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Global Optimisation

Attaining global or near global optimal solutions at affordable
computational costs are critical in engineering applications

We have successful record in applications of computational
intelligence methods, such as
adaptive simulated annealing, genetic algorithms, ant colony /
particle swarm optimisation, differential evolution algorithm

Key metrics in assessing a method

Capability: high successful rate to attain global solutions in
challenging problems
Complexity: fast convergence speed and reasonably low
computational costs
Simplicity: few algorithmic parameters need tuning and
easy of programming
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RWBS Algorithm

Repeated weighted boosting search is a guided stochastic
search or meta-heuristic algorithm

Ease of implementation/programming
very few number of tuning parameters, and
capable of achieving levels of performance comparable with
standard benchmark techniques, such as GA and ASA

Successfully apply to various image and signal processing
problems as well as wireless communication designs, e.g.

Tunable radial basis function data modelling
Blind joint channel estimation and data detection
Joint timing and channel estimation

Original RWBS algorithm is for single-objective optimisation

S. Chen, X. X. Wang and C. J. Harris, “Experiments with repeating weighted boosting search for optimization in

signal processing applications,” IEEE Trans. Systems, Man and Cybernetics, Part B, vol. 35, no. 4, 682–693, 2005.
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Contributions of This Work

Extend RWBS algorithm to multiple-objective optimisation

More specifically, arm the RWBS with a Pareto-ranking
scheme combined with a sharing process
Similar to state-of-the-art multiple-objective GA, known as
non-dominated sorting genetic algorithm (NSGA-II)
Resulting algorithm is therefore referred to as Pareto
repeated weighted boosting search

Performance of Pareto RWBS algorithm was assessed using
some well-known benchmark problems

It offers promising level of performance in solving these
multiple-objective optimisation problems,
while retaining the attractive properties of the original
RWBS
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Original RWBS

Consider optimisation problem

min
u∈Un

J(u)

u = [u1 u2 · · · un]
T: decision variable vector, Un: feasible set of u,

and J(u): cost function

RWBS: population based guided stochastic search
1 Stochastic search component, outer loop – “generations”

Random population initialisation with elitism
2 Local search component, inner loop – “weighted boosting

search”
Convex combination and reflection, with adaptive weighting
that boosts weak local optimiser

Algorithmic parameters: population size Ps, generations Ng,
WBS iterations NB
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Algorithm

Outer loop: generations for g = 1 : Ng

– Random generation initialisation u(g)
i , 2 ≤ i ≤ Ps, with elitism u(g)

1 = u(g−1)
best

– Equal initial weightings δi (0) and cost evaluations Ji = J(u(g)
i ), 1 ≤ i ≤ Ps

– Inner loop: weighted boosting search t = 1 : NB

1 Boosting

1) Best and worst members: u(g)
best and u(g)

worst, according to costs {Ji}

2) Adapt weightings δi (t), 1 ≤ i ≤ Ps, according to costs {Ji}

2 Updating

1) Convex combination uPs+1 =
PsP

i=1
δi (t)u

(g)
i

2) Reflection uPs+2 = u(g)
best +

`
u(g)

best − uPs+1)

3) Best of uPs+1,uPs+2 replaces u(g)
worst in population

– End of Inner loop: gth generation solution u(g)
best

End of Outer loop: solution u(Ng)

best
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Multiple-Objective Optimisation

Consider optimisation problem

min
u∈Un

f
(
J1(u), J2(u), · · · , JN(u)

)
Ji(u): i th objective function, N: number of objective functions,
and f : objective preference function

True multiple-objective optimisation: no objective preference
structure is available

Set of optimal solutions is characterised by Pareto-frontier,
and two key aspects of designing efficient Pareto optimisation

1 Mechanism drives solutions toward Pareto frontier, Pareto
ranking: promote non-dominated solutions

2 Mechanism ensures distribution of solutions across Pareto
frontier, sharing: encourage spread of solutions
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Pareto RWBS

Elitism count: to aid identifying suitable set of Pareto-optimal
solutions, Pe population members are kept between generations

Pareto-ranking: fast-non-dominated-sort procedure of (Deb et
al., 2002) is used to calculated Pareto-ranking

{Ri}Ps
i=1 = FastNonDominatedSort

{
Ji,o, 1 ≤ i ≤ Ps, 1 ≤ o ≤ N

}
where Ji,o = Jo

(
u(g)

i

)
, 1 ≤ o ≤ N

Cost mapping: given scaling parameter Pr and mean distance
of u(g)

i to other points

Di =
1
Ps

∑
j 6=i

‖u(g)
i − u(g)

j ‖, 1 ≤ i ≤ Ps,

distance and ranking adjusted costs

Ĵi =
PrRi

Di
, 1 ≤ i ≤ Ps
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Algorithm

Outer loop: generations for g = 1 : Ng

– Pareto generation initialisation: u(g)
i = u(g−1)

best,i , 1 ≤ i ≤ Pe, and randomly

generate rest of population u(g)
i , Pe + 1 ≤ i ≤ Ps

– Equal initial weightings δi (0) and cost evaluations

Ji,o = Jo
`
u(g)

i

´
, 1 ≤ i ≤ Ps, 1 ≤ o ≤ N

– Inner loop: weighted boosting search t = 1 : NB

1 Pareto Boosting
2 Pareto Updating

– End of Inner loop: choose Pe best solutions {u(g)
best,i}

Pe
i=1

For i = 1 : Pe

i) Perform Pareto Ranking, Distance Measure and Cost Mapping˘
u(g)

j , Jj,o, 1 ≤ o ≤ N
¯Ps−(i−1)

j=1 →
˘

Ĵj
¯Ps−(i−1)

j=1

ii) Find jbest = arg min
1≤j≤Ps−(i−1)

