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Regularisation Methods

@ Two-norm of weight vector

e Naturally combined with quadratic main cost function, and
computationally efficient implementation
e Only drive many weights to small near-zero values

@ One-norm of weight vector
e Can drive many weights to zero, and hence should achieve
sparser results than two-norm based method
e Harder to minimise and higher complexity implementation

° of weight vector
e Ultimate model sparsity and generalisation performance

e Intractable in implementation, and even with approximation,
very difficult to minimise and impose very high complexity

Two-norm and one-norm based regularisations have been combined with OLS
algorithm, with the former approach providing highly efficient sparse kernel modelling
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Our Contributions

@ We incorporate an effective approximate zero-norm
regularisation into estimation

e Approximate zero-norm naturally merges into underlying
constrained nonnegative quadratic programming

e Various SVM algorithms can readily be applied to obtain
SKD estimate efficiently

@ Proposed sparse kernel density estimator:

e use D-optimality OLS subset selection to select a small
number of significant kernels, in terms of kernel eigenvalues

o then solve final SKD estimate from associate subset
constrained nonnegative quadratic programming
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Kernel Density Estimation

@ Give finite data set Dy = {Xx}}_,, drawn from unknown density
p(x), where x, € R™

@ Infer p(x) based on Dy using kernel density estimate

N
PO Br.p) = Y Bk, (%, X)

k=1
st. Bk>0,1<k<N, Bi1y=1

@ Here By = [B1 B2--- Bn]": kernel weight vector, 1y: the vector of
ones with dimension N, and K,(e, ¢): chosen kernel function
with p

@ Unsupervised density estimation = “supervised” regression

@ using estimate as “desired response”
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Regression Formulation

@ For x, € Dy, denote jx = p(Xx; Bn, ), Yk as Parzen window
estimate at Xk, and ex = yx — Jx = formulation

Vi = P +ex = dR(K)Bn + ek

or over Dy
y=®\0y+e
@ Associated constrained nonnegative quadratic programming
min { 45KBwAy — VIO
N
st.BIy=1and3>0,1<i<N
where By = ¢,(,¢N is the design matrix and vy = d),(,y

@ This is not using kernel density estimate to fit Parzen window
estimate |
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Zero-Norm Constraint

@ Given « > 0, an approximation to zero norm ||Bllo is
N
1Bullo~ > (1 - ee12)
i=1
@ Combining this zero-norm constraint with constrained NNQP
N
rgin {;,B,CBN@V —VIBn+ A 21 (1- e—aﬁfl)}
N 1=
st.Byin=1and 3 >0,1<i<N
with A > 0 a small “regularisation” parameter

@ With 2nd order Taylor series expansion for e/l
212
a3

e~ Bl ~ 1 —alg| + 5

=

2

N
(1- e ) = a3~ 308
i=1 j

i=1

i=1
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Constrained NNQP

@ Hence, “new” constrained NNQP
; T
rg': {%ﬁNAN,@N - V/CIBN}
st.BlIn=1and 3 >0,1<i<N
Ay = By — dly and § = \o? predetermined small parameter

@ Remark: Under convexity constraint on 3,, minimisation of
approximate zero norm < of BrnBN

@ Design matrix By should positive definite, and § bounded by
smallest eigenvalue of By so that Ay also positive definite

e Common for By of large data set to be ill-conditioned

e Approach most when it is applied following some
model subset selection preprocessing
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D-Optimality Design

@ Least squares estimate 3y = B,(,‘cb,(,y is unbiased and
covariance matrix of estimate Cov|[3)] o By’

e Estimation accurate depends on condition humber
~ max{o;,1 <i <N}
~ min{o;,1 <i <N}

where o;, 1 < i < N, are eigenvalues of By
@ D-optimality design maximises determinant of design matrix
e Selected subset model ®,, maximises

det (tb,(,sfb/vs) = det (By,)

e Prevent oversized ill-posed model and high estimate
variances

@ ” D-optimality design particularly suitable for
determining structure of kernel density estimate
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OFR Aided Algorithm

@ Orthogonal forward regression selects &y, of N significant
kernels based on D-optimality criterion

e Complexity of this no more than O(N?)
@ This preprocessing results in subset constrained NNQP
min  38%,An, By, — V1,8,
,BNS {2 s s s s}
st. B In, =1and 3 >0,1<i<Ns
with vy, = @1y, Ay, = By, — dln,, By, = ®F ®p,, 5 < W] Wy,
e Various SVM algorithms can be used to solve this problem

