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Abstract— We investigate the energy efficiency (EE) of
multiple-input–multiple-output (MIMO) amplify-and-forward
relaying networks relying on the realistic imperfect channel state
information (CSI). Specifically, the relay jointly optimizes the
source covariance and relay beamforming matrices by maximiz-
ing the EE under additive or multiplicative relay-destination CSI
errors. The optimal channel-diagonalizing structure is derived for
the source covariance and relay beamforming matrices under
the spectral-norm constrained additive or multiplicative CSI
error. Then, the existence of a saddle point is proved, which
shows that the channel-diagonalizing transmission strategy is
optimal in the robust EE maximization under these two types
of CSI errors, and the original matrix-valued fractional robust
EE problem is transformed into a scalar fractional problem.
We propose the Dinkelbach method-based alternating optimiza-
tion scheme for this transformed robust EE problem, which
is capable of finding a locally optimal solution of the original
robust EE problem efficiently, and show that the semi-closed-
form solution to each of the two associated subproblems can be
obtained. We then prove that the channel-diagonalizing transmis-
sion strategy remains optimal when the statistically imperfect
source-relay channel is additionally imposed. We also extend
our work into multi-hop MIMO relaying scenarios and prove
that the channel-diagonalizing structure is optimal for the source
covariance matrix and the multiple relay beamforming matrices.

Index Terms— Robust energy efficiency optimization, additive
and multiplicative CSI errors, channel-diagonalization.

I. INTRODUCTION

COOPERATIVE relaying is a promising technique for
improving the communication reliability and expanding
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the communication range [1]–[3]. Moreover, given the mul-
tiplexing and/or diversity gains provided by multiple-input
multiple-output (MIMO) techniques, various relaying strate-
gies have been proposed for MIMO relaying systems [3]–[8].
Among these existing relaying strategies, the amplify-and-
forward (AF) strategy is popular since only a simple lin-
ear transformation is required for forwarding signals by
relays [3], [5]. Most of the existing literature of MIMO AF
relaying systems concentrates on the optimization of tradi-
tional performance metrics, such as the achievable capac-
ity and the minimum mean square errors (MSE) of signal
detection [4]–[8]. Recently, considerable attention has been
focused on the energy efficiency (EE), which is an impor-
tant system performance metric for promoting green com-
munications. Traditionally, it is defined as the ratio of the
achievable capacity to the total power consumption of sig-
nal transmission and circuit hardware dissipation [9]–[12].
There exist some works in the literature that investigate the
EE optimization for MIMO AF relaying systems [10]–[12].
Interestingly, these works provide a common insight that the
channel-diagonalizing transceiver structure is optimal, in terms
of EE optimization, which implies that similar to the opti-
mization of the traditional capacity and MSE metrics [7], [8],
the eigenmode transmission strategy is still optimal for EE
optimization. However, these works are based on the unreal-
istic assumption of perfect channel state information (CSI).
Since the CSI estimation errors are generally unavoidable in
practice, ignoring this uncertainty, as in the works [10]–[12],
will lead to significant EE performance degradation for MIMO
systems. Consequently, it is necessary to consider the influence
of CSI errors on the EE optimization of MIMO AF relaying
systems.

There are two types of imperfect CSI models. One is the
statistical CSI model, in which only partial CSI is available,
such as channel mean or covariance matrix. In this context,
given the channel distribution, various designs based on system
average performance were investigated [11], [13], [14]. For
example, the works [11], [13] studied the robust EE max-
imization of two-hop MIMO relaying networks given the
statistical source-relay channel or relay-destination channel.
In this case, the eigenmode transmission strategy is optimal.
The other is the approximate CSI model, which adopts an
error model for the CSI approximation. Generally, various
CSI error models are classified into the deterministic and
stochastic ones [15]–[21]. The deterministic CSI error is often
used for modeling quantization inaccuracy, in which only
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the estimated channel knowledge with bounded CSI error is
available [15], [16]. In this case, the worst-case robustness
optimization is mainly considered [17]–[19]. In other words,
the system performance under the worst-case channel quality
becomes an important criterion. Naturally, it is worth inves-
tigating whether channel diagonalization is still optimal for
EE optimization subject to the deterministic CSI error. To the
author’s best knowledge, this important issue has not been
addressed in the existing literature. For the stochastic CSI
error, which is well suited for modeling estimation inaccu-
racy, existing works typically involve outage-type performance
optimization [20], [21]. In this context, the system design is
generally more difficult than that for the deterministic CSI
error. There exist only a few works considering mean EE
optimization under outage constraints, in which the channel
diagonalization is generally unavailable [21].

This paper mainly investigates the robust EE maximiza-
tion of MIMO AF relaying systems under imperfect CSI
with the deterministically bounded CSI error. We aim to
jointly optimizing the source covariance matrix and relay
beamforming matrix/matrices to maximize the system’s EE
for MIMO AF relaying networks under both additive and
multiplicative CSI errors. The main challenge of this robust
EE maximization design is that it is essentially a two-objective
optimization, namely, maximizing the achievable worst-case
rate while minimizing the total power consumption. Clearly,
these two objectives are conflicting. Therefore, the optimal
diagonalization transmission strategy for traditional robust
capacity maximization [17] is not applicable, since both the
achievable worst-case rate and the total transmit power are
simultaneously maximized by diagonalizing the channel matri-
ces. The robust EE maximization design must find an optimal
trade off between maximizing the worst-case rate and mini-
mizing the total power consumption. Our main contributions
are summarized as follows:

• Under the spectral-norm constrained additive and multi-
plicative relay-destination channel errors, we prove the
existence of a saddle point for the robust max-min EE
problem. The analytical structure of this saddle point is
derived, which enables the scalarized reformulation of the
robust EE problem to reduce the optimization complexity
remarkably. An important insight provided by the optimal
analytical solutions is that the eigenmode transmission
strategy is optimal for the robust EE maximization under
the deterministic CSI errors. We further show that this
eigenmode transmission strategy remains optimal for the
robust EE optimization when the statistically imperfect
source-relay channel is additionally imposed.

• In order to effectively solve the scalarized EE optimiza-
tion, we propose an alternating optimization of the source
covariance matrix related subproblem and the relay beam-
forming related subproblem. For both these subprob-
lems, we can jointly apply Dinkelbach’s method [22] and
the Lagrangian dual method to obtain the water-filling
structured solutions. The convergence of the proposed
alternating optimization is established. This approach is
also applicable to the case with additional statistically
imperfect source-relay channel.

• Furthermore, we extend our work to multi-hop MIMO AF
relaying scenarios. The eigenmode transmission strategy
is also proved to be optimal for the robust EE opti-
mization subject to deterministic relay-destination CSI
errors, and our proposed alternating optimization remains
applicable. The extension to the robust EE optimization
subject to additional statistically imperfect relay-relay
channels is also discussed.

The bold-faced lower-case and upper-case letters stand for
vectors and matrices, respectively. The transpose, Hermitian
and inverse operators are denoted by (·)T, (·)H and (·)−1,
respectively, while Tr(A) and det(A) denote the trace and
determinant of A, respectively. E[·] is the expectation, and
In is the n× n identity matrix, while ‖ · ‖2 denotes the
matrix spectral norm, and A � 0 indicates that the square
matrix A is positive semidefinite. 0n×m and 1n denote the
n× m zero matrix and the n-dimensional vector with all
elements being one, respectively. The n × n square diagonal
matrix with the diagonal elements a1, a2, · · · , an is denoted
by diag{a1, a2, · · · , an}, and similarly for the m×n diagonal
rectangular matrix, all the off-diagonal elements are zero.
A∅B represents either A or B depending on which one is
actually considered. The rank of A is denoted by rank(A), and
(a)+ =max{a, 0}. The words ‘independently and identically
distributed’ and ‘with respect to’ are abbreviated as ‘i.i.d.’ and
‘w.r.t.’, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Two-Hop MIMO AF Relaying Networks

Consider a MIMO AF relaying network consisting of an
NS-antenna source, an NR-antenna relay and an ND-antenna
destination, which operates in half-duplex mode. In the first
hop, the source transmits the data vector s ∈ C

NS having
the covariance matrix E

[
ssH

]
= V S ∈C

NS×NS to the relay,
whose received signal yR∈C

NR is expressed as

yR = HSRs + nR, (1)

where nR ∈ C
NR is the additive white Gaussian noise

(AWGN) vector of the source-relay link with the covariance
matrix σ2

rINR , and HSR ∈ C
NR×NS is the source-relay

channel matrix. The source’s transmit signal s has the power
PS = Tr

(
V S

)
. In the second hop, the relay retransmits the

signal received in the first hop by pre-multiplying yR with
the AF beamforming matrix W R∈C

NR×NR . Thus, the relay’s
transmitted signal y′

R =W RyR has the power

PR = Tr
(
W R

(
HSRV SHH

SR + σ2
rINR

)
W H

R

)
. (2)

The signal yD∈C
ND received at the destination is then given

by

yD = HRDW RHSRs + HRDW RnR + nD, (3)

where HRD ∈ C
ND×NR is the relay-destination channel

matrix, and nD ∈ C
ND is the AWGN vector of the relay-

destination channel with the covariance matrix σ2
dIND .

