w(n+1) ,d(n+1)

0 , d
(n+1)
1 ,d(n+1)

2

)

∂z
.

(130)

It can be seen that the primal residuals r
(n+1)
0 , r

(n+1)
1 and

r
(n+)
2,k for 1 ≤ k ≤ K are related to L0(p, z,d0), L1(p,w, d1)

and L2(p,w, z,d2), respectively. Therefore, we will similarly
‘separate’ the dual residuals into s

(n+1)
0 , s

(n+1)
1 and s

(n+1)
2,k for

1 ≤ k ≤ K, corresponding to L0(p, z,d0), L1(p,w, d1) and
L2(p,w, z,d2), respectively.

In order to analyze the updating formula (75) for the penalty
parameter ρ0 , we have to calculate s

(n+1)
0 as follows

s
(n+1)
0 =

(∥
∥
∥

∂L0
(
p(n+1) , z,d(n)

0

)

∂z
−

∂L′
0
(
p(n+1) , z,d(n+1)

0

)

∂z

∥
∥
∥

2

+
∥
∥
∥
∂L0
(
p, z(n) ,d(n)

0

)

∂p
−

∂L′
0
(
p, z(n+1) ,d(n+1)

0

)

∂p

∥
∥
∥

2
) 1

2

.

(131)

By evaluating the required four partial derivatives and plugging
them into (131), we arrive at the dual residual s

(n+1)
0 of (68).

Note that a large value for ρ0 adds a large penalty on the violation
of primal feasibility and, therefore, a large ρ0 reduces the primal
residual r

(n+1)
0 . On the other hand, from the expression (68), it

is seen that a small ρ0 reduces the dual residual s
(n+1)
0 . Thus,

in order to balance the primal and dual residuals r
(n+1)
0 and

s
(n+1)
0 , the penalty parameter ρ0 is updated according to (75),

which is beneficial to convergence.
Similarly, it can be shown that the dual residual s

(n+1)
1 re-

lated to L1(p,w, d1) is given by (69) and (71), while the dual
residuals s

(n+1)
2,k for 1 ≤ k ≤ K related to L2(p,w, z,d2) are

specified by (70), (72) and (73). Following the same logic of
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balancing the primal and dual residuals, the updating formulae
for the penalty parameters ρ1 and ρ2,k are specified by (76) and
(78), respectively.

B. Proof of the Time-Sharing Condition for Problem P1

According to [24], the time-sharing condition for the op-
timization problem P1 of (24) is as follows. Time-sharing
condition: Let p1 and p2 be the optimal solutions of P1 in
conjunction with η = η1 and η = η2 , respectively. P1 is said
to satisfy the time-sharing condition if for any η1 and η2
and for any 0 ≤ ξ ≤ 1, there always exists a feasible solu-

tion p3 so that
K∑

k=1
vk

bT
k p3

pT
3 Ak p3

≤ ξη1 + (1 − ξ)η2 and 1Tp3 ≥

ξ1Tp1 + (1 − ξ)1Tp2 .
According to Lemma 1, if we set p3 = pmax , then

K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ η1 and
K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ η2 .

Hence

K∑

k=1

vk
bT

k p3

pT
3 Akp3

= ξ
K∑

k=1

vk
bT

k p3

pT
3 Akp3

+ (1 − ξ)
K∑

k=1

vk
bT

k p3

pT
3 Akp3

≤ ξη1 + (1 − ξ)η2 ,

1Tp3 = ξ1Tp3 + (1 − ξ)1Tp3 ≥ ξ1Tp1 + (1 − ξ)1Tp2 .

Therefore, P1 satisfies the time-sharing condition and the dual
gap for our nonconvex problem is zero.
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