Proposed Sparse Kernel Density Estimator

Numerical Examples

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Sparse Kernel Density Estimation Technique Based on Zero-Norm Constraint

Xia Hong¹, Sheng Chen², Chris J. Harris²

¹School of Systems Engineering University of Reading, Reading RG6 6AY, UK E-mail: x.hong@reading.ac.uk

²School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, UK E-mails: {sqc,cjh}@ecs.soton.ac.uk

International Joint Conference on Neural Networks 2010

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions

Proposed Sparse Kernel Density Estimator

- Problem Formulation
- Approximate Zero-Norm Regularisation
- D-Optimality Based Subset Selection

3 Numerical Examples

- Experimental Set Up
- Experimental Results

Motivations ●○○○ Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Motivations

Existing Regularisation Approaches

Our Contributions

Proposed Sparse Kernel Density Estimator

- Problem Formulation
- Approximate Zero-Norm Regularisation
- D-Optimality Based Subset Selection

3 Numerical Examples

- Experimental Set Up
- Experimental Results

Proposed Sparse Kernel Density Estimator

Numerical Examples

Regularisation Methods

• Two-norm of weight vector

- Naturally combined with quadratic main cost function, and computationally efficient implementation
- Only drive many weights to small near-zero values
- One-norm of weight vector
 - Can drive many weights to zero, and hence should achieve sparser results than two-norm based method
 - Harder to minimise and higher complexity implementation
- Zero-norm of weight vector
 - Ultimate model sparsity and generalisation performance
 - Intractable in implementation, and even with approximation, very difficult to minimise and impose very high complexity

Two-norm and one-norm based regularisations have been combined with OLS algorithm, with the former approach providing highly efficient sparse kernel modelling

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions
- Proposed Sparse Kernel Density Estimator
 - Problem Formulation
 - Approximate Zero-Norm Regularisation
 - D-Optimality Based Subset Selection
- 3 Numerical Examples
 - Experimental Set Up
 - Experimental Results

Numerical Examples

Our Contributions

- We incorporate an effective **approximate zero-norm** regularisation into **sparse kernel density** estimation
 - Approximate zero-norm naturally merges into underlying constrained nonnegative quadratic programming
 - Various SVM algorithms can readily be applied to obtain SKD estimate efficiently
- Proposed sparse kernel density estimator:
 - use D-optimality OLS subset selection to select a small number of significant kernels, in terms of kernel eigenvalues
 - then solve final SKD estimate from associate subset constrained nonnegative quadratic programming

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions

Proposed Sparse Kernel Density Estimator

- Problem Formulation
- Approximate Zero-Norm Regularisation
- D-Optimality Based Subset Selection

3 Numerical Examples

- Experimental Set Up
- Experimental Results

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

Kernel Density Estimation

- Give finite data set $D_N = {\mathbf{x}_k}_{k=1}^N$, drawn from unknown density $p(\mathbf{x})$, where $\mathbf{x}_k \in \mathbb{R}^m$
- Infer p(x) based on D_N using kernel density estimate

$$\hat{p}(\mathbf{x}; \beta_N, \rho) = \sum_{k=1}^N \beta_k K_{\rho}(\mathbf{x}, \mathbf{x}_k)$$
s.t. $\beta_k \ge 0, \ 1 \le k \le N, \ \beta_N^T \mathbf{1}_N = 1$

- Here β_N = [β₁ β₂ · · · β_N]^T: kernel weight vector, 1_N: the vector of ones with dimension N, and K_ρ(●, ●): chosen kernel function with kernel width ρ
- Unsupervised density estimation ⇒ "supervised" regression
 - using Parzen window estimate as "desired response"

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

A D F A 同 F A E F A E F A Q A

Regression Formulation

For x_k ∈ D_N, denote ŷ_k = ρ̂(x_k; β_N, ρ), y_k as Parzen window estimate at x_k, and ε_k = y_k − ŷ_k ⇒ regression formulation

$$\mathbf{y}_{k} = \hat{\mathbf{y}}_{k} + \varepsilon_{k} = \boldsymbol{\phi}_{N}^{\mathsf{T}}(k)\boldsymbol{\beta}_{N} + \varepsilon_{k}$$

or over D_N

$$\mathbf{y} = \mathbf{\Phi}_N \boldsymbol{\beta}_N + \boldsymbol{\varepsilon}$$

Associated constrained nonnegative quadratic programming

$$\min_{\boldsymbol{\beta}_{N}} \left\{ \frac{1}{2} \boldsymbol{\beta}_{N}^{T} \mathbf{B}_{N} \boldsymbol{\beta}_{N} - \mathbf{v}_{N}^{T} \boldsymbol{\beta}_{N} \right\}$$
s.t. $\boldsymbol{\beta}_{N}^{T} \mathbf{1}_{N} = 1 \text{ and } \beta_{i} \geq 0, 1 \leq i \leq N$

where $\mathbf{B}_N = \mathbf{\Phi}_N^T \mathbf{\Phi}_N$ is the design matrix and $\mathbf{v}_N = \mathbf{\Phi}_N^T \mathbf{y}$

• This is **not** using kernel density estimate to fit Parzen window estimate !