We adopt the EE metric of the MIMO AF relaying network
as the optimization objective, which is defined as the ratio
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of the maximum achievable data rate to the total power con-
sumed. The maximum achievable rate or capacity measured
in [bit/s] is expressed as

RD =
B

2
logdet

(
IND+ HRDW RHSRV SHH

SRW H
RHH

RD

× · (σ2
rHRDW RW H

RHH
RD+σ2

dIND

)−1)
, (4)

where B denotes the allocated system bandwidth and the
factor 1

2 indicates the half-duplex loss. We model the total
power consumption of the relaying network as the sum of the
transmission powers of the source and relay, scaled by their
respective power amplifier efficiencies, and the total circuit
power consumption PC , given by

P (V S ,WR) =
PS

τs
+

PR

τr
+ PC [Joule/s], (5)

where 0 < τs ≤ 1 and 0 < τr ≤ 1 are the source and
relay power amplifier efficiencies, respectively. According
to [10], [23]–[25], the total circuit power consumption PC can
be modeled as PC =NSPdy,s+NRPdy,r+Pst, where Pdy,s and
Pdy,r are the dynamic power consumption of each RF chain
of the source and relay, respectively, while Pst =Pst,s+Pst,r

is the total static power overhead of the source and relay,
including baseband processing, power supply and cooling
power consumption. Reception generally consumes less circuit
power than transmission [23]. Therefore, we neglect the circuit
power consumption at the destination. From (4) and (5),
the EE metric is defined as

EE (V S , W R) =
RD

P (V S ,WR)
[bit/Joule]. (6)

B. Robust EE Optimization Problem

At high signal-to-noise ratio conditions and with opti-
mal pilot design, receiver can acquire an accurate CSI with
training [26]. It is reasonable to assume that the CSI is per-
fectly available at receiver [11], [16], [17]. But transmitter can
only acquire this estimated CSI through a finite-rate feedback
channel, which introduces the quantization and feedback delay
errors [16]. Consequently, the CSI at transmitter is inherently
imperfect. Similar to most of the existing literature [15]–[17],
we first assume that the relay has the perfect knowledge of the
source-relay channel HSR but it can only acquire an imperfect
relay-destination channel HRD. However, we also consider
the more generic scenario where the perfect knowledge of the
source-relay channel is also unavailable. As aforementioned,
there exist two different types of imperfect CSI models,
the statistically and deterministically imperfect CSI. Different
from the works [11], [13], which study the robust EE opti-
mization under the statistically imperfect CSI, we study the
robust EE maximization for deterministically imperfect CSI.
In general, the deterministic CSI errors take two different
forms, additive CSI errors and multiplicative CSI errors.
According to [18], [19], the CSI feedback and quantization
errors are considered to be additive, while CSI calibration
mismatch and the channel dynamic variations are regarded as

multiplicative errors. By applying the two types of CSI errors
to the relay-destination channel HRD, we have

HRD =

{
ĤRD + ΔRD, ‖ΔRD‖2 ≤ εa,
(
IND + ERD

)
ĤRD, ‖ERD‖2 ≤ εm,

(7)

where ĤRD ∈ C
ND×NR is the known nominal relay-

destination channel, ΔRD ∈ C
ND×NR and ERD ∈ C

ND×ND

are the additive and multiplicative CSI errors, respectively,
while εa and εm are the corresponding spectral norm bounds
of the CSI errors. To focus on the underlying principles
and without loss of generality, we consider additive CSI
errors and multiplicative CSI errors separately1. Note that
the spectral norm belongs to the unitarily-invariant norm sets,
in which the norm-bounded terms are statistically independent
and identical in all directions [15]. It also acts as the lower
bound of all unitarily-invariant norms. Hence, for the same
CSI errors, the spectral norm constrained case covers the
largest uncertainty region [15]. Furthermore, when consid-
ering another popular Frobenius norm expression, we have
‖ΔRD‖2 ≤ ‖ΔRD‖F ≤√

ND‖ΔRD‖2, which indicates that
the spectral norm constrained CSI errors can also provide
valuable insights for the Frobenius norm constrained case.
Given the imperfect CSI specified by (7), the EE metric (6)
also depends on ΔRD∅ERD and, therefore, it is expressed
as EE (V S , W R,ΔRD∅ERD).

Following the worst case robustness logic, the source
covariance matrix V S and relay beamforming matrix W R

are jointly designed by guaranteeing the maximum EE for
all possible relay-destination channel realizations within the
uncertainty region defined by (7). This robust EE optimization
problem of MIMO AF relaying networks is formulated as

max
V S ,W R

min
ΔRD∅ERD

EE (V S , W R,ΔRD∅ERD) ,

s.t. Tr(V S) ≤ PSmax ,

Tr
(
W R

(
HSRV SHH

SR+σ2
rINR

)
W H

R

)
≤PRmax ,

‖ΔRD‖2 ≤ εa or ‖ERD‖2 ≤ εm, (8)

where PSmax and PRmax are the maximum transmit pow-
ers of source and relay, respectively. As (8) contains the
interrelated optimization variables and the semi-infinite CSI
errors, the classical saddle point theory for concave-convex
problems [27, Theorem 36.3] cannot be applied. According
to [9], the max-min EE problem (8) can be reduced to a
NP-hard sigmoidal programming [28, Theorem 1, page 15].
Therefore, it is also NP-hard and very difficult to solve directly.

III. WORST CASE EE MAXIMIZATION FOR TWO-HOP

MIMO AF RELAYING

A. Derivation of Saddle Point

To simplify the intricate relationships among the opti-
mization variables

{
V S , W R,ΔRD∅ERD

}
, we utilize the

1Our work can easily be extended to the case having both additive and
multiplicative CSI errors, namely, HRD =

�
IND

+ERD

��HRD +ΔRD .
This is because in this case, similar worst-case channel-diagonalizing structure
can easily be derived by applying the results of this work for the additive CSI
errors (ΔRD) and the multiplicative CSI errors (ERD

�HRD).
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Woodbury matrix identity to equivalently transform (4) into

RD =
B

2
log det

(
INR+σ−2

r HSRV SHH
SR−σ−2

r HSRV SHH
SR

×(
INR +σ2

rσ−2
d W H

RHH
RDHRDW R

)−1
)

= R(
V S , W R,ΔRD∅ERD

)
. (9)

Then the EE metric in (8) is rewritten as
EE (V S , W R,ΔRD∅ERD) = R(

V S , W R,ΔRD∅ERD

)
/

P(
V S ,WR

)
. Since (8) is not concave-convex in

{V S , W R,ΔRD∅ERD}, it is difficult to solve it directly.
Instead, we consider its counterpart, i.e., the following
min-max EE problem,

min
ΔRD∅ERD

max
V S ,W R

EE (V S , W R,ΔRD∅ERD)

s.t. Tr(V S) ≤ PSmax ,

Tr
(
W R

(
HSRV SHH

SR+σ2
rINR

)
W H

R

)
≤PRmax ,

‖ΔRD‖2 ≤ εa or ‖ERD‖2 ≤ εm. (10)

Generally, max
x

min
y

f(x, y) ≤ min
y

max
x

f(x, y) [29,

Section 5.4] holds implying that the max-min problem and
the min-max problem are not identical. However, accord-
ing to [30, Corollary 9.16], if there exists a saddle point
for EE(V S , W R,ΔRD∅ERD), then it is globally optimal
for both problems (8) and (10). Hence, we first study
the problem (10) and derive its optimal solution, and then
prove that the obtained solution is indeed a saddle point of
EE(V S , W R,ΔRD∅ERD). Let’s define the singular value
decomposition (SVD) of HSR and ĤRD as

HSR = USRΣSRQH
SR, (11)

ĤRD = ÛRDΣ̂RDQ̂
H

RD, (12)

where USR ∈ C
NR×NR and QSR ∈ C

NS×NS as well as
ÛRD ∈C

ND×ND and Q̂RD∈C
NR×NR are the unitary singu-

lar matrices for HSR and ĤRD , while the diagonal rectangu-
lar matrices ΣSR∈C

NR×NS and Σ̂RD ∈C
ND×NR take NP =

min{NR, NS} singular values (SVs)
{
σsr,1, · · · , σsr,NP

}
of

HSR and NC =min{ND, NR} SVs
{
σ̂rd,1, · · · , σ̂rd,NC

}
of

ĤRD as diagonal elements.
Theorem 1: For the min-max EE problem (10), the optimal

source covariance matrix V �
S , the optimal relay beamforming

matrix W �
R and the worst-case CSI errors Δ�

RD∅E�
RD satisfy

V �
S = QSRΣSQH

SR, (13)

W �
R = Q̂RDΣX

(
INR + σ−2

r ΣSRΣSΣH
SR

)− 1
2 UH

SR, (14)

Δ�
RD = −ÛRDΛRDQ̂

H

RD or E�
RD = −εmIND , (15)

where ΣS =diag
{
λs,1, · · ·, λs,NS

}
and ΣX =diag

{
σx,1, · · · ,

σx,NC , 0, · · ·, 0}∈C
NR×NR , in which λs,i for 1 ≤ i ≤ NS and

σx,j for 1 ≤ j ≤ NC replace V S and W R as the optimization
scalar variables for the min-max EE problem (10), while the
diagonal rectangular matrix ΛRD ∈ C

ND×NR has the NC

diagonal elements min{σ̂rd,1, εa}, · · ·, min{σ̂rd,NC , εa}.
Proof: See Appendix A. �

Theorem 2: The optimal solution
{
V �

S , W �
R,Δ�

RD∅E�
RD

}

of the min-max EE problem (10) provided by Theorem 1 is the

saddle point of the EE metric EE
(
V S , W R,ΔRD∅ERD

)
,

i.e.,

EE
(
V S , W R,Δ�

RD∅E�
RD

)≤EE
(
V �

S , W �
R,Δ�

RD∅E�
RD

)

≤EE
(
V �

S , W �
R,ΔRD∅ERD

)
, (16)

holds for any feasible V S , W R and ΔRD∅ERD. According
to [30, Corollary 9.16], it is also optimal for the original
max-min EE problem (8).

Proof: See Appendix B. �
According to Theorems 1 and 2, the optimal V �

S , W �
R

and Δ�
RD∅E�

RD that solve the max-min EE problem (8)
all have the channel-diagonalizing structure. Calculating the
optimal V �

S and W �
R becomes determining the values of

λs =
[
λs,1 · · ·λs,NS

]T
and σx =

[
σ2

x,1 · · ·σ2
x,NC

]T
.

B. Proposed Alternating Optimization Algorithm

Based on Theorem 1, the original max-min EE problem (8)
with matrix variables can be equivalently transformed into the
problem (17) with scalar variables, shown at the top of the
next page, where NL = min

{
NP , NC

}
and for 1 ≤ i ≤ NC ,

σ̃rd,i=

{(
σ̂rd,i−εa

)+
for additive CSI errors,

(1−εm)+σ̂rd,i for multiplicative CSI errors,
(18)

Compared to the original problem (8), the number of opti-
mization variables in the problem (17) is significantly reduced,
namely, from N2

S +N2
R + NDNR to NS + NC . In order to

efficiently solve the problem (17), the fractional programming
theory [22], [30] is first introduced.

Lemma 1: ( [22], [30]) Given a fractional function f(A)=
N(A)
G(A) , provided that N(A) and G(A) are concave and
convex w.r.t. A, respectively, then f(A) is quasi-concave.
By introducing an auxiliary variable η, a single-parameter
subtractive function is defined as

F (η) = max
A

N(A) − ηG(A). (19)

The inner maximization problem of (19) is concave w.r.t. A for
any fixed η, and F (η) is a decreasing function of η. Moreover,
the problem of maximizing f(A) is equivalent to finding the
zero point of F (η), and Dinkelbach’s method can be invoked
for finding F (η) = 0, which is guaranteed to converge to a
globally optimal solution of maximizing f(A) [22].

