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Nonlinear Identification

In 80s, NARMAX identification of unknown nonlinear system
y(k) = f (u(k − 1), · · · ,u(k − nu), y(k − 1), · · · , y(k − ny )) + ε(k)

= f (x(k)) + ε(k)

y(k), u(k) and ε(k): output, input and noise; system input vector
with m = nu + ny :

x(k) = [x1(k) · · · xm(k)]T

= [u(k − 1) · · · u(k − nu) y(k − 1) · · · y(k − ny )]T

Use linear-in-the-parameters nonlinear model

ŷ(k) =
M∑

i=1

θipi (k)

{θi}: unknown model weights; {pi (k)}: fixed model bases, e.g.
polynomial expansion, radial basis function, etc

Utilise well-developed linear identification techniques
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Parsimonious Principle

Select subset of Ms � M significantly model terms to overcome
curse of dimensionality, overfitting, and poor generalisation

Optimal subset selection intractable: candidate bases M = 500,
subset size Ms = 40 =⇒ possible models to select from

M!

Ms!(M −Ms)!
= 2.2443× 1059

Greedy-type forward subset selection

[selected model terms︷ ︸︸ ︷
w1 w2 · · · wn−1 |

candidate pool︷ ︸︸ ︷
pn pn+1 · · · pM

]
Each time choose one term from candidate pool to add to subset
model to maximally improve modelling performance
M = 500 and Ms = 40 =⇒ candidate models to evaluate are:

Ms∑
n=1

(M − n + 1) < Ms ×M = 2× 104
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Orthogonal Decomposition

Orthogonal decomposition of regression matrix: P = WA with

A =


1 α1,2 · · · α1,M

0 1
. . .

...
...

. . . . . . αM−1,M
0 · · · 0 1


orthogonal W = [w1 w2 · · ·wM ], Aθ = g and equivalent model

y = Pθ + ε⇔ y = Wg + ε

Training error reduction ratio due to n-th model term

[err]n = g2
nwT

n wn/yT y

and training mean square error of n-term model

J(n) = J(n−1) − g2
nwT

n wn
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Early Orthogonal Least Squares

Orthogonal least squares methods and their
application to non-linear system
identification - S. Chen, S. A. Billings and

W. Luo - International Journal of Control,
1989
Google scholar citations: 645 ISI citations: 468 (July
2011) ECS EPrints downloads: average 1.5 per day

Orthogonal least squares learning algorithm
for radial basis function networks - S.

Chen, C. F. N. Cowan and P. M. Grant - IEEE
Transactions on Neural Networks, 1991
Google scholar citations: 2166 ISI citations: 1555 (July
2011) ECS EPrints downloads: average 6 per day
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2-Norm Local Regularisation

Instead of training error εT ε, consider regularised error criterion

JR(g,λ) = εT ε + gT Λg

where Λ = diag{λ1, λ2, · · · , λM}

Regularised error reduction ratio

[rerr]n = g2
n
(
wT

n wn + λn
)
/yT y

Evidence procedure for updating regularisation parameters

λnew
n =

γold
n

K − γold

εT ε

g2
n
, 1 ≤ n ≤ M

γn =
wT

n wn

λn + wT
n wn

γ =
M∑

n=1

γn

which has a Bayesian interpretation
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An Illustrative Example

Very sparse, and enhance performance

Additionally help to determine appropriate subset model size

selection stage l weight θl regulariser λl

1 1.87494e+00 2.53227e-01
2 -1.70014e+00 1.81540e-01
3 -1.00970e+00 2.01490e-01
4 5.67310e-01 8.64601e-01
5 4.17979e-01 1.36357e+00
6 -1.51352e-01 6.93984e-01
7 -9.49873e-10 5.67623e+07
8 -2.79967e-10 1.11770e+08
9 7.14157e-11 1.03860e+07

10 -2.05313e-12 1.92708e+08
...
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Optimal Experiment Designs

LS estimate θLS =
(
PT P

)−1 PT y of true parameter vector θ:

E [θLS] = θ, Cov [θLS] ∝
(
PT P

)−1

Optimal experiment designs prevent selection of oversized
ill-posed model and overcome problem of high parameter
estimate variances

A-optimal design minimises trace of the covariance matrix
Cov [θLS], which in orthogonal decomposition space is

tr
[(

WT W
)−1
]

=
M∑

n=1

1
wT

n wn

D-optimal design maximises determinant of design matrix

det
[
WT W

]
=

M∏
n=1

wT
n wn
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Combined LROLS and D-Optimality

