Pareto RWBS Algorithm

Numerical Results

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Pareto Repeated Weighted Boosting Search for Multiple-Objective Optimisation

Scott F. Page, Sheng Chen, Chris J. Harris and Neil M. White

Electronics and Computer Science Faculty of Physical and Applied Science University of Southampton Southampton SO17 1BJ, UK E-mail: sqc@ecs.soton.ac.uk

11th UK Workshop on Computational Intelligence University of Manchester, Sept. 7-9, 2011

S.F. Page is now with Waterfall Solutions Ltd, Guildford, Surrey GU2 9JX The Authors acknowledge the support of Phase 1 of the UK MOD DIF DTC under Project 8.1 *Active Sensor Management*.

Numerical Results

Conclusions

Outline

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Numerical Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS
- 3 Numerical Results
 - Convex Pareto-Frontier
 - Non-convex Pareto-Frontier
 - Multi-Modal Pareto-Frontier
 - Discontinuous Pareto-frontier

4 Conclusions

Pareto RWBS Algorithm

Numerical Results

Conclusions

Global Optimisation

- Attaining global or near global optimal solutions at affordable computational costs are critical in engineering applications
- We have successful record in applications of computational intelligence methods, such as

adaptive simulated annealing, genetic algorithms, ant colony / particle swarm optimisation, differential evolution algorithm

- Key metrics in assessing a method
 - Capability: high successful rate to attain global solutions in challenging problems
 - Complexity: fast convergence speed and reasonably low computational costs
 - Simplicity: few algorithmic parameters need tuning and easy of programming

RWBS Algorithm

- Repeated weighted boosting search is a guided stochastic search or meta-heuristic algorithm
 - Ease of implementation/programming
 - very few number of tuning parameters, and
 - capable of achieving levels of performance comparable with standard benchmark techniques, such as GA and ASA
- Successfully apply to various image and signal processing problems as well as wireless communication designs, e.g.
 - Tunable radial basis function data modelling
 - Blind joint channel estimation and data detection
 - Joint timing and channel estimation
- Original RWBS algorithm is for **single-objective** optimisation

S. Chen, X. X. Wang and C. J. Harris, "Experiments with repeating weighted boosting search for optimization in signal processing applications," *IEEE Trans. Systems, Man and Cybernetics, Part B*, vol. 35, no. 4, 682–693, 2005.

Numerical Results

Conclusions

Outline

- Motivations
- Our Contributions
- 2 Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Numerical Results

Conclusions

(ロ) (同) (三) (三) (三) (○) (○)

Contributions of This Work

- Extend RWBS algorithm to multiple-objective optimisation
 - More specifically, arm the RWBS with a **Pareto-ranking** scheme combined with a **sharing** process
 - Similar to state-of-the-art multiple-objective GA, known as non-dominated sorting genetic algorithm (NSGA-II)
 - Resulting algorithm is therefore referred to as **Pareto** repeated weighted boosting search
- Performance of Pareto RWBS algorithm was assessed using some well-known benchmark problems
 - It offers promising level of performance in solving these multiple-objective optimisation problems,
 - while retaining the attractive properties of the original RWBS

Pareto RWBS Algorithm

Numerical Results

Conclusions

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Intro	odu	cti	0	n
	200			

Numerical Results

Conclusions

Original RWBS

Consider optimisation problem

 $\min_{\mathbf{u}\in\mathbb{U}^n}J(\mathbf{u})$

 $\mathbf{u} = [u_1 \ u_2 \cdots u_n]^T$: decision variable vector, \mathbb{U}^n : feasible set of \mathbf{u} , and $J(\mathbf{u})$: cost function

- RWBS: population based guided stochastic search
 - Stochastic search component, outer loop "generations"
 - Random population initialisation with elitism
 - Local search component, inner loop "weighted boosting search"
 - Convex combination and reflection, with adaptive weighting that **boosts** weak local optimiser
- Algorithmic parameters: population size *P*_s, generations *N*_g, WBS iterations *N*_B