Taking the second derivative of the numerator of the objec-
tive function in (17) w.r.t. λs for fixed σx, it is seen that the
numerator of the objective function is concave w.r.t. λs. The
denominator of the objective function in (17) is linear w.r.t.
λs given σx. According to Lemma 1, the problem (17) is
quasi-concave for λs given σx. Similarly, the problem (17) is
quasi-concave for σx given λs. Therefore, it can be efficiently
tackled by an alternating optimization between the subproblem
of optimizing λs for fixed σx and that of optimizing σx for
fixed λs.

By introducing the auxiliary variable η based on Lemma 1,
we transform (17) into the following single-parameter
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max
λs,σx

∑NL

i=1 log
(

1+σ2
rσ−2

d σ2
x,i�σ2

rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ−2

d σ2
x,i�σ2

rd,i

)
+

∑NL

i=1 log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ2
rσ2

x,i + PC

,

s.t.
∑NS

i=1
λs,i ≤ PSmax ,

∑NC

i=1
σ2

r σ2
x,i ≤ PRmax , (17)

subtractive problem

max
λs,σx

∑NL

i=1

(
log

( 1 + σ2
rσ−2

d σ2
x,iσ̃

2
rd,i

1 + σ−2
r σ2

sr,iλs,i + σ2
rσ−2

d σ2
x,iσ̃

2
rd,i

)

+ log
(
1+σ−2

r σ2
sr,iλs,i

))

− η
(∑NS

i=1
λs,i+

∑NC

i=1
σ2

rσ2
x,i+PC),

s.t.
∑NS

i=1
λs,i ≤ PSmax ,

∑NC

i=1
σ2

r σ
2
x,i ≤ PRmax . (20)

For given η, since (20) is strictly concave w.r.t λs for
fixed σx and vice versa, the Lagrangian dual method can be
adopted for obtaining the corresponding optimal solutions to
the respective subproblems. Specifically, given η, we introduce
the Lagrangian dual function of (20) as

L(λs, σx, μ, β; η)

=
∑NL

i=1
log

( 1 + σ2
rσ−2

d σ2
x,iσ̃

2
rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ−2

d σ2
x,iσ̃

2
rd,i

)

+
∑NL

i=1
log

(
1+σ−2

r σ2
sr,iλs,i

)

− (η + μ)
∑NS

i=1
λs,i − (η + β)

∑NC

i=1
σ2

rσ2
x,i + C,

(21)

where μ and β are the Lagrangian multipliers for the source
and relay transmit power constraints, respectively, and C =
μPSmax+βPRmax −ηPC . For the subproblem of optimizing
σx given λs, we take the derivative of L(λs, σx, μ, β; η)
w.r.t. σx,i and utilize Karush-Kuhn-Tucker (KKT) conditions
to obtain the optimal σx for fixed λs, denoted by σx(λs; η),
as (22), shown at the bottom of the next page. where β satisfies
β
(∑NC

i=1 σ2
rσ2

x,i−PRmax

)
=0 and it can be determined by the

bisection search owing to the monotonically decreasing prop-
erty of σ2

x,i(λs; η) w.r.t. β. Similarly, for fixed σx, we have
the optimal λs, denoted by λs(σx; η), in (23), shown at the
bottom of the next page. where owing to the monotonically
decreasing property of λs(σx; η) w.r.t μ, μ is chosen by the

bisection search to ensure μ
(∑NS

i=1 λs,i − PSmax

)
= 0.

For efficiently realizing the worst-case EE maximization,
we apply Dinkelbach’s method to both the subproblems of (20)
to update η by utilizing the optimal σx in (22) for fixed
λs and by utilizing the optimal λs in (23) for fixed σx,
respectively. Dinkelbach’s method is an iterative optimization
process, which converges when the zero objective value of
the problem (20) is realized. Specifically, the update of η
in Dinkelbach’s method based on {λs, σx} is given by (24),
shown at the bottom of the next page. Integrating (22) to (24),
the proposed alternating optimization for the worst-case EE

maximization under additive or multiplicative CSI errors is
summarized in Algorithm 1.

C. Convergence and the Speedup Strategy

For characterizing the convergence, let us consider the
arbitrary feasible initial value λ(n)

s and η(n) for the
nth iteration of Algorithm 1. According to Lemma 1,
given λ(n)

s , the σx related subproblem of (20) is strictly
concave, and we can obtain the unique and glob-
ally optimal σ

(n+1)
x in (22), which implies that after

Step 2 of Algorithm 1, EE
(
V

(n)
S , W

(n)
R ,Δ�

RD∅E�
RD

) ≤
EE

(
V

(n)
S , W

(n+1)
R ,Δ�

RD∅E�
RD

)
. Given σ

(n+1)
x , the λs

related subproblem of (20) is also concave, and the globally
optimal and unique λ(n+1)

s is derived in (23), which implies
that after Step 3 of Algorithm 1, we have EE

(
V

(n)
S , W

(n+1)
R ,

Δ�
RD∅E�

RD

) ≤ EE
(
V

(n+1)
S , W

(n+1)
R ,Δ�

RD∅E�
RD

)
. Com-

bining these two non-strict inequalities, we generally
have EE

(
V

(n)
S , W

(n)
R ,Δ�

RD∅E�
RD

)
< EE

(
V

(n+1)
S , W

(n+1)
R ,

Δ�
RD∅E�

RD

)
after the (n + 1)th iteration. It is widely

exploited that the worst-case robust maximization is gen-
erally upper bounded by the corresponding perfect-case
maximization [11], [13]. By setting σrd,i = σ̂rd,i, 1≤ i≤NC ,
in the problem (20) to indicate that the relay’s knowledge of
HRD is perfect, it becomes the perfect-case EE maximization,
which has been solved in [11] and the solution provides an
effective upper bound for our worst-case EE. Since the achiev-
able worst-case EE of Algorithm 1 is non-decreasing and
upper bounded, we conclude that Algorithm 1 is guaranteed to
converge to a stationary point {λst

s , σst
x } of the problem (17).

Substituting this stationary point of the problem (17)
into (13) and (14) of Theorem 1 yields a locally
optimal solution {V st

S , W st
R} to the problem (8)

given Δ�
RD∅E�

RD, which satisfies EE
(
V st

S , W st
R ,

Δ�
RD∅E�

RD

) ≥ EE
(
V S , W R,Δ�

RD∅E�
RD

)
and

(V S , W R) ∈ U(V st
S , W st

R; δd) (Here, U(V st
S , W st

R; δd)
denotes the vicinity sphere of point {V st

S , W st
R} with

radius δd). Moreover, given {V st
S , W st

R}, it is observed
that the worst-case additive/multiplicative error to the
problem (8) is still Δ�

RD∅E�
RD, and thus we have

EE
(
V st

S , W st
R,Δ�

RD∅E�
RD

)≤EE
(
V st

S , W st
R,ΔRD∅ERD

)
.

Therefore, for any (V S , W R) ∈ U(V st
S , W st

R; δd),
it yields EE

(
V S , W R, Δ�

RD∅E�
RD

) ≤ EE
(
V st

S ,
W st

R,Δ�
RD∅E�

RD

) ≤ EE
(
V st

S , W st
R,ΔRD∅ERD

)
, based

on which we can conclude that {V st
S ,W st

R Δ�
RD∅E�

RD}
is a local saddle point (stationary point) of the max-
min EE problem (8). In addition, it is readily inferred
that by setting η = η(n) and η = η̃ for Step 2 and
Step 3, respectively, the objective function value of
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Algorithm 1 The proposed alternating optimization for solv-
ing (17)

Require: The initial λ(0)
s and η(0); a sufficiently small toler-

ance threshold ζ > 0; the iteration index n = 0;
1: repeat
2: Fix λs = λ(n)

s , start from η = η(n), apply Dinkelbach
method to iteratively optimize between σx

(
λ(n)

s ; η
)

of

(22) and η
(
λ(n)

s , σx

)
of (24) to obtain σ

(n+1)
x and η̃

that realize the zero objective value of (20);
3: Fix σx = σ

(n+1)
x , start from η = η̃, apply Dinkelbach

method to iteratively optimize between λs

(
σ

(n+1)
x ; η

)
of

(23) and η
(
λs, σ

(n+1)
x

)
of (24) to obtain λ(n+1)

s and
η(n+1) that realize the zero objective value of (20);

4: n = n + 1;
5: until

∣∣EE
(
V

(n)
S , W

(n)
R ,Δ(n)

RD∅E
(n)
RD

) −
EE

(
V

(n−1)
S , W

(n−1)
R , Δ(n−1)

RD ∅E
(n−1)
RD

)∣∣ ≤ ζ;

Ensure: EE
(
V �

S , W �
R,Δ�

RD∅E�
RD

)
with V �

S = V
(n)
S ,

W �
R = W

(n)
R and Δ�

RD∅E�
RD = Δ(n)

RD∅E
(n)
RD;

problem (17) is also non-decreasing between the inner
iteration of Step 2 and that of Step 3. In other words,
with the obtained {W (n)

R , V
(n)
S } after the nth outer

iteration, we further have EE
(
V

(n)
S , W

(n)
R ,Δ�

RD∅E�
RD

) ≤
· · · ≤ EE

(
V

(n)
S , W

(nin,k)
R ,Δ�

RD∅E�
RD

) ≤ · · · ≤
EE

(
V

(n)
S , W

(n+1)
R ,Δ�

RD∅E�
RD

) ≤ · · · ≤ EE
(
V

(nin,k)
S ,

W
(n+1)
R , Δ�

RD∅E�
RD

) ≤ · · · ≤ EE
(
V

(n+1)
S , W

(n+1)
R ,

Δ�
RD∅E�

RD

)
, where W

(nin,k)
R and V

(nin,k)
S denote the

optimized W R and V S after the kth inner iteration of Step 2
and Step 3 in the n+1th outer iteration, respectively. Overall,
by defining η = η(n) and η = η̃ for Step 2 and Step 3 of
Algorithm 1, respectively, the achieved EE value for the
problem (17) is guaranteed to be non-decreasing both in the
inner iteration of Step 2/Step 3 and in the outer iteration

between Step 2 and Step 3, which is beneficial for speeding
up the convergence of Algorithm 1.