Combined LROLS and D-optimality criterion

JCR(g,λ, β) = JR(g,λ) + β

M∑
n=1

− log
(
wT

n wn
)

Combined regularised error reduction and D-optimality ratio

[crerr]n =
(
g2

n
(
wT

n wn + λn
)

+ β log
(
wT

n wn
))
/yT y

Or selecting n-th model term by minimising combined criterion

J(n) = J(n−1) − g2
n
(
wT

n wn + λn
)
− β log

(
wT

n wn
)

S. Chen, X. Hong and C. J. Harris, “Sparse kernel regression modelling using
combined locally regularized orthogonal least squares and D-optimality
experimental design,” IEEE Trans. Automatic Control, Vol.48, No.6, 1029–1036,
June 2003
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Leave-One-Out Cross Validation

Highly desirable to select model terms by directly optimising
model generalisation performance, instead of training MSE

Model generalisation can be evaluated by test performance on
data not used in training, and leave-one-out cross validation:

“Remove” k th data from training set DK = {x(k), y(k)}K
k=1,

identify model ŷ (n,−k), and test error on data point not in training

ε(n,−k)(k) = y(k)− ŷ (n,−k)(k)

“Repeating” for each k leads to LOO MSE

J(n) =
1
K

K∑
k=1

(
ε(n,−k)(k)

)2

a generalisation measure for model ŷ (n) identified with whole DK
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OLS-LOO Algorithm

All above LOO cross validation steps are virtual, and orthogonal
decomposition makes everything simple

Leave-one-out error

ε(n,−k)(k) =
ε(n)(k)

η(n)(k)

Modelling error of n-term model ŷ (n)

ε(n)(k) = ε(n−1)(k)− wn(k)gn

ε(n−1)(k) is modelling error of (n − 1)-term model ŷ (n−1)

Leave-one-out weighting

η(n)(k) = η(n−1)(k)− w2
n (k)

wT
n wn + λn

wn(k) is k th element of nth model column wn
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OLS-LOO Procedure

Thus, leave-one-out mean square error J(n) can be
evaluated efficiently

Moreover J(n) is “locally convex” with respect to model size
n, and there exists an “optimal” model size Ms such that

For n ≤ Ms: J(n) decreases as n increases

while J(Ms) ≤ J(Ms+1)

Regularised OLS algorithm can readily used, but selection
of nth model term is based on minimisation of J(n)

S. Chen, X. Hong, C. J. Harris and P. M. Sharkey, “Sparse modelling using

orthogonal forward regression with PRESS statistic and regularization,” IEEE

Trans. Systems, Man and Cybernetics, Part B, Vol.34, No.2, 898–911, 2004
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Unified Regression Framework

Originally derived for regression, all algorithms can be applied to
classification and density estimation as well

Regression and classification are supervised learning,
while density estimation is unsupervised learning

Two-class classification: give training set DK = {x(k), y(k)}K
k=1,

where y(k) ∈ {−1,+1}, OLS forward selection based on

Fisher ratio of interclass difference to intraclass spread
Leave-one-out misclassification rate

Probability density function estimation: give training set
DK = {x(k)}K

k=1, construct Parzen window estimate on DK

Use PW estimate at x(k) as y(k)→ regression problem
Weights must be nonnegative and add up to unity
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Engine Data Set

Data collected from a Leyland TL11 turbocharged, direct
injection diesel engine operated at low engine speed

System input u(k) is fuel rack position, and system output y(k)
is engine speed

First 210 data points for training, and last 200 data for testing
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Engine Data Results

Training data {x(k), y(k)}K
k=1 with K = 210, and

x(k) = [y(k − 1) u(k − 1) u(k − 2)]T

LROLS-LOO: Gaussian RBF, RBF variance σ2 determined
separately by cross validation

SVM: Gaussian kernel, kernel variance σ2, regularisation
parameter and error band determined separately by cross
validation

Experimental results:

algorithm model size training MSE test MSE
LROLS-LOO 22 0.000453 0.000490

SVM 92 0.000447 0.000498
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Boston Housing Data

Regression benchmark, comprised 506 data points with 14
variables

Predict median house value from remaining 13 attributes
456 data points were randomly selected for training and
remaining 50 data points for testing
Average results were given over 100 repetitions
Gaussian kernel was used