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions

Proposed Sparse Kernel Density Estimator Problem Formulation

• Approximate Zero-Norm Regularisation

- D-Optimality Based Subset Selection
- 3 Numerical Examples
 - Experimental Set Up
 - Experimental Results

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

Zero-Norm Constraint

• Given $\alpha > 0$, an approximation to zero norm $\|\beta_N\|_0$ is

$$\|\boldsymbol{\beta}_N\|_0 \approx \sum_{i=1}^N \left(1 - e^{-\alpha|\beta_i|}\right)$$

Combining this zero-norm constraint with constrained NNQP

$$\min_{\boldsymbol{\beta}_{N}} \left\{ \frac{1}{2} \boldsymbol{\beta}_{N}^{T} \mathbf{B}_{N} \boldsymbol{\beta}_{N} - \mathbf{v}_{N}^{T} \boldsymbol{\beta}_{N} + \lambda \sum_{i=1}^{N} \left(1 - e^{-\alpha |\beta_{i}|} \right) \right\}$$

s.t. $\boldsymbol{\beta}_{N}^{T} \mathbf{1}_{N} = 1$ and $\beta_{i} \geq 0, 1 \leq i \leq N$

with $\lambda > 0$ a small "regularisation" parameter

With 2nd order Taylor series expansion for e^{-α|β_i|}

$$e^{-\alpha|\beta_i|} \approx 1 - \alpha|\beta_i| + rac{lpha^2 eta_i^2}{2} \Rightarrow$$

$$\sum_{i=1}^{N} \left(1 - e^{-\alpha |\beta_i|} \right) \approx \alpha \sum_{i=1}^{N} |\beta_i| - \frac{\alpha^2}{2} \sum_{i=1}^{N} \beta_i^2$$

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

Constrained NNQP

Hence, "new" constrained NNQP

$$\min_{\boldsymbol{\beta}_{N}} \left\{ \frac{1}{2} \boldsymbol{\beta}_{N}^{T} \mathbf{A}_{N} \boldsymbol{\beta}_{N} - \mathbf{v}_{N}^{T} \boldsymbol{\beta}_{N} \right\} \\ \text{s.t. } \boldsymbol{\beta}_{N}^{T} \mathbf{1}_{N} = 1 \text{ and } \beta_{i} \geq 0, 1 \leq i \leq N$$

 $\mathbf{A}_N = \mathbf{B}_N - \delta \mathbf{I}_N$ and $\delta = \lambda \alpha^2$ predetermined small parameter

- Remark: Under convexity constraint on β_N, minimisation of approximate zero norm ⇔ maximisation of two norm β^T_NI_Nβ_N
- Design matrix B_N should positive definite, and δ bounded by smallest eigenvalue of B_N so that A_N also positive definite
 - Common for **B**_N of large data set to be ill-conditioned
 - Approach most effective when it is applied following some model subset selection preprocessing

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions

Proposed Sparse Kernel Density Estimator

- Problem Formulation
- Approximate Zero-Norm Regularisation
- D-Optimality Based Subset Selection

3 Numerical Examples

- Experimental Set Up
- Experimental Results

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

(日) (日) (日) (日) (日) (日) (日)

D-Optimality Design

- Least squares estimate β̂_N = B⁻¹_NΦ^T_Ny is unbiased and covariance matrix of estimate Cov[β̂_N] ∝ B⁻¹_N
 - Estimation accurate depends on condition number

$$C = \frac{\max\{\sigma_i, 1 \le i \le N\}}{\min\{\sigma_i, 1 \le i \le N\}}$$

where σ_i , $1 \le i \le N$, are eigenvalues of **B**_N

- D-optimality design maximises determinant of design matrix
 - Selected subset model Φ_{Ns} maximises

$$\det\left(\boldsymbol{\Phi}_{N_{s}}^{T}\boldsymbol{\Phi}_{N_{s}}\right)=\det\left(\boldsymbol{\mathsf{B}}_{N_{s}}\right)$$