Introduction 00000	Pareto RWBS Algorithm	Numerical Results	Conclusions
A.1			

Algorithm

- Outer loop: generations for $g = 1 : N_g$
 - Random generation initialisation $\mathbf{u}_i^{(g)}$, $2 \le i \le P_s$, with elitism $\mathbf{u}_1^{(g)} = \mathbf{u}_{\text{best}}^{(g-1)}$
 - Equal initial weightings $\delta_i(0)$ and cost evaluations $J_i = J(\mathbf{u}_i^{(g)}), 1 \le i \le P_s$
 - Inner loop: weighted boosting search $t = 1 : N_{\rm B}$
 - Boosting
 - 1) Best and worst members: $\mathbf{u}_{\text{best}}^{(g)}$ and $\mathbf{u}_{\text{worst}}^{(g)}$, according to costs $\{J_i\}$

- 2) Adapt weightings $\delta_i(t)$, $1 \le i \le P_s$, according to costs $\{J_i\}$
- 2 Updating

1) Convex combination $\mathbf{u}_{P_s+1} = \sum_{i=1}^{P_s} \delta_i(t) \mathbf{u}_i^{(g)}$

- 2) Reflection $\mathbf{u}_{P_s+2} = \mathbf{u}_{\text{best}}^{(g)} + (\mathbf{u}_{\text{best}}^{(g)} \mathbf{u}_{P_s+1})$
- 3) Best of $\mathbf{u}_{P_s+1}, \mathbf{u}_{P_s+2}$ replaces $\mathbf{u}_{\text{worst}}^{(g)}$ in population

- End of Inner loop: gth generation solution $\mathbf{u}_{\text{best}}^{(g)}$

• End of Outer loop: solution **u**^(Ng)_{best}

Pareto RWBS Algorithm

Numerical Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Pareto RWBS Algorithm

Numerical Results

Conclusions

Multiple-Objective Optimisation

Consider optimisation problem

$$\min_{\mathbf{u}\in\mathbb{U}^n}f\big(J_1(\mathbf{u}),J_2(\mathbf{u}),\cdots,J_N(\mathbf{u})\big)$$

 $J_i(\mathbf{u})$: *i*th objective function, *N*: number of objective functions, and *f*: objective preference function

- True multiple-objective optimisation: no objective preference structure is available
- Set of optimal solutions is characterised by Pareto-frontier, and two key aspects of designing efficient Pareto optimisation
 - Mechanism drives solutions toward Pareto frontier, Pareto ranking: promote non-dominated solutions
 - Mechanism ensures distribution of solutions across Pareto frontier, sharing: encourage spread of solutions

Intro	bdu	cti	10	

Numerical Results

Conclusions

Pareto RWBS

- Elitism count: to aid identifying suitable set of Pareto-optimal solutions, P_e population members are kept between generations
- **Pareto-ranking**: fast-non-dominated-sort procedure of (Deb *et al.*, 2002) is used to calculated Pareto-ranking

 $\{R_i\}_{i=1}^{P_s} = FastNonDominatedSort \{J_{i,o}, 1 \le i \le P_s, 1 \le o \le N\}$

where
$$J_{i,o} = J_o(\mathbf{u}_i^{(g)}), 1 \le o \le N$$

 Cost mapping: given scaling parameter P_r and mean distance of u^(g)_i to other points

$$D_i = \frac{1}{P_s} \sum_{j \neq i} \|\mathbf{u}_i^{(g)} - \mathbf{u}_j^{(g)}\|, 1 \le i \le P_s,$$

distance and ranking adjusted costs

$$\hat{J}_i = rac{P_{\mathrm{r}}R_i}{D_i}, \ 1 \leq i \leq P_{\mathrm{s}}$$

・ロト・西ト・市・ 市・ うらう

ntroduction	Pareto RWBS Algorithm ○○○○○○●○	Numerical Results	Conclusions
A 1 101			

Algorithm

- Outer loop: generations for $g = 1 : N_g$
 - Pareto generation initialisation: $\mathbf{u}_i^{(g)} = \mathbf{u}_{\text{best},i}^{(g-1)}$, $1 \le i \le P_e$, and randomly generate rest of population $\mathbf{u}_i^{(g)}$, $P_e + 1 \le i \le P_s$
 - Equal initial weightings $\delta_i(0)$ and cost evaluations