Experimental results:

algorithm LROLS-LOO SVM
model size 58.6± 11.3 243.2± 5.3

training MSE 12.9690± 2.6628 6.7986± 0.4444
test MSE 17.4157± 4.6670 23.1750± 9.0459

The SVM model is overfitted, due to the difficulties in finding near optimal values for

three hyperparameters, kernel variance, regularisation parameter and error band
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Diabetes Data Set

Two-class, feature space dimension m = 8; 100 realisations,
each having 468 training patterns and 300 test patterns

Experimental results:

algorithm test error rate % model size
RBF-Network 24.29± 1.88 15

AdaBoost RBF-Network 26.47± 2.29 15
LP-Reg-AdaBoost 24.11± 1.90 15
QP-Reg-AdaBoost 25.39± 2.20 15

AdaBoost-Reg 23.79± 1.80 15
SVM 23.53± 1.73 not available

Kernel Fisher Discriminant 23.21± 1.63 468
ROLS-LOO 23.00± 1.70 6.0± 1.0

Data and first 7 results from:
http://ida.first.fhg.de/projects/bench/benchmarks.htm
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Thyroid Data Set

Two-class, feature space dimension m = 5; 100 realisations,
each having 140 training patterns and 75 test patterns

Experimental results:

algorithm test error rate % model size
RBF-Network 4.52± 2.12 8

AdaBoost RBF-Network 4.40± 2.18 8
LP-Reg-AdaBoost 4.59± 2.22 8
QP-Reg-AdaBoost 4.35± 2.18 8

AdaBoost-Reg 4.55± 2.19 8
SVM 4.80± 2.19 not available

Kernel Fisher Discriminant 4.20± 2.07 140
ROLS-LOO 4.80± 2.20 4.6± 1.0

Data and first 7 results from:
http://ida.first.fhg.de/projects/bench/benchmarks.htm



Orthogonal Forward Selection Grey-Box Modelling Branch and Bound Recent Extensions

2-D Density Example

p(x1, x2) =
5∑

i=1

1
10π

e−
(x1−µi,1)2

2 e−
(x2−µi,2)2

2

Means of 5 Gaussians: [0.0 − 4.0], [0.0 − 2.0], [0.0 0.0], [−2.0 0.0], [−4.0 0.0]

Estimation set K = 500, and experiment repeated 100 times
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2-D Density Example Results

Kernel width was obtained separately via cross validation

L1 test error and numerical approximation of Kullback-Leibler
divergence are used to assess an estimator

Average kernel number obtained by OLS with D-optimality is 8

GMM: Gaussian mixture model estimate, number of mixture
componenets set to 8

RSDE: reduced set density estimate (Girolami & He, 2003)

Experimental results:
estimator PW OLS D-opt RSDE GMM
L1 ×103 3.62± 0.44 3.24± 0.56 3.63± 0.36 3.68± 0.67

KLC ×102 3.42± 0.55 3.47± 1.30 3.54± 0.49 3.39± 0.87
kernel no. 500 7.9± 0.8 13.2± 3.0 8
maximum 500 9 21 8
minimum 500 6 6 8
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6-D Density Example

True density was mixture of three Gaussian distributions

p(x) =
1
3

3∑
i=1

1

(2π)6/2

1

det1/2 |Γ̄i |
e−

1
2 (x−µ̄i )

T ¯Γ
−1
i (x−µ̄i )

with
µ̄1 = [1.0 1.0 1.0 1.0 1.0 1.0]T ,
Γ̄1 = diag{1.0,2.0,1.0,2.0,1.0,2.0}

µ̄2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T ,
Γ̄2 = diag{2.0,1.0,2.0,1.0,2.0,1.0}

µ̄3 = [0.0 0.0 0.0 0.0 0.0 0.0]T ,
Γ̄3 = diag{2.0,1.0,2.0,1.0,2.0,1.0}

Estimation set K = 600, while experiment is repeated 100 times
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6-D Density Example Results

Kernel width was obtained separately via cross validation
Average kernel number obtained by OLS with D-optimality
design is 8.4
GMM: number of mixture componenets set to 8
RSDE: reduced set density estimate (Girolami & He, 2003)
Experimental results:

estimator PW OLS D-opt RSDE GMM
L1 ×105 3.52± 0.16 2.78± 0.23 2.74± 0.50 1.74± 0.29

kernel no. 600 8.4± 0.9 14.2± 3.6 8
maximum 600 10 25 8
minimum 600 6 8 8
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Motivations