- Prevent oversized ill-posed model and high estimate variances
- "Unsupervised" *D*-optimality design particularly suitable for determining structure of kernel density estimate

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

(日) (日) (日) (日) (日) (日) (日)

OFR Aided Algorithm

- Orthogonal forward regression selects Φ_{Ns} of Ns significant kernels based on D-optimality criterion
 - Complexity of this **preprocessing** no more than $\mathcal{O}(N^2)$
- This preprocessing results in subset constrained NNQP

$$\begin{split} & \min_{\boldsymbol{\beta}_{N_s}} \left\{ \frac{1}{2} \boldsymbol{\beta}_{N_s}^{\mathsf{T}} \mathbf{A}_{N_s} \boldsymbol{\beta}_{N_s} - \mathbf{v}_{N_s}^{\mathsf{T}} \boldsymbol{\beta}_{N_s} \right\} \\ & \text{s.t. } \boldsymbol{\beta}_{N_s}^{\mathsf{T}} \mathbf{1}_{N_s} = 1 \text{ and } \beta_i \geq 0, 1 \leq i \leq N_s \end{split}$$

with $\mathbf{v}_{N_s} = \mathbf{\Phi}_{N_s}^T \mathbf{y}, \, \mathbf{A}_{N_s} = \mathbf{B}_{N_s} - \delta \mathbf{I}_{N_s}, \, \mathbf{B}_{N_s} = \mathbf{\Phi}_{N_s}^T \mathbf{\Phi}_{N_s}, \, \delta < \mathbf{w}_{N_s}^T \mathbf{w}_{N_s}$

• Various SVM algorithms can be used to solve this problem

- As N_s is very small and A_{Ns} is well-conditioned, we use simple multiplicative nonnegative quadratic programming algorithm
 - Complexity of which is negligible, in comparison with O(N²) of D-optimality based OFR preprocessing

Proposed Sparse Kernel Density Estimator

Numerical Examples

・ コット (雪) (小田) (コット 日)

Conclusions

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions

Proposed Sparse Kernel Density Estimator

- Problem Formulation
- Approximate Zero-Norm Regularisation
- D-Optimality Based Subset Selection

3 Numerical Examples

- Experimental Set Up
- Experimental Results

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Experimental Setup

 Training set had N randomly drawn samples, while test set of N_{test} = 10,000 samples for calculating L₁ test error

$$L_1 = \frac{1}{N_{\text{test}}} \sum_{k=1}^{N_{\text{test}}} |\boldsymbol{p}(\mathbf{x}_k) - \hat{\boldsymbol{p}}(\mathbf{x}_k; \boldsymbol{\beta}_N, \rho)|$$

between true density $p(\mathbf{x})$ and estimate $\hat{p}(\mathbf{x}_k; \beta_N, \rho)$

• Numerical approximation of Kullback-Leibler divergence (KLD)

$$D_{\mathrm{KL}}(
ho|\hat{
ho}) = \int_{\mathcal{R}^m}
ho(\mathbf{x}) \log rac{
ho(\mathbf{x})}{\hat{
ho}(\mathbf{x};eta_N,
ho)} \, d\mathbf{x}$$

also used for testing in 2-D case

 Proposed SKD estimator compared with PW estimator, our previous SKD estimator and reduced set density estimator (RSDE), as well as Gaussian mixture model (GMM) estimator

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Motivations

- Existing Regularisation Approaches
- Our Contributions

Proposed Sparse Kernel Density Estimator

- Problem Formulation
- Approximate Zero-Norm Regularisation
- D-Optimality Based Subset Selection

3 Numerical Examples

- Experimental Set Up
- Experimental Results

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

First 2-D Example

True density: mixture of Gaussian and Laplacian distributions

$$p(x_1, x_2) = \frac{1}{4\pi} e^{-\frac{(x_1-2)^2}{2}} e^{-\frac{(x_2-2)^2}{2}} + \frac{0.35}{8} e^{-0.7|x_1+2|} e^{-0.5|x_2+2|}$$

N = 500, and experiment repeated $N_{\rm run} = 100$ times

• Performance comparison, N = 500 and average over 100 runs

estimator	PW	previous SKD	RSDE	GMM	proposed SKD
kernel	$\rho^{\rm Par} = 0.42$	ho = 1.1	$\rho = 1.2$	tunable	ho = 1.1
$L_1 imes 10^3$	4.04 ± 0.69	$\textbf{3.84} \pm \textbf{0.78}$	4.05 ± 0.45	3.47 ± 0.99	3.56 ± 0.69
$KLC \times 10$	1.47 ± 0.23	1.40 ± 0.53	0.90 ± 0.41	0.61 ± 0.17	1.30 ± 0.31
kernel no.	500	15.3 ± 3.9	16.2 ± 3.4	11	11.0 ± 1.5
maximum	500	25	24	11	14
minimum	500	8	9	11	8