D. Optimality and Complexity

Although a local stationary point {λst
s , σst

x } of the prob-
lem (17) found by Algorithm 1 is not necessary an opti-
mal solution, it can be seen from the above discussions
that the solution

{
V st

S , W st
R ,Δ�

RD∅E�
RD

}
associated with

{λst
s , σst

x } as in Theorem 1 is also a local saddle point to the
max-min EE problem (8). A further advantage of Algorithm 1
for solving the non-convex problem (17) is its low com-
putational complexity, on the order of O(

Iite

(
NS log2(NS)

+NC log2(NC)
))

due to water-filling solution in each step,
where Iite denotes the total number of outer-inner iterations.
As presented in Section V, Algorithm 1 converges within
10 iterations for both outer and inner loops. This should be
contrasted with the computational complexity of brute-force
search for finding an optimal solution to the problem (17),
namely, O

((PSmax
Δs

)NS
(PRmax

Δs

)NC
)

, where Δs is the step
length. To obtain an accurate solution, a small step length
Δs is required, which imposes extremely high complexity.
In addition, an upper bound for the objective function of
problem (17), denoted as fup(λs, σx), is given by (25), shown
at the bottom of the next page. The inequality in (25) is derived
according to the identity a+b ≥ 2

√
ab. Note that this upper

bound is jointly quasi-concave w.r.t {λs, σx}, to which the
globally optimal solution is available. Moreover, we readily
find that this upper bound becomes tight when the sufficiently
high transmit powers at source and relay are considered.

To demonstrate the effectiveness of our proposed alternating
optimization, Fig. 1 firstly shows the worst-case EE perfor-
mance as the functions of the source transmit power PSmax

for Algorithm 1 and the brute-force search, in comparison
with the upper bound (25), where a small-scale system setup
with NS/NR/ND=2/2/2 and PRmax=30dBm is considered.
Then Table I compares the execution times of Algorithm 1
and brute-force search for solving the problem (17). It can

σ2
x,i(λs; η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√

σ−4
r σ4

sr,iλ
2
s,i +

4σ−2
d σ2

sr,iλs,i�σ2
rd,i

ln 2(β+η)σ2
r

− σ−2
r σ2

sr,iλs,i − 2

2σ2
rσ−2

d σ̃2
rd,i

, σ̃rd,i >0 and 1 ≤ i ≤ NL,

0, σ̃rd,i =0 or NL + 1 ≤ i ≤ NC ,

, (22)

λs,i(σx; η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√

σ4
rσ−4

d σ4
x,iσ̃

4
rd,i +

4σ−2
d

σ2
sr,iσ

2
x,i�σ2

rd,i

ln 2(μ+η) − σ2
rσ−2

d σ2
x,iσ̃

2
rd,i − 2

2σ−2
r σ2

sr,i

, σsr,i > 0 and 1 ≤ i ≤ NL,

0, σsr,i = 0 or NL + 1 ≤ i ≤ NS ,

(23)

η
(
λs, σx

)
=

∑NL

i=1 log
(

1+σ2
rσ−2

d
σ2

x,i�σ2
rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ−2

d σ2
x,i�σ2

rd,i

)
+

∑NL

i=1 log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ2
rσ2

x,i + PC

. (24)
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TABLE I

COMPARISON OF EXECUTION TIMES BY THE PROPOSED ALTERNATING OPTIMIZATION AND BRUTE-FORCE SEARCH

Fig. 1. The worst-case EE performance as the functions of the source
maximum transmit power PSmax for Algorithm 1 and the brute-force search,
in comparison with the upper bound.

be seen from Fig. 1 and Table I that there is almost no
loss of optimality by using Algorithm 1, which imposes a
dramatically lower complexity than the brute-force search. We
also observe from Fig. 1 that the gap between the upper bound
and optimal solution to the problem (17) is much reduced at
high source transmit power.

E. Extension to Imperfect Source-Relay Channel

Since the relay can estimate HSR with higher accuracy,
the deterministically imperfect model, such as the one adopted
for HRD in (7), is inappropriate for HSR. It is more appro-
priate to adopt the statistically imperfect CSI model [11], [13],
[14] to express HSR as

HSR = R
1
2
RH̃SRR

1
2
S , (26)

where the positive semidefinite RR ∈ C
NR×NR and RS ∈

C
NS×NS are the relay and source spatial correlation matrices,

respectively, while H̃SR ∈ C
NR×NS is a random matrix

whose elements are i.i.d. complex Gaussian variables with
the distribution CN (0, 1). Both RR and RS are available at
the relay but the instantaneous H̃SR is unknown. Thus the
instantaneous robust EE optimization (8) is infeasible, and the

following average EE metric can be considered [13]

ẼE (V S , W R,ΔRD∅ERD)

=
E
[
RD

(
V S , W R,ΔRD∅ERD

)]

E
[P (V S ,WR)

]

=
E
[
RD

(
V S , W R,ΔRD∅ERD

)]

PS

τs
+ E[PR]

τr
+PC

, (27)

where the expectation is w.r.t. the distribution of H̃SR. Then
the robust average EE maximization problem for the two-hop
MIMO relaying network is given by

max
V S ,W R

min
ΔRD∅ERD

ẼE (V S , W R,ΔRD∅ERD) ,

s.t. Tr(V S) ≤ PSmax ,

E
[
Tr

(
W R

(
HSRV SHH

SR+σ2
rINR

)
W H

R

)]≤PRmax ,

‖ΔRD‖2 ≤ εa or ‖ERD‖2 ≤ εm. (28)

By defining the eigenvalue decompositions (EVDs) of RR

and RS as RR = URΛRUH
R and RS = USΛSUH

S ,
respectively, where the unitary matrices UR ∈ C

NR×NR and
US ∈ C

NS×NS consist of the eigenvectors of RR and RS ,
respectively, we have the following Theorem.

Theorem 3: For the robust average EE maximization (28),
the worst-case error Δ�

RD∅E�
RD is the same as that given in

Theorem 1, with the structures of the optimal V �
S and W �

R

given by

V �
S = USΣSUH

S ,

W �
R = Q̂RDΣX

(
INR + σ−2

r ΣSRΣSΣH
SR

)− 1
2 UH

R. (29)
Proof: See Appendix C. �

Based on Theorem 3, the matrix-variable robust average
EE problem (28) can be equivalently transformed into a
scalar-variable one. As shown in [11], this scalar-variable
problem consists of two concave subproblems due to the con-
cavity and monotonicity of the function E[log(·)]. However,
evaluating E[log(·)] imposes high-complexity. To solve (28)
efficiently, a deterministic approximation of the average EE is
required. We apply Jensen’s inequality to the concave function
E[log(·)] to derive the analytical upper bound of the average

fup(λs, σx) =
log

(
1 +

σ−2
d σ2

x,i�σ2
rd,iσ

2
sr,iλs,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ−2

d σ2
x,i�σ2

rd,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ2
rσ2

x,i + PC

≤
log

(
1 +

σ−2
d σ2

x,i�σ2
rd,iσ

2
sr,i

(
λs,i+σ2

rσ2
x,i

)

σ−2
r σ2

sr,i+σ2
rσ−2

d �σ2
rd,i+2

�
σ2

sr,iσ
−2
d �σ2

rd,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ2
rσ2

x,i + PC

. (25)
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EE [11]. Then the proposed alternating optimization can read-
ily be applied to this upper-bound average EE optimization.

Remark 1: The relay needs to feed back the optimal covari-
ance matrix V �

S to the source, which introduces the feedback
errors to V �

S . When the source covariance matrix error ΔV S ∈
C

NS×NS is taken into account, the proof of Appendix A
is not applicable, since both the numerator and denominator
of the EE metric contain the semi-infinite ΔV S . A possible
solution is to consider a lower bound optimization of this truly
robust EE design, where the possible maximum total power
consumption under the spectral norm constrained ΔV S is
adopted. Then ΔV S is only contained in the rate function
and the corresponding minimum achievable rate in (4) is
readily observed at ΔV �

S =−εINS . Since the resultant lower-
bound robust EE optimization is similar to that of (8) or (28),
the channel-diagonalizing structured new relay beamforming
W �

R can still be proved following the proof in Appendix A.

IV. EXTENSION TO MULTIHOP MIMO AF
RELAYING NETWORKS

An NS-antenna source transmits signals to an ND-antenna
destination via K NR-antenna relays Rk, for 1≤k≤K.
Denote the source-relay channel by HSR1 ∈ C

NR×NS ,
the relay-relay channels by HRkRk+1 ∈ C

NR×NR for 1 ≤
k ≤ K − 1, and the relay-destination channel by HRKD ∈
C

ND×NR . The received signals at each relay and the des-
tination are given by (30) and (31), respectively, at the top
of the next page. where nRk

∈ C
NR , 1 ≤ k ≤ K , is the

AWGN vector at relay k with the covariance matrix σ2
rINR ,

and nRD ∈C
ND is the AWGN vector at the destination with

the covariance matrix σ2
dIND , while W Rk

, 1 ≤ k ≤ K , is
the beamforming matrix of relay k. Since typically the relays
chosen are static or at most slowly mobile w.r.t. the source,
the source-relay channel and all relay-relay channels can be
acquired with high precision through training [31]. We further
assume that the estimated HSR1 and HRkRk+1 , 1≤k≤K−2,
can be transmitted to relay K perfectly. Thus we assume that
the perfect {HSR1 , HRkRk+1 , 1≤k≤K−1} are available at
relay K , and consider the deterministically imperfect HRKD

with the additive or multiplicative CSI errors

HRKD =

{
ĤRKD+ΔRKD, ‖ΔRKD‖2≤εa,(
IND +ERKD

)
ĤRKD, ‖ERKD‖2≤εm,

(32)

where ĤRKD ∈ C
ND×NR is the known nominal relay-

destination channel, ΔRKD ∈ C
ND×NR and ERKD ∈

C
ND×ND are the corresponding additive and multiplicative

CSI errors. The robust EE optimization problem under the
uncertainty model (32) is formulated as

max
V S ,�W R

min
ΔRKD∅ERKD

EEM

(
V S , W̃ R,ΔRKD∅ERKD

)

=
Rmul

Pmul
,

s.t. Tr
(
V S

) ≤ PSmax , PRk ≤ PRmax , 1 ≤ k ≤ K,

‖ΔRKD‖ ≤ εa or ‖ERKD‖ ≤ εm, (33)

where W̃ R =
{
W R1 , W R2 , · · · , W RK

}
, the maximum

achievable rate Rmul is given by

Rmul =
B

K + 1
log det

(
IND

+ Hmul,1HSR1V SHH
SR1

HH
mul,1N

−1
mul

)
, (34)

with

Nmul = σ2
r

∑K−1

m=1
Hmul,mHH

mul,m + σ2
dIND , (35)

Hmul,m = HRKDW RK

(∏K−1

i=m
HRiRi+1W Ri

)
, (36)

and the transmit signal power PRk
of relay k, 1 ≤ k ≤ K ,

is given by (37) at the top of the next page, while the total
power consumption Pmul is expressed as

Pmul =
PS

τs
+

∑K

k=1

PRk

τr
+ P ′

C , (38)

in which P ′
C is the total circuit power consumption. Similarly

to (5), P ′
C = NSPdy,s +NR

∑K
k=1Pdy,r,k +P ′

st with Pdy,r,k

denoting the dynamic power consumption of the kth relay’s
RF chain, 1≤ k≤K , and the total static power consumption
of the source and all relays is P ′

st =Pst,s+
∑K

k=1Pst,r,k.