$$J_{i,o} = J_o(\mathbf{u}_i^{(g)}), 1 \le i \le P_{\mathrm{s}}, 1 \le o \le N$$

- Inner loop: weighted boosting search $t = 1 : N_B$
 - Pareto Boosting
 - Pareto Updating
- End of Inner loop: choose P_e best solutions $\{\mathbf{u}_{best,i}^{(g)}\}_{i=1}^{P_e}$ For $i = 1 : P_e$
 - i) Perform Pareto Ranking, Distance Measure and Cost Mapping $\{\mathbf{u}_{j}^{(g)}, J_{j,o}, 1 \le o \le N\}_{j=1}^{P_{s}-(i-1)} \rightarrow \{\hat{J}_{j}\}_{j=1}^{P_{s}-(i-1)}$ ii) Find $j_{\text{best}} = \arg\min_{1 \le i \le P_{s}-(i-1)} \hat{J}_{j}$, set $\mathbf{u}_{\text{best},i}^{(g)} = \mathbf{u}_{j_{\text{best}}}^{(g)}$, and remove $\mathbf{u}_{j_{\text{best}}}^{(g)}$

• End of Outer loop: solution set $\{\mathbf{u}_i^{(N_g)}\}_{i=1}^{P_s}$

Introduction 00000	Pareto RWBS Algorithm	Numerical Results	Conclusions
Inner Loop			

Pareto Boosting

1) Perform Pareto Ranking, Distance Measure and Cost Mapping

$$\{\mathbf{u}_{i}^{(g)}, J_{i,o}, 1 \le o \le N\}_{i=1}^{P_{s}} \to \{\hat{J}_{i}\}_{i=1}^{P_{s}}$$

d $h_{i+1} = \arg \min \hat{J}_{i}$ and denote $\mathbf{u}_{i}^{(g)} = \mathbf{u}_{i}^{(g)}$

Find $i_{\text{best}} = \arg \min_{1 \le i \le P_s} J_i$ and denote $\mathbf{u}_{\text{best}}^{(s)} = \mathbf{u}_{i_{\text{best}}}^{(s)}$

2) Adapt weightings $\delta_i(t)$, $1 \le i \le P_s$, according to costs $\{\hat{J}_i\}$

Pareto Updating

1) Convex combination $\mathbf{u}_{P_{s}+1} = \sum_{i=1}^{P_{s}} \delta_{i}(t) \mathbf{u}_{i}^{(g)}$

2) Reflection $\mathbf{u}_{P_s+2} = \mathbf{u}_{\text{best}}^{(g)} + (\mathbf{u}_{\text{best}}^{(g)} - \mathbf{u}_{P_s+1})$

3) Compute $J_{i,o}(\mathbf{u}_i)$, $1 \le o \le N$ and $i = P_s + 1$, $P_s + 2$

- 4) Removes two worst points to keep population size P_s : For i = 1 : 2
 - i) Perform **Pareto Ranking, Distance Measure and Cost Mapping** $\{\mathbf{u}_{j}^{(g)}, J_{j,o}, 1 \le o \le N\}_{j=1}^{P_{s}+2-(i-1)} \rightarrow \{\hat{J}_{j}\}_{j=1}^{P_{s}+2-(i-1)}$ ii) Find $j_{worst} = \arg \max_{1 \le j \le P_{s}+2-(i-1)} \hat{J}_{j}$, and remove $\mathbf{u}_{j_{worst}}^{(g)}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Numerical Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Pareto RWBS Algorithm

Numerical Results

Conclusions

SCH Function

• One-dimensional, exhibits convex Pareto-frontier

$$J_1(u) = u^2$$

 $J_2(u) = (u-2)^2$

 $u\in [-1,\ 1]$

- Red dot: feasible solutions visualising Pareto-frontier
- Blue smaller asterisk: NSGA-II
- Black larger asterisk: Pareto-RWBS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Numerical Results