 Similar test performance to existing kernel density estimators, but sparser estimate

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

Second 2-D Example

True density: mixture of five Gaussian distributions

$$p(x,y) = \sum_{i=1}^{5} \frac{1}{10\pi} e^{-\frac{(x-\mu_{i,1})^2}{2}} e^{-\frac{(y-\mu_{i,2})^2}{2}}$$

Five means of Gaussian distributions: [0.0 - 4.0], [0.0 - 2.0], [0.0 0.0], [-2.0 0.0], and [-4.0 0.0]

• Performance comparison, N = 500 and average over 100 runs

estimator	PW	previous SKD	RSDE	GMM	proposed SKD
kernel	$ ho^{\mathrm{Par}} = 0.5$	ho = 1.1	$\rho = 1.2$	tunable	ho = 1.0
$L_1 \times 10^3$	$\textbf{3.62} \pm \textbf{0.44}$	3.61 ± 0.50	$\textbf{3.63} \pm \textbf{0.36}$	$\textbf{3.68} \pm \textbf{0.67}$	$\textbf{3.32}\pm\textbf{0.63}$
$KLC \times 10^{2}$	3.42 ± 0.55	3.67 ± 0.92	3.54 ± 0.49	$\textbf{3.39} \pm \textbf{0.87}$	$\textbf{2.90} \pm \textbf{1.09}$
kernel no.	500	13.2 ± 2.9	13.2 ± 3.0	8	$\textbf{7.8} \pm \textbf{1.3}$
maximum	500	22	21	8	11
minimum	500	8	6	8	5

 Similar test performance to existing kernel density estimators, but sparser estimate Motivations Proposed S

Proposed Sparse Kernel Density Estimator

Numerical Examples

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

6-D Example

True density: mixture of three Gaussian distributions

$$p(\mathbf{x}) = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{(2\pi)^{6/2}} \frac{1}{\det^{1/2} |\mathbf{\Gamma}_i|} e^{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Gamma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}$$

with

$$\boldsymbol{\mu}_1 = [1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0 \ 1.0]^T$$

$$\boldsymbol{\Gamma}_1 = \text{diag}\{1.0, 2.0, 1.0, 2.0, 1.0, 2.0\}$$

$$\mu_2 = [-1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0]^{T}$$

$$\Gamma_2 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\}$$

$$\boldsymbol{\mu}_3 = [0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0]^T$$

$$\boldsymbol{\Gamma}_3 = \text{diag}\{2.0, 1.0, 2.0, 1.0, 2.0, 1.0\}$$

 Estimation set had N = 600 samples, and experiment was repeated N_{run} = 100 times Proposed Sparse Kernel Density Estimator

Numerical Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

6-D Example Results

• Performance comparison, N = 600 and average over 100 runs

estimator	PW	previous SKD	RSDE	GMM	proposed SKD
kernel	$\rho^{\mathrm{Par}} = 0.65$	$\rho = 1.2$	$\rho = 1.2$	tunable	$\rho = 1.2$
$L_{1} \times 10^{5}$	3.52 ± 0.16	3.11 ± 0.53	$\textbf{2.74} \pm \textbf{0.50}$	1.74 ± 0.29	$\textbf{2.77} \pm \textbf{0.24}$
kernel no.	600	9.4 ± 1.9	14.2 ± 3.6	8	7.9 ± 1.3
maximum	600	16	25	8	12
minimum	600	7	8	8	5

Similar test performance to existing kernel density estimators, but sparser estimate

Proposed Sparse Kernel Density Estimator

Numerical Examples

Conclusions

(ロ) (同) (三) (三) (三) (三) (○) (○)

- We have integrated zero-norm regularisation naturally into construction of sparse kernel density estimator
 - Classical Parzen window estimate as "desired response"
 - Convexity constraint with zero-norm approximation turns problem into tractable nonnegative quadratic programming
 - *D*-optimality preprocessing selects small significant kernel subset to ensure well-conditioned solution
 - Complexity compares favourably with existing sparse kernel density estimators
- Zero-norm regularisation and D-optimality aided estimator offers an efficient means
 - for selecting very sparse kernel density estimates with excellent generalisation performance