A. Proposed Robust EE Design

Clearly, the max-min EE problem (33) is more challenging
than the problem (8) but the former has the similar structure
to the latter and, therefore, it can be solved with the similar
approach as detailed in Section III. Specifically, let us define
the following SVDs

HSR1 = USR1ΣSR1Q
H
SR1

, (39)

HRkRk+1 = URkRk+1ΣRkRk+1Q
H
RkRk+1

, (40)

ĤRKD = ÛRKDΣ̂RKDQ̂
H

RKD, 1 ≤ k ≤ K − 1. (41)

where USR1 ∈ C
NR×NR and QSR1

∈ C
NS×NS , URkRk+1 ∈

C
NR×NR and QRkRk+1

∈ C
NR×NR , as well as ÛRKD ∈

C
ND×ND and Q̂RKD ∈ C

NR×NR are the unitary matrices
for HSR1 , HRkRk+1 and ĤRKD, respectively, while the
diagonal matrices ΣSR1 ∈ C

NR×NS , ΣRkRk+1 ∈ C
NR×NR ,

and Σ̂RKD ∈ C
ND×NR contain NP =min{NR, NS} SVs of

HSR1 , NR SVs of HRkRk+1 , and NC=min{ND, NR} SVs{
σ̂rKd,1, · · · , σ̂rKd,NC

}
of ĤRKD at their diagonal positions,

respectively.
Theorem 4: For the max-min EE problem (33), the optimal

source covariance matrix V �
S , the optimal relay beamforming

matrices W �
Rk

, 1 ≤ k ≤ K , and the worst-case errors
Δ�

RKD∅E�
RKD have the following structures

V �
S = QSR1

ΣSQH
SR1

, (42)

W �
Rk

=

⎧
⎪⎨

⎪⎩

QR1R2
ΣW R1

UH
SR1

, k = 1,

QRkRk+1
ΣW Rk

UH
Rk−1Rk

, 2 ≤ k ≤ K − 1,

Q̂RKDΣW RK
UH

RK−1RK
, k = K,

(43)

Δ�
RKD

= −ÛRKD

[
ΛRKD 0NC×(NR−NC)

0(ND−NC)×NC
0(ND−NC)×(NR−NC)

]

× Q̂
H

RKD or E�
RKD = −εmIND , (44)
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yRk
=

⎧
⎨

⎩

HSR1s + nR1 , k = 1,
(∏k−1

i=1HRiRi+1W Ri

)
HSR1s+

∑k−1
m=1

∏k−1
i=m HRiRi+1W RinRi+nRk

, k = 2, · · · , K,
(30)

yD = HRKDyRK
+ nRD = HRKDW RK

(∏K−1

i=1
HRiRi+1W Ri

)
HSR1s

+ HRKDW RK

(∑K−1

m=1

∏K−1

i=m
HRiRi+1W RinRi

)
+ HRKDW RK nRK + nRD , (31)

PRk
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Tr

(
W R1

(
HSR1V SHH

SR1
+ σ2

rINR

)
W H

R1

)
, k = 1,

Tr

(
W Rk

(
k−1∏

i=1

HRiRi+1W Ri

)
HSR1V SHH

SR1

(
k−1∏

i=1

HRiRi+1W Ri

)H

+σ2
r

k−1∑

m=1

(
k−1∏

i=m

HRiRi+1W Ri

)(
k−1∏

i=m

HRiRi+1W Ri

)H

+ σ2
rINR

)
W H

Rk

)
, 2 ≤ k ≤ K,

(37)

where ΛRKD = diag
{
min

{
σ̂rKd,1, εa

}
, · · · , min{

σ̂rKd,NC , εa

}}
,

ΣW R1
= ΣX1

(
INR + σ−2

r ΣSR1ΣSΣH
SR1

)− 1
2 , (45)

ΣW Rk
= ΣXk

(
INR +

k−1∑

m=1

Σ̃
m

k +σ−2
r

(k−1∏

i=1

Σ̃i,i+1

)
ΣSR1ΣS

× · ΣH
SR1

(k−1∏

i=1

Σ̃i,i+1

)H
)−1

2
, 2 ≤ k ≤ K, (46)

with ΣXk
= diag

{
σxk,1, · · · , σxk,NC , 0, 0, · · · , 0

︸ ︷︷ ︸
NR−NC

}
for 1 ≤

i ≤ K , Σ̃
m

k =
(k−1∏

i=m

Σ̃i,i+1

)(k−1∏

i=m

Σ̃i,i+1

)H
and Σ̃i,i+1 =

ΣRiRi+1ΣW Ri
.

Proof: See Appendix D. �
Similarly to the two-hop case, based on Theorem 4 and

Lemma 1, we can equivalently transform the robust EE
problem (33) into the follow optimization problem with scalar
variables
where Σ̃RKD =

(
Σ̂RKD −ΛRKD

)
ΣW RK

and Σ̃RKD =

(1−εm)Σ̂RKDΣW RK
are defined for the additive and mul-

tiplicative CSI errors, respectively, and ηmul is the auxiliary
variable. For convenience, denote ΣS = ΣX0 . Observe that
the problem (47) is convex w.r.t ΣXk

when the remaining
variables

{
ΣX0 ,ΣX1 , · · · ,ΣXK

}\ΣXk
are fixed. Therefore,

we can apply the alternating optimization of Section III-B
to efficiently solve the problem (47) by decomposing it into
(K + 1) alternating subproblems, in order to obtain a locally
optimal solution.

B. Extension to Imperfect HSR1 and HRkRk+1 , ∀k

We now consider the most generic case, where the
source-relay channel HSR1 and all the relay-relay channels
HRkRk+1 , ∀k, are also imperfect at relay RK . Similarly
to the two-hop case, by adopting the statistically imperfect

HSR1 and HRkRk+1 , ∀k, and the deterministically imperfect
HRKD , the robust average EE optimization for this generic
multihop AF relaying network can be formed. Following the
same philosophy in proving Theorem 3, a similar conclusion
can also be obtained for the multihop scenario by proving
the optimal channel-diagonalizing structure one by one for
the optimal source covariance matrix V �

S and the optimal
relay beamforming matrices W ∗

Rk
, 1 ≤ k ≤ K . Specifically,

the eigenspaces of V �
S and W ∗

Rk
, 1≤k ≤K − 1, are aligned

with that of the source spatial correlation matrix and that of
the relay Rk spatial correlation matrix, respectively, while
W ∗

RK
is jointly determined by the eigenspace of the relay

RK spatial correlation matrix and the right singular matrix
of the relay-destination channel HRKD. The corresponding
robust average EE problem can also be transformed into a
robust optimization with scalar variables. However, due to the
simultaneous expectations for multiple statistically imperfect
channels, this scalar-variable problem is generally intractable
and cannot be decomposed into a series of convex subprob-
lems [13]. A possible solution is to apply successive Jensen’s
inequalities to the expectations on {HSR1 , HRkRk+1 , ∀k} to
find an upper-bound of the average EE [13], which can then
be solved by the proposed alternating optimization.

Remark 2: The last relay RK needs to feed back the
optimal source covariance matrix V �

S and optimal relay
beamforming matrices W �

Rk
, 1 ≤ k ≤ K − 1, perfectly to

the source and corresponding relays. If the feedback errors
for {V �

S , W �
Rk

, 1 ≤ k ≤ K − 1} are serious, they should
be additionally imposed on the robust EE design, and the
optimal beamforming matrix W �

RK
of relay K should also

be redesigned accordingly. Unfortunately, even if the spectral
norm constrained errors for {V �

S , W �
Rk

, 1 ≤ k ≤ K − 1}
are jointly considered, the channel-diagonalizing structured
optimal W �

RK
is not guaranteed, since the multiple relay

beamforming errors are coupled in both the objective and the
transmit power constraints. Future research is warranted to
develop the low-complexity suboptimal algorithms to effec-
tively address this issue.



GONG et al.: ROBUST EE OPTIMIZATION FOR AMPLIFY-AND-FORWARD MIMO RELAYING SYSTEMS 4335

Fig. 2. Convergence of Algorithm 1: (a) inner Dinkelbach loop of step 2 at the first outer iteration, (b) outer alternating optimization loop, given two sets of
different initial points and for both additive and multiplicative CSI errors, and (c) inner Dinkelbach loop of step 2 at the first outer iteration with error bars,
for one set of initial points and additive CSI errors. NS/NR/ND =4/6/4.

V. SIMULATION STUDY

In the simulation, the source is a base station (BS), while the
destination and relays are mobile stations (MSs). The default
parameters of the simulated MIMO AF relaying network
are listed in Table II. Unless otherwise stated, these default
values are used. To demonstrate the excellent performance
of our robust EE design, we adopt the non-robust EE max-
imization (NREE) and the naive AF based EE maximization
(NAF) [17] for comparison. For the NREE scheme, the opti-
mization problem (8)/(32) is firstly solved by assuming no CSI
errors, i.e., εa = εm = 0. Then the resultant optimal solution
is applied to the imperfect CSI scenario for calculating the
worst-case EE. For the NAF scheme [17], the relay scales
the received signal transmitted by source with the maximum
power by a constant to realize the maximum relay power
transfer. All simulation results are obtained by averaging over
100 channel realizations.