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

4) Conclusions

Pareto RWBS Algorithm

Numerical Results

Conclusions

KUR Function

 Two-dimensional, exhibits non-convex Pareto-frontier

$$J_1 = -10e^{-0.2\sqrt{u_1^2 + u_2^2}}$$

$$J_2 = \sum_{i=1}^2 (|u_i|^{0.8} + 5\sin(u_i^3))$$

$$u_i \in [-5, 5], i = 1, 2$$

- Overlaid contours: objective functions
- Blue smaller asterisk: NSGA-II
- Red larger asterisk: Pareto-RWBS

・ロット (雪) ・ (日) ・ (日)

ъ

Pareto RWBS Algorithm

Numerical Results

Conclusions

KUR Function (continue)

(a) Full objective space, and (b) close-up objective space

- Red dot: feasible solutions visualising Pareto-frontier
- Blue smaller asterisk: NSGA-II
- Black larger asterisk: Pareto-RWBS

Numerical Results

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Pareto RWBS Algorithm

Numerical Results

Conclusions

Multi-Modal Function

• Two-dimensional, difficult multi-modal Pareto-frontier

$$J_{1}(\mathbf{u}) = u_{1}$$

$$g(u_{2}) = 2.0 - e^{-\left(\frac{u_{2}-0.2}{0.004}\right)^{2}}$$

$$-0.8e^{-\left(\frac{u_{2}-0.6}{0.4}\right)^{2}}$$

$$J_{2}(\mathbf{u}) = \frac{g(u_{2})}{u_{1}}$$

 $\textit{u}_1 \in [0.1, \ 1], \ \textit{u}_2 \in [0, \ 1]$

- Red dot: feasible solutions visualising Pareto-frontier
- Asterisk: blue smaller for NSGA-II; black larger for Pareto-RWBS

Numerical Results

Conclusions

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Pareto RWBS Algorithm

Numerical Results

Conclusions

Discontinuous Function

• Two-dimensional, challenging discontinuous Pareto-frontier

$$\begin{aligned} J_1(\mathbf{u}) &= u_1 \\ g(u_2) &= 1 + 10u_2 \\ J_2(\mathbf{u}) &= g(u_2) \left(1 - \left(\frac{J_1(\mathbf{u})}{g(u_2)} \right)^{\alpha} \\ &- \frac{J_1(\mathbf{u})}{g(u_2)} \sin \left(2\pi q J_1(\mathbf{u}) \right) \right) \end{aligned}$$

$$\alpha = 2, \, q = 4, \, u_1, u_2 \in [0, \, 1]$$

- Red dot: feasible solutions visualising Pareto-frontier
- Blue smaller asterisk: NSGA-II;
- Black larger asterisk: Pareto-RWBS

Numerical Results

Conclusions

Discontinuous Function (continue)

- Overlaid contours: objective functions
- Blue smaller asterisk: NSGA-II
- Red larger asterisk: Pareto-RWBS

Numerical Results

Outline

Introduction

- Motivations
- Our Contributions
- Pareto RWBS Algorithm
 - Single-Objective RWBS
 - Multiple-Objective RWBS

3 Numerical Results

- Convex Pareto-Frontier
- Non-convex Pareto-Frontier
- Multi-Modal Pareto-Frontier
- Discontinuous Pareto-frontier

Conclusions

Numerical Results

Conclusions

Summary

- Pareto RWBS algorithm for multiple-objective optimisation
 - Provide Pareto-ranking scheme and sharing process to RWBS originally for single-objective optimisation
- Pareto RWBS performs on par with NSGA-II algorithm
 - while retaining attractive properties: simplicity, ease of implementation and small number of tuning parameters
- Scopes to further improve Pareto RWBS:
 - improve distribution of its solutions along Pareto-frontier
 - improve accuracy of solutions in terms of their distances to Pareto-frontier

Further Work

- This Pareto RWBS generates single convex combination of all candidates
- Future work will investigate selective combining
 - develop a selection operator to select which members are used in a set of convex combinations
 - thus create a number of new individuals at each inner iteration
 - This is similar to the way a GA proceeds
- We hypothesise this approach will improve performance
 - in terms of solutions' distribution along Pareto-frontier and solutions' accuracy to Pareto-frontier