@ As N; is very small and Ay, is well-conditioned, we use simple
multiplicative nonnegative quadratic programming algorithm
e Complexity of which is negligible, in comparison with O(N?)
of D-optimality based OFR preprocessing
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Experimental Setup

@ Training set had N randomly drawn samples, while test set of
Nest = 10,000 samples for calculating Ly test error

,Vlesl

L NtestZLD Xk) — P(Xk; By, p)|

between true density p(x) and estimate p(xx; By, p)

@ Numerical approximation of Kullback-Leibler (KLD)
N p(x)
Dy = log ————— dx
L(PIP) _p(x)log X Bu.p)

also used for testing in 2-D case

@ Proposed SKD estimator compared with PW estimator, our
previous SKD estimator and reduced set density estimator
(RSDE), as well as Gaussian mixture model ( ) estimator
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First 2-D Example

@ True density: mixture of Gaussian and Laplacian distributions

o2 o2
by 27 Lo 2P 0'35e—0.7|x1+2|e—045|X2+2|

1 =-2?
p(x1,xz):ﬂe 2 + 8

N =500, and experiment repeated N, = 100 times
@ Performance comparison, N = 500 and average over 100 runs

estimator PW previous SKD RSDE GMM proposed SKD

kernel PP =0.42 p=11 p=12 tunable p=11
Ly x10° 4.04 +0.69 3.84+£0.78 4.054+0.45 | 3.47+£0.99 3.56 £ 0.69
KLC x10 | 1.474+0.23 1.40 +0.53 0.90+0.41 | 0.61+0.17 1.30 +0.31

kernel no. 500 15.3+3.9 16.2+3.4 11 11.0+1.5
maximum 500 25 24 11 14
minimum 500 8 9 11 8

@ Similar test performance to existing kernel density estimators,
but estimate
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Second 2-D Example

@ True density: mixture of five Gaussian distributions

(X—pj1 )2 _ (.V—M,',z)z

5
1 eemg?
plx.y)=> 0.6 ° ¢ °
i=1

Five means of Gaussian distributions: [0.0 — 4.0], [0.0 — 2.0],
[0.0 0.0], [-2.0 0.0], and [—4.0 0.0]

@ Performance comparison, N = 500 and average over 100 runs

estimator PW previous SKD RSDE GMM proposed SKD
kernel pPr =05 p=1.1 p=12 tunable p=1.0
Ly x108 3.62+044 | 361+050 | 3.63+0.36 | 3.68+0.67 3.32+0.63
KLC x10% | 3.424+0.55 | 3.67+0.92 | 3.54+0.49 | 3.39+0.87 2.90 +1.09

kernel no. 500 13.2+2.9 13.24+3.0 8 78+1.3
maximum 500 22 21 8 11
minimum 500 8 6 8 5

@ Similar test performance to existing kernel density estimators,
but estimate
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6-D Example

@ True density: mixture of three Gaussian distributions

1 1 Tr—1
E(X—Ni) rx-p)
SZ 6/2 det1/2|r|

with
ny=[1.01.01.01.01.01.0]7
r, =diag{1.0,2.0,1.0,2.0,1.0,2.0}

po=[-10 —1.0 —=1.0 —1.0 —1.0 —1.0]"
r, = diag{2.0,1.0,2.0,1.0,2.0,1.0}

ps = [0.00.00.00.0 0.0 0.0]7
r; = diag{2.0,1.0,2.0,1.0,2.0, 1.0}

@ Estimation set had N = 600 samples, and experiment was
repeated N, = 100 times
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@ Performance comparison, N = 600 and average over 100 runs

estimator PW previous SKD RSDE GMM proposed SKD
kernel PP =0.65 p=12 p=12 tunable p=12

Ly x105 | 352+0.16 | 3.11+0.53 | 2.74+0.50 | 1.74+£0.29 277 +£0.24

kernel no. 600 9.4+19 142+ 3.6 8 79+13

maximum 600 16 25 8 12

minimum 600 7 8 8 5

@ Similar test performance to existing kernel density estimators,
estimate

but
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Conclusions

@ We have integrated zero-norm regularisation naturally into
construction of sparse kernel density estimator

o Classical Parzen window estimate as “desired response”

e Convexity constraint with zero-norm approximation turns
problem into tractable nonnegative quadratic programming

e D-optimality preprocessing selects small significant kernel
subset to ensure well-conditioned solution

e Complexity compares favourably with existing sparse kernel
density estimators

@ Zero-norm regularisation and D-optimality aided estimator
offers an efficient means

o for selecting very sparse kernel density estimates with
excellent generalisation performance
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