Like many existing data modelling methods, the approach
discussed so far is a black-box model, which is appropriate

if no a priori information exists regarding underlying data
generating mechanism

Known prior knowledge concerning underlying process should
be incorporated into model structure explicitly

How to incorporate prior knowledge to form grey-box model is
highly problem dependent, and is really an art

Two types of prior information are considered

Underlying process exhibits known symmetry property
Underlying process obeys set of boundary value constraints

Existing learning algorithms can be applied to resulting grey-box
models without any modification and added complexity



Orthogonal Forward Selection Grey-Box Modelling Branch and Bound Recent Extensions

Outline

1 Orthogonal Forward Selection
Motivations
Previous Enhancements
Unified Data Modelling

2 Grey-Box Modelling
Incorporating Prior knowledge
Symmetric RBF Modelling
BVC RBF Modelling

3 Branch and Bound
Branch and Bound for Efficiency
Branch and Bound Aided OLS

4 Recent Extensions
New Enhancements



Orthogonal Forward Selection Grey-Box Modelling Branch and Bound Recent Extensions

Symmetric RBF Network

Unknown system f (•) possesses odd symmetry f (−x) = −f (x)

e.g. from physics, underlying optimal discriminant function
for BPSK digital signals has old symmetry

RBF model with standard node

pi (k) = ϕ (‖x(k)− ci‖/σ)

cannot guarantee to have odd symmetry

Symmetric RBF model with symmetric RBF node

pi (k) = ϕ (‖x(k)− ci‖/σ)− ϕ (‖x(k) + ci‖/σ)

guarantees to obey same odd symmetry as underlying process

incorporate prior information naturally into model structure
all RBF learning methods are readily applicable
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Symmetric Function Modelling

(a) Underlying function

f (x1, x2) = 10
„

sin(x1 − 5) sin(x2 − 5)

(x1 − 5)(x2 − 5)
−

sin(x1 + 5) sin(x2 + 5)

(x1 + 5)(x2 + 5)

«
shown on the grid of 90601 points, and (b) 961 noisy training data points
y = f (x1, x2) + ε, where ε is Gaussian noise of zero mean and variance 0.16

(a) (b)
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Symmetric Modelling Results

Every training data used as a RBF centre with M = K = 961,
RBF variance σ2 = 8.0 was determined separately using cross
validation

Local regularisation assisted OLS algorithm with LOO MSE was
used to automatically select sparse RBF / SRBF model

Mean square error MSE = E [(y − ŷ)2] was calculated over noisy
training set and a separate noisy test set

Mean modelling error MME = E [(f (x1, x2)− f̂ (x1, x2))2] was
defined over grid of 90601 points noise-free f (x1, x2), with f̂
denoting estimated mapping

model size training MSE test MSE test MME
RBF 105 0.1543 0.2047 0.0294

SRBF 68 0.1566 0.1839 0.0093
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Symmetric Modelling (continue)

(a) modelling error f (x1, x2)− f̂ (x1, x2) of standard RBF model, and
(b) modelling error f (x1, x2)− f̂ (x1, x2) of symmetric RBF model

(a) (b)
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Results Analysis

By incorporating prior information, SRBF offers significantly
better generalisation performance than standard RBF

Mean modelling error is three times smaller

OLS algorithm selecting Ms model terms from K -term candidate
set, where Ms � K , has complexity

C =
(
Ms + 1

)
× K ×O(K )

For SRBF, Ms = 68, while for standard RBF, Ms = 105

Thus, complexity of SRBF model construction is about half
of complexity for constructing standard RBF model

Computational requirements of a symmetric node is more than
that of standard one, but SRBF has few RBF units

Prediction complexity of two models are similar
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Boundary Value Constraints

Underlying system satisfies a set of boundary value constraints

f (xj ) = dj , 1 ≤ j ≤ L

xj and dj , 1 ≤ j ≤ L, are known

These BVCs may represent the fact that at some critical
regions, there is a complete knowledge about system

Any identified model f̂ is required to strictly meet these BVCs

f̂ (xj ) = dj , 1 ≤ j ≤ L

RBF model with standard node pi (k) = ϕ (‖x(k)− ci‖/σ)
cannot meet these BVCs

Using BVCs as constraints dramatically complicates learning

Efficient state-of-the-art learning methods cannot be
applied directly
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BVC-RBF Network

Boundary value constraint-RBF model takes the form

ŷ(k) = f̂ (x(k)) =
M∑

i=1

pi (x(k))θi + g(x(k))

with novel RBF node structure

pi (x) = h(x)ϕ(‖x− ci‖/σ)