A. Two-Hop MIMO AF Relaying Networks

The convergence of the proposed alternative optimization
algorithm is investigated under the two sets of the initial values{
λ(0)

s , η(0)
}

, given by
{
λ

(0)
s,ini1, η

(0)
1

}
=

{PSmax
NS

1NS , 0
}

and
{
λ

(0)
s,ini2, η

(0)
2

}
=

{PSmax
2NS

[
1T

NS/2 0T
NS/2

]T
, 0.1

}
. Algorithm 1

consists of an outer alternating optimization loop, and within
each alternating iteration, there are two inner Dinkelbach itera-
tive loops at Step 2 and step 3. To demonstrate the convergence
of the two inner Dinkelbach iterative loops, Fig. 2 (a) plots
the objective value of the problem (20) after each Dinkelbach

2 In our simulations, the large-scale fading coefficient σ2
h is determined

according to the LTE path-loss model −σ2
h + 30 = LP (dB)= 128.1 +

37.6 log(d [Km] ) with d = 330m [33].

iteration for optimizing σx given λs at the first outer iteration.
Observe from Fig. 2 (a) that this very first Dinkelbach iterative
procedure of Algorithm 1 takes no more than 6 iterations to
converge. Since any subsequent Dinkelbach iterative procedure
is unlikely to take more iterations to converge, we conclude
that for this example, any Dinkelbach iterative procedure of
Algorithm 1 takes no more than 6 iterations to converge. The
convergence of Algorithm 1 is illustrated in Fig. 2 (b), where
it is seen that for this example, Algorithm 1 takes no more
than 7 outer iterations to converge. Fig. 2 (c) depicts the curve
of Fig. 2 (a) corresponding to the additive CSI errors with the
initial condition

{
λ

(0)
s,ini1, η

(0)
1

}
but with the logarithmic scale

in y-axis and with the error bars. It can be seen that after
6 iterations, the objective value becomes smaller than 10−3.

The influence of antenna configuration to the worst-case
EE performance is investigated in Fig. 3, which plots the
worst-case EE performance of the proposed robust EE design
as the functions of the source maximum transmit power
PSmax under different antenna configurations NS/NR/ND.
We observe that the antenna configuration 4/4/6 attains the
highest worst-case EE, and the antenna configuration 4/6/4
attains the second highest worst-case EE, which is consider-
ably larger than the 4/4/4 configuration. While the 6/4/4
configuration achieves the lowest worst-case EE. We now
explain these phenomena based on the following facts. First,
the circuit power consumption at receiver is neglected in
our work, since reception generally consumes much less
circuit power than transmission [23]. Second, the existing
literature [7], [34] have shown that increasing the number of
source antennas NS without optimizing the source covariance
matrix generally causes the capacity shrinking phenomenon
for MIMO AF relaying systems. Even considering the design

max
ΣS ,∀ΣXk

log det

(

IND +
(
Σ̃RKD

(K−1∏

i=1

Σ̃i,i+1

)
ΣSR1ΣSΣH

SR1

(K−1∏

i=1

Σ̃i,i+1

)H

Σ̃
H

RKD

)

×
(
σ2

r

K−1∑

m=1

Σ̃RKDΣ̃
m

KΣ̃
H

RKD+σ2
dIND

)−1
)

−ηmul

(

Tr
(
ΣS

)
+

K∑

k=1

Tr
(
ΣXk

)
+PC

)

,

s.t. Tr
(
ΣS

) ≤ PSmax , Tr
(
ΣXk

) ≤ PRkmax
, 1 ≤ k ≤ K, (47)
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TABLE II

DEFAULT SYSTEM PARAMETERS

Fig. 3. Comparison of the worst-case EE performance as the functions
of the source maximum transmit power PSmax given different antenna
configurations NS/NR/ND .

of source covariance matrix, the capacity gain is close to
zero as NS increases [7], [34]. By contrast, adding more
relay and/or destination antennas is helpful to improve system
capacity, of which the enhancement is more evident when
increasing the number of relay antennas [34].

These known conclusions explain why the best worst-case
EE performance for both multiplicative and additive CSI errors
is observed at NS/NR/ND = 4/4/6, which is because the
achievable data rate increases with the number of destination
antennas ND, while the transmit power consumption remains
unchanged. These conclusions also agree with our observation
that the achievable worst-case EE under NS/NR/ND =4/6/4
is significantly higher than that under NS/NR/ND = 4/4/4,
because when the number of relay antennas NR increases,
the remarkable increase of data rate outweighs the increase in
dynamic relay circuit power consumption. However, for the
case of NS/NR/ND = 6/4/4, the achievable worst-case EE
is much reduced, since the increased source dynamic circuit
power consumption outweighs the slight data rate gain due
to the increasing number of source antennas NS . Our results
therefore support the existing literature and provide insights
to design MIMO AF relaying systems, namely, increasing the
number of relay and/or destination antennas rather than the
number of source antennas is beneficial to improve system’s
worst-case EE performance.

Fig. 4. Comparison of the worst-case EE performance as the functions of:
(a) the source maximum transmit power PSmax , and (b) the relay maximum
transmit power PRmax , for three designs. NS/NR/ND =4/6/4.

Fig. 4 (a) compares the worst-case EE performance as the
functions of PSmax for the proposed robust EE design, NREE
and NAF schemes, while Fig. 4 (b) shows the worst-case
EE performance as the functions of PRmax for the three
designs. As expected, the proposed robust EE design achieves
the highest worst-case EE, while the NAF scheme has the
worst-case EE. For our robust EE design and NREE scheme,
the worst-case EE first increases with PSmax (PRmax ) but
becomes saturated for large PSmax (PRmax ). This is because
when PSmax (PRmax ) is small compared to the circuit power
consumption PC , the EE metric is mainly determined by the
maximum achievable rate in the numerator of the EE metric.
Increasing PSmax (PRmax ) increases the source (relay) transmit
power too, which in turn increases the maximum achievable
rate. Therefore, for relatively small PSmax (PRmax), increasing
PSmax (PRmax ) increases the worst-case EE. In this region,
the power constraint is active, i.e., the source (relay) trans-
mit power reaches PSmax (PRmax). By contrast, when PSmax

(PRmax ) becomes large, the EE metric is also determined
by the source (relay) transmit power in the denominator of
the EE metric. Therefore, to maximize the worst-case EE, a
trade-off between the maximum achievable rate and the total
transmit power must be made. As a result, the maximum
worst-case EE metric reaches a saturated value. In this region,
the power constraint is inactive and the source (relay) transmit
power remains constant. For the NAF, the worst-case EE
decreases with PSmax (PRmax ) for large PSmax (PRmax). This
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Fig. 5. Influence of CSI uncertainty p on the achievable worst-case EE for
three designs. NS/NR/ND =4/6/4.

is because the maximum achievable rate of the NAF strategy
cannot be arbitrarily enhanced by increasing PSmax (PRmax ),
since the relay simultaneously amplifies the received signal
and noise. Therefore, for large PSmax (PRmax), the NAF’s
worst-case EE decreases with PSmax (PRmax ) due to the limited
maximum achievable rate and the increase in the total power
consumption.

The two thresholds are fairly set for the multiplicative and
additive CSI errors in Table II, as they correspond to the same
quantitative measure for the spectral norm constrained mul-
tiplicative and additive CSI errors. According to Theorem 1,
we can infer that the SVs of the worst-case relay-destination
channel for multiplicative CSI errors are larger or equal to
those for additive CSI errors. Therefore, we can conclude that
under the same size of the spectral norm constrained CSI
errors, the quality of the relay-destination channel under mul-
tiplicative CSI errors is better than that under additive errors.
Naturally, the achievable worst-case EE under multiplicative
CSI errors is also higher than that under additive CSI errors.
This is also confirmed by Fig. 4.

Fig. 5 investigates the impact of the CSI uncertainty thresh-
old p on the achievable worst-case EE. Not surprisingly, as p
increases, the worst-case EE performance decreases for every
scheme. Again our robust design achieves the best worst-case
EE, while the NAF has the worst performance. Moreover, the
performance gap between our robust EE design and the NREE
increases with p, which further indicates the effectiveness of
our design. Fig. 6 shows the worst-case EE performance as
the functions of the circuit power consumption PC for three
schemes. As expected, our robust design attains the highest
worst-case EE. Observe that the worst-case EE decreases as
Pc increases, since PC only appears in the denominator of
the EE metric. Next we consider the statistically imperfect
source-relay channel HSR. The source and relay spatial
correlation matrices RR and RS are simulated using the expo-
nential model [35]. Specifically, for i, j=1, · · · , NR (NS) and
j≥ i, the (i, j)-th elements of RR and RS are given respec-
tively by

[
RR

]
i,j

= pj−i
r and

[
RS

]
i,j

= pj−i
s , where |pr|< 1

and |ps| < 1 [35]. Without loss of generality, only additive
CSI error is considered for the relay-destination channel. Fig. 7
depicts the worst-case EE performance versus PSmax for the

Fig. 6. Influence of circuit power consumption PC on the achievable worst-
case EE for three designs. NS/NR/ND =4/6/4.

Fig. 7. Influence of the source maximum transmit power PSmax on the
achievable worst-case EE for two designs. The statistically imperfect source-
relay channel and additive CSI errors for the relay-destination channel are
considered. NS/NR/ND =4/6/4.

upper-bound robust average EE design of Section III-E and
the NREE scheme. Observe from Fig. 7 that the relationship
between the worst-case EE and PSmax for the two designs is
similar to that shown in Fig. 4 (a). Compared with the case of
ps =pr =0.3, the stronger correlation of ps =pr =0.5 leads to
higher achievable worst-case EE, because higher correlation
means higher source-relay channel energy, which is beneficial
to improve the ergodic rate. For the two designs considered,
Fig. 8 shows that the achievable worst-case EE decreases with
the BS dynamic power consumption Pdy,s, which is a portion
of the total circuit power consumption PC . The reason is
similar to that given for Fig. 6.

B. Three-Hop (K = 2) MIMO AF Relaying Networks

A three-hop MIMO AF relaying network is simulated, and
we only consider additive CSI errors for the relay-destination
channel. Fig. 9 (a) compares the worst-case EE performance
versus the relays’ maximum transmit power PRmax for
the three designs. Compared with Fig. 4 (b), similar trends
between the worst-case EE and PRmax for the three schemes
can also be observed from Fig. 9 (a). Clearly, the achievable
worst-case EE in the three-hop case is lower than that in the
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Fig. 8. Influence of the BS dynamic power consumption Pdy,s on the
achievable worst-case EE for two designs. The statistically imperfect source-
relay channel and additive CSI errors for the relay-destination channel are
considered. NS/NR/ND =4/6/4.

Fig. 9. Comparison of the worst-case EE performance as the functions of:
(a) the relays’ maximum transmit power PRmax , and (b) the CSI uncertainty
p, for three designs. The three-hop MIMO AF relaying network under additive
CSI uncertainty is considered. NS =4, NR1 =NR2 =6 and ND = 4.

two-hop case due to the greater channel fading and higher
power consumption. Fig. 9 (b) depicts the influence of p on
the worst-case EE for the three designs. Both Fig. 9 (a) and
Fig. 9 (b) confirm that the proposed robust EE design attains
the best worst-case EE performance.