Ĵj , set u(g)
best,i = u(g)

jbest
, and remove u(g)

jbest

End of Outer loop: solution set {u(Ng)

i }Ps
i=1
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Inner Loop

1 Pareto Boosting
1) Perform Pareto Ranking, Distance Measure and Cost Mapping˘

u(g)
i , Ji,o, 1 ≤ o ≤ N

¯Ps
i=1 →

˘
Ĵi
¯Ps

i=1

Find ibest = arg min
1≤i≤Ps

Ĵi and denote u(g)
best = u(g)

ibest

2) Adapt weightings δi (t), 1 ≤ i ≤ Ps, according to costs {Ĵi}

2 Pareto Updating

1) Convex combination uPs+1 =
PsP

i=1
δi (t)u

(g)
i

2) Reflection uPs+2 = u(g)
best +

`
u(g)

best − uPs+1)

3) Compute Ji,o(ui ), 1 ≤ o ≤ N and i = Ps + 1,Ps + 2

4) Removes two worst points to keep population size Ps: For i = 1 : 2
i) Perform Pareto Ranking, Distance Measure and Cost Mapping˘

u(g)
j , Jj,o, 1 ≤ o ≤ N

¯Ps+2−(i−1)

j=1 →
˘

Ĵj
¯Ps+2−(i−1)

j=1

ii) Find jworst = arg max
1≤j≤Ps+2−(i−1)

Ĵj , and remove u(g)
jworst
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SCH Function

One-dimensional, exhibits
convex Pareto-frontier

J1(u) = u2

J2(u) = (u − 2)2

u ∈ [−1, 1]

Red dot: feasible solutions
visualising Pareto-frontier

Blue smaller asterisk:
NSGA-II

Black larger asterisk:
Pareto-RWBS
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KUR Function

Two-dimensional, exhibits
non-convex Pareto-frontier

J1 = −10e−0.2
√

u2
1+u2

2

J2 =
2∑

i=1

(
|ui |0.8 + 5 sin(u3

i )
)

ui ∈ [−5, 5], i = 1, 2

Overlaid contours:
objective functions

Blue smaller asterisk:
NSGA-II

Red larger asterisk:
Pareto-RWBS Decision variable u
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KUR Function (continue)
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(a) (b)

(a) Full objective space, and (b) close-up objective space

Red dot: feasible solutions visualising Pareto-frontier

Blue smaller asterisk: NSGA-II

Black larger asterisk: Pareto-RWBS
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Multi-Modal Function

Two-dimensional, difficult
multi-modal Pareto-frontier

J1(u) = u1

g(u2) = 2.0− e
−
(

u2−0.2
0.004

)2

−0.8e
−
(

u2−0.6
0.4

)2

J2(u) = g(u2)
u1

u1 ∈ [0.1, 1], u2 ∈ [0, 1]

Red dot: feasible solutions
visualising Pareto-frontier
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Discontinuous Function

Two-dimensional, challenging
discontinuous Pareto-frontier

J1(u) = u1
g(u2) = 1 + 10u2

J2(u) = g(u2)
“

1−
“

J1(u)
g(u2)

”α
− J1(u)

g(u2)
sin
`
2πqJ1(u)

´”
α = 2, q = 4, u1, u2 ∈ [0, 1]

Red dot: feasible solutions
visualising Pareto-frontier

Blue smaller asterisk:
NSGA-II;

Black larger asterisk:
Pareto-RWBS
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Discontinuous Function (continue)

Overlaid contours:
objective functions

Blue smaller asterisk:
NSGA-II

Red larger asterisk:
Pareto-RWBS
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Summary

Pareto RWBS algorithm for multiple-objective optimisation

Provide Pareto-ranking scheme and sharing process to
RWBS originally for single-objective optimisation

Pareto RWBS performs on par with NSGA-II algorithm

while retaining attractive properties: simplicity, ease of
implementation and small number of tuning parameters

Scopes to further improve Pareto RWBS:

improve distribution of its solutions along Pareto-frontier

improve accuracy of solutions in terms of their distances to
Pareto-frontier
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Further Work

This Pareto RWBS generates single convex combination
of all candidates

Future work will investigate selective combining

develop a selection operator to select which members are
used in a set of convex combinations

thus create a number of new individuals at each inner
iteration

This is similar to the way a GA proceeds

We hypothesise this approach will improve performance

in terms of solutions’ distribution along Pareto-frontier and
solutions’ accuracy to Pareto-frontier
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