Geometric mean of data sample x to BVCs xj , 1 ≤ j ≤ L

h(x) = L

√√√√ L∏
j=1

‖x− xj‖

Since h(xj) = 0 at any boundary point xj , node pi(x) has
property of zero forcing at any xj
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BVC-RBF Offset Function

Offset function
g(x) =

L∑
j=1

αje−
‖x−xj‖

2

τ

τ is a positive scalar, α = [α1 α2 · · ·αL]T is obtained by solving
g(xj ) = dj , 1 ≤ j ≤ L, i.e. α = G−1d, with d = [d1 d2 · · · dL]T and

G =


1 e−

‖x1−x2‖
2

τ · · · e−
‖x1−xL‖

2

τ

e−
‖x2−x1‖

2

τ 1
. . . e−

‖x2−xL‖
2

τ

...
. . . . . .

...

e−
‖xL−x1‖

2

τ e−
‖xL−x2‖

2

τ · · · 1


Offset function g(x) passes all predetermined boundary values
f (xj ) = g(xj ) = dj , 1 ≤ j ≤ L, and it is completely determined by
BVCs but does not depend on DK
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BVC-RBF Illustration

One-dimensional function f (x) with two BVCs: f (0.1) = −2, f (0.5) = 3

Five RBFs with zero forcing at two boundary points (a), and offset passing
function g(x) (b)

(a) (b)
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BVC-Function Modelling
(a) Underlying function f (x1, x2) shown on grid of 961 points, (b) L = 120 BVCs given
by coordinates marked as cross points, and (c) 961 noisy training points, with
Gaussian noise of zero mean and variance 0.012

(a) (b) (c)

OLS algorithm with training MSE and D-optimality was used to
automatically identify standard RBF and BVC-RBF models

RBF variance σ2 = 0.01 was determined by cross validation,
τ = 0.04, and D-optimality weighting β = 10−5
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BVC-Function Modelling Results

model training MSE test MME test MME
size (inside DK ) (inside boundary) (on boundary)

RBF 91 1.6894× 10−4 1.0229× 10−4 2.1249× 10−4

BVC-RBF 68 1.0736× 10−4 4.3787× 10−5 7.2598× 10−11

Modelling error f (x1, x2)− f̂ (x1, x2) of standard RBF (a) and BVC-RBF (b)

(a) (b)



Orthogonal Forward Selection Grey-Box Modelling Branch and Bound Recent Extensions

Outline

1 Orthogonal Forward Selection
Motivations
Previous Enhancements
Unified Data Modelling

2 Grey-Box Modelling
Incorporating Prior knowledge
Symmetric RBF Modelling
BVC RBF Modelling

3 Branch and Bound
Branch and Bound for Efficiency
Branch and Bound Aided OLS

4 Recent Extensions
New Enhancements



Orthogonal Forward Selection Grey-Box Modelling Branch and Bound Recent Extensions

Motivations

nth stage of OLS forward subset selectionselected subset model︷ ︸︸ ︷
w1 w2 · · · wn−1 |

candidate set S︷ ︸︸ ︷
pn pn+1 · · · pM


choose one term from candidate set S as wn to add to subset
model which maximumly improves modelling performance

With Branch and bound, nth stage of OLS forward subset selectionselected subset model︷ ︸︸ ︷
w1 w2 · · · wn−1 |

candidate set S︷ ︸︸ ︷
pn pn+1 · · · pMn |

infeasible set S̄︷ ︸︸ ︷
pMn+1 pMn+2 · · · pM


choose one term from candidate set S as wn to add to subset
model, and check any candidate in S can be safely removed to
infeasible set S̄ (will not be considered in subsequent stages)
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What is Branch and Bound

An evaluation procedure for all candidate solutions by using
upper and lower estimated bounds of the quantity optimised,
leading to large subsets of fruitless candidates being discarded

Branching: successively dividing a candidate solution set
into subsets
Bounding: computing upper and lower bounds for a given
subset

Let candidate set be divided into two disjoint subsets, A and B,
and a bounding function is based on current best solution

If lower bound for A is greater than current best solution, it
is discarded, and search space is reduced to B

It is often difficult to design a branch and bound strategy for
specific problem

For OLS algorithm, it can be implemented effectively
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Branch and Bound OLS with A-Optimality

OLS selection based on training MSE and A-optimality

J(n) = J(n−1) − 1
K

g2
nwT

n wn +
β

wT
n wn

β: A-optimality weighting, K : the full candidate set size

nth stage, a candidate from S is selected as wn, which has
minimum J(n)