VI. CONCLUSIONS

We have optimized the EE of two-hop MIMO AF relaying
networks under the deterministically imperfect CSI. By con-
sidering the additive and multiplicative CSI errors for the
relay-destination channel, the source covariance and relay
beamforming matrices are jointly optimized to maximize the
worst-case EE. We have proved the existence of a saddle
point for this robust EE problem, and have derived the
channel-diagonalizing structure of the optimal source covari-
ance and relay beamforming matrices as well as the worst-case
errors under the spectral-norm constrained additive and multi-
plicative CSI errors. Based on this structure, the original robust
EE problem is transformed into an optimization problem
with scalar variables, which can be efficiently solved by the
proposed alternating optimization. We have also proved that
all these results are applicable when the statistically imperfect
source-relay channel is additionally imposed. Furthermore,

we have extended our work to multihop MIMO AF relaying
networks, and have proved that the channel-diagonalizing
structure remains optimal for the source covariance matrix and
all the relays’ beamforming matrices under deterministically
imperfect relay-destination CSI.

APPENDIX

A. Proof of Theorem 1

Proof: Unless otherwise stated, the eigenvalues (EVs)/SVs
of an EVD/SVD for a matrix are always arranged in a
decreasing order. First we have the following lemma [36].c

Lemma 2: For the two N×N Hermitian matrices A and
B whose EVs are denoted by λi(A) and λi(B), respectively,
for i=1, · · · , N , we have

∏N

i=1

(
λi(A) + λi(B)

) ≤ det(A + B)

≤
∏N

i=1

(
λi(A) + λN+1−i(B)

)
,

(48)
∑N

i=1
λi(A)λN+1−i(B) ≤ Tr(AB) ≤

∑N

i=1
λi(A)λi(B).

(49)

All the equalities in (48) and (49) hold only when A and B
are simultaneously diagonalizable.

1) Optimal W �
R: Re-express the rate formulation (9) as

According to the identity det(IN +AB)=det(IK+BA),
where A ∈ C

N×K and B ∈ C
K×N , the achievable EE

metric EE
(
V S , W R,ΔRD∅ERD

)
can be reformulated as

(50), shown at the top of the next page.
Next perform the EVDs of the nonnegative definite matrices

HSRV SHH
SR and HH

RDHRD:

HSRV SHH
SR = ŨSRΣ̃SRŨ

H

SR, (52)

HH
RDHRD = Q̃RDΣ̃RDQ̃

H

RD, (53)

where Σ̃SR= diag
{
σ̃2

sr,1, · · · , σ̃2
sr,NP

, 0, · · · , 0
}

and Σ̃RD =
diag

{
σ̃2

rd,1, · · · , σ̃2
rd,NC

, 0, · · · , 0
}

contain the NP nonzero
EVs of HSRV SHH

SR and the NC nonzero EVs of
HH

RDHRD , respectively, while ŨSR∈C
NR×NR and Q̃RD ∈

C
NR×NR are the associated unitary matrices. Note that Q̃RD

and Σ̃RD are unknown, while Σ̃SR depends on the matrix
variable V S whose optimal structure is yet to be determined.
Clearly, Σ̃SR � 0 and Σ̃RD � 0. By defining X ∈ C

NR×NR

as

X = Q̃
H

RDW RŨSR

(
INR + σ−2

r Σ̃SR

) 1
2 , (54)

we can express the relay beamforming matrix W R as

W R = Q̃RDX
(
INR + σ−2

r Σ̃SR

)− 1
2 Ũ

H

SR. (55)

Then X is the new optimization matrix variable. Sub-
stituting (52), (53) and (55) into (51) (at the top of the
next page) yields (56) (also at the top of the next page).
Denote XHΣ̃RDX = UTΣT UH

T , where the unitary matrix
UT ∈C

NR×NR and the NR×NR diagonal matrix ΣT con-
tains NC nonzero EVs of XHΣ̃RDX . For any XHΣ̃RDX ,
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2
2RD

B =
det

(
INR + σ2

rσ−2
d

(
INR + σ−2

r HSRV SHH
SR

)
W H

RHH
RDHRDW R

)

det(INR + σ2
rσ−2

d W H
RHH

RDHRDW R

) . (50)

EE
(
V S , W R,ΔRD∅ERD

)
=

B
2 log det

(
IND+σ2

rσ−2
d HRDW R

(
INR+σ−2

r HSRV SHH
SR

)
W H

RHH
RD

)

Tr
(
V S

)
+ Tr

(
W R(HSRV SHH

SR + σ2
rINR)W H

R

)
+ PC

−
B
2 log det

(
INR + σ2

rσ−2
d W H

RHH
RDHRDW R

)

Tr
(
V S

)
+ Tr

(
W R(HSRV SHH

SR + σ2
rINR)W H

R

)
+ PC

. (51)

2
B

· EE
(
V S , X,ΔRD∅ERD

)
=

log det
(
INR + σ2

rσ−2
d XHΣ̃RDX

)

Tr
(
V S

)
+ Tr

(
σ2

rXXH
)

+ PC

+
log det

(
INR + σ−2

r Σ̃SR

)

Tr
(
V S

)
+ Tr

(
σ2

rXXH
)

+ PC

− log det
(
INR + σ−2

r Σ̃SR + σ2
rσ−2

d XHΣ̃RDX
)

Tr
(
V S

)
+ Tr

(
σ2

rXXH
)

+ PC

. (56)

by introducing X̃ = XUT , we have X̃
H
Σ̃RDX̃ = ΣT ,

i.e., X̃
H
Σ̃RDX̃ is diagonal, Tr

(
XXH

)
=Tr

(
X̃X̃

H)
and

det
(
INR +σ2

rσ−2
d XHΣ̃RDX

)

= det
(
INR + σ2

rσ−2
d X̃

H
Σ̃RDX̃

)
. (57)

Furthermore, according to the left-hand part of the identity
(48), we have

det
(
INR + σ−2

r Σ̃SR + σ2
rσ−2

d XHΣ̃RDX
)

≥ det
(
INR + σ−2

r Σ̃SR + σ2
rσ−2

d ΣT

)

= det
(
INR + σ−2

r Σ̃SR + σ2
rσ−2

d X̃
H
Σ̃RDX̃

)
. (58)

The inequality in (58) becomes equality when XHΣ̃RDX is
diagonal. By substituting (57) and (58) into (56), we have
2
B

EE
(
V S , X,ΔRD∅ERD

)

≤ log det
(
INR + σ2

rσ−2
d X̃

H
Σ̃RDX̃

)

Tr
(
V S

)
+ Tr

(
σ2

rX̃X̃
H)

+ PC

+
log det

(
INR + σ−2

r Σ̃SR

)

Tr
(
V S

)
+ Tr

(
σ2

rX̃X̃
H)

+ PC

− log det
(
INR +σ−2

r Σ̃SR+σ2
rσ−2

d X̃
H
Σ̃RDX̃

)

Tr
(
V S

)
+ Tr

(
σ2

rX̃X̃
H)

+ PC

=
2
B

EE
(
V S , X̃,ΔRD∅ERD

)
. (59)

Since the inequality in (59) becomes equality for the diag-
onal XHΣ̃RDX , to maximize the EE metric, the optimal X
must satisfy XHΣ̃RDX =ΣT . By introducing the NC×NC

diagonal matrix ΣRD = diag
{
σ̃2

rd,1, · · · , σ̃2
rd,NC

}
, which is

positive definite since the first NC diagonal elements of
Σ̃RD are positive, and denoting XH =

[
XH

1 XH
2

]
with

X1 ∈ C
NC×NR and X2 ∈ C

(NR−NC)×NR , we re-express
XHΣ̃RDX =ΣT as

[
XH

1 XH
2

]
[
ΣRD 0

0 0

] [
X1

X2

]
=

[
ΣT 0
0 0

]

⇒ XH
1 ΣRDX1 =

[
ΣT 0
0 0

]
, (60)

where ΣT ∈ C
NC×NC is a positive semidefinite diagonal

sub-matrix of ΣT . (60) indicates that X2 has no effect on
realizing XHΣ̃RDX=ΣT . Similarly to [6], we can infer from
(60) that

X =
[
XT

1 , XT
2

]T

=
[
(Σ

− 1
2

RDQΣ̃
1
2
T )T , XT

2

]T

, (61)

where Q ∈ C
NC×NC is an arbitrary unitary matrix and Σ̃

1
2
T =

[
Σ

1
2
T 0

] ∈ C
NC×NR .

To further determine the optimal X2, we consider the relay
power constraint

Tr
(
σ2

rXHX
)

= Tr
(
σ2

rX1X
H
1

)
+ Tr

(
σ2

rX2X
H
2

)

≥ Tr
(
σ2

rX1X
H
1

)
, (62)

and the last inequality becomes the equality when X2 =
0(NR−NC)×NR

. That is, X2 = 0(NR−NC)×NR
is the best

choice in terms of minimizing relay power consumption.
Furthermore,

Tr
(
σ2

rX1X
H
1

)
= Tr

(
σ2

rΣ
− 1

2
RDQΣ̃

1
2
T

(
Σ̃

1
2
T

)H
QH

(
Σ

− 1
2

RD

)H
)

= Tr
(
σ2

rΣ
−1

RDQΣT QH
) ≥ Tr

(
σ2

rΣ
−1

RDΣT

)
,

(63)

where the last inequality is due to the left-hand part of the
identity (49) and the equality holds when Q = INC according
to Lemma 2. Thus the optimal structure of X satisfies

X� =

[
Σ

− 1
2

RDΣ̃
1
2
T

0(NR−NC)×NR

]

=

[
Σ

− 1
2

RDΣ
1
2
T 0

0 0

]

= ΣX = diag{σx,1, · · · , σx,NC , 0, · · · , 0}. (64)

Using this optimal X� in (55), we obtain the optimal structure
of the relay beamforming matrix

W �
R = Q̃RDΣX

(
INR + σ−2

r Σ̃SR

)− 1
2 Ũ

H

SR, (65)

with

EE
(
V S , X,ΔRD∅ERD

)≤EE
(
V S ,ΣX ,ΔRD∅ERD

)
. (66)
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2) Optimal V �
S: Denote the EVD of V S by V S =

USΣSUH
S , where US ∈ C

NS×NS is the unitary matrix
and ΣS = diag

{
λs,1, · · · , λs,NS

}
has the NS nonnegative

diagonal elements. Using the SVD of HSR given in (11),
(52) can be rewritten as

HSRV SHH
SR = USRΣSRQH

SRUSΣSUH
S QSRΣH

SRUH
SR

= ŨSRΣ̃SRŨ
H

SR. (67)

Furthermore, the EE metric in the problem (10) can be
re-expressed as

2
B
·EE(V S , W R,ΔRD∅ERD)

=
log det

(
INS+Ṽ

H

SHH
SRW H

RHH
RDB−1HRDW RHSRṼ S

)

Tr
(
V S

)
+Tr

(
W R

(
HSRV SHH

SR+σ2
rINR

)
W H

R

)
+PC

,

(68)

where Ṽ S = USΣ
1
2
S and B = σ2

rHRDW RW H
RHH

RD +
σ2

dIND .
Substituting the optimal W �

R of (65) into (68) yields

2
B

· EE (V S ,ΣX ,ΔRD∅ERD)

=
log det

(
INS + Ṽ

H

S HH
SRŨSRΣ̃RDXŨ

H

SRHSRṼ S

)

Tr
(
ΣS

)
+ Tr (σ2

rΣXΣX) + PC

,

(69)

with

Σ̃RDX =ΣH
RDX

(
σ2

dINR +σ2
rΣRDXΣH

RDX

)−1
ΣRDX , (70)

where ΣRDX=Σ̃
1
2
RDΣX(INR+σ−2

r Σ̃SR)−
1
2 . Since rank(ΣX)

= rank
(
Σ̃RD

)
=NC , the diagonal matrix Σ̃RDX also has the

rank of NC . According to (67), we can re-express (69) as

2
B

· EE (V S ,ΣX ,ΔRD∅ERD)

=
log det

(
INR +U

H

SRΣSRQSRΣSQ
H

SRΣH
SRUSRΣ̃RDX

)

Tr
(
ΣS

)
+ Tr (σ2

rΣXΣX) + PC

≤
log det

(
INR + ΣSRΣSΣH

SRΣ̃RDX

)

Tr
(
ΣS

)
+ Tr (σ2

rΣXΣX) + PC

=
2
B

· EE (ΣS ,ΣX ,ΔRD∅ERD) , (71)

where USR=UH
SRŨSR and QSR =QH

SRUS are unitary matri-
ces. According to the right-hand part of identity (48), it can
be inferred that det (IN +AB)≤∏N

i=1 (1+λi(A)λi(B)) and
the inequality in (71) becomes equality when USR=INR and
QSR=INS . The diagonal matrix Σ̃RDX (70) is satisfied at
the maximum EE point. As a result, the optimal structures of
ŨSR and US are ŨSR =USR and US =QSR. Accordingly,
the optimal structure of V S is given by

V �
S = QSRΣSQH

SR. (72)

Combining (67) with (72) leads to HSRV �
SHH

SR=USRΣSR·
ΣSΣH

SRUH
SR = ŨSRΣ̃SRŨ

H

SR and due to ŨSR = USR,

we also have Σ̃SR=ΣSRΣSΣH
SR. Thus the optimal structure

of the relay beamforming matrix in (65) can be re-expressed
as

W �
R = Q̃RDΣX

(
INR +σ−2

r ΣSRΣSΣH
SR

)− 1
2

UH
SR. (73)

3) Worst-Case Δ�
RD∅E�

RD: First, we introduce the follow-
ing lemma [15], [37].

Lemma 3: For A ∈ C
Nu×Nl , B, C ∈ C

Nl×Nm with
rank(A) = rank(B) = rank(C) = N = min{Nu, Nl, Nm},
whose SVs are σi(A), σi(B) and σi(C), i = 1, · · ·, N ,
respectively, we have

σN (A)σi(B) ≤ σi(AB), (74)
(
σi(B) − σ1(C)

)+ ≤ σi(B + C). (75)

(74) and (75) become equalities only if {A, B} and {B, C}
are simultaneously diagonalizable.

Based on the definitions of the diagonal matrices ΣS ,
ΣX and Σ̃RDX as well as the rectangular diagonal matrix
ΣSR, at V �

S and W �
R, the achievable EE metric in (71)

can be expressed as (76) at the top of the next page, where
NL = min

{
NP , NC

}
. It is readily observed from the first

term of the numerator in (76) that the minimum value of
EE(ΣS ,ΣX ,ΔRD∅ERD) is attained only when every σ̃2

rd,i

realizes its minimum, subject to the spectral norm constraint.
Note that σ̃2

rd,i, 1≤ i≤NC , are unknown since they are related
to the unknown CSI HRD. However, for the known nominal
CSI ĤRD, we have the SVD ĤRD = ÛRDΣ̂RDQ̂

H

RD,
in which the ND × NR diagonal rectangular matrix Σ̂RD

contains NC positive elements
{
σ̂rd,1, · · · , σ̂rd,NC

}
.

3.1) Additive CSI errors: HH
RDHRD =

(
ĤRD +ΔRD

)H

·(ĤRD + ΔRD

)
= Q̃RDΣ̃RDQ̃

H

RD. Applying Lemma 3 and
considering

∥
∥ΔRD

∥
∥

2
=σ1

(
ΔRD

)≤εa, we conclude

σ̃rd,i ≥
(
σ̂rd,i − εa

)+
, 1 ≤ i ≤ NC . (77)

All the inequalities in (77) become the equalities when
Q̃RD = Q̂RD according to Lemma 3, and the minimum
EE (ΣS ,ΣX ,ΔRD) is attained with σ̃rd,i =

(
σ̂rd,i − εa

)+
,

1≤ i≤NC . Consequently, the resultant worst-case CSI error
is given by

Δ�
RD=−ÛRD

[
Λ̃RD 0NC×(NR−NC)

0(ND−NC)×NC
0(ND−NC)×(NR−NC)

]
Q̂

H

RD

=−ÛRDΛRDQ̂
H

RD, (78)

where Λ̃RD = diag
{
min

{
σ̂rd,1, εa

}
, · · · , min

{
σ̂rd,NC , εa

}}
,

and we also have

EE(ΣS ,ΣX ,ΔRD) ≥ EE(ΣS ,ΣX ,Δ�
RD). (79)

Observe that ÛRD, ΛRD and Q̂
H

RD in (78) are all known.

3.2) Multiplicative CSI errors: HH
RDHRD = Ĥ

H

RD

(
IND +

ERD

)H(
IND +ERD

)
ĤRD = Q̃RDΣ̃RDQ̃

H

RD . Similarly to
the case of additive CSI errors, based on Lemma 3 and
‖ERD‖2 =σ1

(
ERD

)≤ εm, the minimum values of σ̃rd,i, ∀i,
required for minimizing EE (ΣS ,ΣX , ERD) are obtained as

σ̃rd,i ≥ σND

(
IND + ERD

)
σ̂rd,i ≥ (1 − εm)+σ̂rd,i,

1 ≤ i ≤ NC . (80)
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2
B

· EE (ΣS ,ΣX ,ΔRD∅ERD) =

NL∑

i=1

log
(

1+σ2
rσ−2

d σ2
x,i�σ2

rd,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ−2

d σ2
x,i�σ2

rd,i

)
+

NL∑

i=1

log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ2
rσ2

x,i + PC

=

∑NL

i=1 log
(

1 − σ−2
r σ2

sr,iλs,i

1+σ−2
r σ2

sr,iλs,i+σ2
rσ−2

d σ2
x,i�σ2

rd,i

)
+

∑NL

i=1 log
(
1 + σ−2

r σ2
sr,iλs,i

)

∑NS

i=1 λs,i +
∑NC

i=1 σ2
rσ2

x,i + PC

, (76)

The two inequalities in (80) simultaneously become the
equalities when Q̃RD = Q̂RD according to Lemma 3. There-
fore, the resulting worst-case E�

RD is given by E�
RD =

−εmIND , which only depends on the known εm, and we
naturally have

EE (ΣS ,ΣX , ERD) ≥ EE (ΣS ,ΣX , E�
RD) . (81)

Because Q̃RD =Q̂RD holds for both additive and multiplica-
tive CSI errors, (73) becomes

W �
R =Q̂RDΣX

(
INR + σ−2

r ΣSRΣSΣH
SR

)− 1
2 UH

SR. (82)

Observe that Q̂RD , ΣSR and USR are all known, while ΣS

and ΣX are the new optimization variables. This completes
the proof. �

B. Proof of Theorem 2

Proof: From (66) and (71) in Appendix A,
it is easily seen that EE

(
V �

S , W �
R,Δ�

RD∅E�
RD

) ≥
EE

(
V S , W R,Δ�

RD∅E�
RD

)
holds for any feasible

V S and W R. Similarly, from (79) and (81) in
Appendix A, it is seen that EE

(
V �

S , W �
R,Δ�

RD∅E�
RD

) ≤
EE

(
V �

S , W �
R,ΔRD∅ERD

)
holds for any feasible

ΔRD∅ERD . Thus the optimal {V �
S , W �

R,Δ�
RD∅E�

RD}
is a saddle point of the original robust EE optimization
problem (8). This completes the proof. �

C. Proof of Theorem 3

Proof: According to [11], for the statistically imperfect
source-relay channel HSR, the channel-diagonalizing struc-
ture is optimal for the source covariance matrix V �

S and
the relay beamforming W �

R for any relay-destination channel
HRD . That is, the eigenvectors of the optimal V �

S are aligned
with that of the source correlation matrix RS , while the left
and right singular matrices of the optimal W �

R are aligned
with the right singular matrix of the relay-destination channel
HRD and the eigenvectors of the relay correlation matrix RR,
respectively [11]. Based on the optimal V �

S and W �
R with the

channel-diagonalizing structure (29), we naturally obtain the
same worst-case error Δ�

RD∅E�
RD as that given in Theorem 1

by utilizing Lemma 3 of Appendix A. Moreover, we can also
conclude that the solutions provided in Theorem 3 are the
saddle point of ẼE (V S , W R,ΔRD∅ERD) by referring to
the proof of Theorem 2. �

D. Proof of Theorem 4

Proof: Construct the min-max EE counterpart problem
to the problem (33). First by fixing the relay beamforming
matrices of relays k ∈ {2, · · · , K} and referring to the proof
of Theorem 1, we obtain the optimal beamforming matrix
of relay k′ = 1 and the optimal source covariance matrix,
both having channel-diagonalizing structure, as well as obtain
the same worst-case CSI error as given in Theorem 1. In a
similar manner, the remaining optimal beamforming matrices
of relays k′, 2 ≤ k′ ≤ K , with channel-diagonalizing structure
can be obtained one by one by fixing the relay beamforming
matrices of relays k∈{1, 2, · · · , K}\k′ and given the optimal
source covariance matrix. This proves that the solution of
(42) to (44) form the optimal solution of this min-max EE
counterpart problem. Then referring to the proof of Theorem 2,
we conclude that the solution of (42) to (44) is a saddle point
of EEM

(
V S , W̃ R,ΔRKD∅ERKD

)
. �
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