Theorem. Consider another candidate pj in S, let

w(−) = pj −
n−1∑
i=1

α
(−)
i,j wi with α(−)

i,j =
pT

j wi

wT
i wi

If (
w(−)

)T
w(−) <

β

J(n)

pj can safely be removed from S into S̄
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Complexity Saving

Number of column orthogonalisations and cost function
evaluations for conventional OLS forward selection

COLS =

Ms∑
n=1

(K − n + 1)

For branch and bound OLS forward selection, this number is

CBB−OLS =

Ms∑
n=1

(Mn − n + 1)

with Mn+1 ≤ Mn and M1 = K

Empirical results obtained in practice show that typically 20% to
40% saving of computational cost is likely

X. Hong, S. Chen and C.J. Harris, “A-optimality orthogonal forward regression

algorithm using branch and bound,” IEEE Trans. Neural Networks, Vol.19, No.11,

1961–1967, 2008
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Double Pendulum Results

Modelling performance for lower pendulum angle φ2

Integration time span of 200 s at sampling rate of 0.2 s

First 800 data samples were used in training and last 200
data samples for model testing

Gaussian RBF variance σ2 = 3.0 was set empirically

Conventional OLS with training MSE and A-optimality, and
branch and bound aided one

φ

φ

1

2

l

m2

1
m1

l2

weighting training MSE test MSE model size BB cost
β Conv. BB Conv. BB Conv. BB reduction

10−11 0.000127 0.000176 0.000316 0.000515 31 29 23.02%

10−12 0.000081 0.000088 0.000196 0.000174 33 35 20.0%

10−13 0.000062 0.000078 0.000163 0.000262 42 38 35.1%

10−14 0.000046 0.000061 0.000176 0.000162 48 39 42.8%
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Elastic-Net OLS

Elastic net orthogonal forward regression criterion

JEN(g, λ1, λ2) = εT ε + λ1‖g‖2 + λ2‖g‖1

Maintain sparsity of LASSO, 1-norm regularisation drives
many weights to exactly zero
Not as aggressive as LASSO in excluding correlated terms,
owing to 2-norm regularisation

Efficient two level learning

At upper level, PSO optimises λ1 and λ2 based on LOO
MSE values from lower level
At lower level, given multiple λ1 and λ2 from upper level,
perform multiple orthogonal forward selections

X. Hong and S. Chen, “Automatic kernel regression modeling using elastic net
orthogonal forward regression assisted by particle swarm optimization,”
submitted to IEEE Trans. Neural Networks
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Engine Data Set

Exactly 26 non-zero erro-reduction-ratio (err) terms are selected

Training MSE: 0.000447, testing MSE: 0.000470
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Tunable “Kernel” Modelling

Tunable “kernel”

pi (k) = ϕ
(

(x(k)− ci )
T Σ−1

i (x(k)− ci )
)

Centre ci and covariance matrix Σi are not fixed but
parameters to be learnt

Kernels are optimised by PSO based on LOO criterion one by
one in efficient orthogonal forward regression

A unified approach for regression, classification and density
estimation

Offer advantages of smaller model size, better generalisation,
and less computational complexity in learning, in comparison
with “fixed” kernel approach

S. Chen, X. Hong and C.J. Harris, “Particle swarm optimization aided orthogonal
forward regression for unified data modelling,” IEEE Trans. Evolutionary
Computation, vol.14, no.4, pp.477–499, 2010
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Imbalanced Classification

Highly imbalanced two-class classification problems are widely
found in practice

Construct a Parzen window density estimate based on the
positive class training data

Over-sample the positive class by drawing synthetic samples
according to the estimated density

Apply the PSO aided tunable RBF classifier to the re-balanced
data

M. Gao, X. Hong, S. Chen and C.J Harris, “PDFOS: PDF
estimation based over-sampling for imbalanced two class
problems,” submitted to IEEE Trans. Neural Networks
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Conclusions

The celebrated OLS algorithm has evolved into state-of-
the-arts for parsimonious modelling from large data

Previous enhancements discussed include

Local regularisation, optimal experimental design, and
leave-one-out cross validation
Incorporating prior knowledge naturally for efficient
grey-box modelling
Implementing branch and bound for further computational
efficiency enhancement

Some very recent extensions have been briefly discussed

Maintain simplicity and efficiency of original algorithm,
which are so appealing to data modelling practitioners
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