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Regularisation Methods

Two-norm of weight vector
Naturally combined with quadratic main cost function, and
computationally efficient implementation
Only drive many weights to small near-zero values

One-norm of weight vector
Can drive many weights to zero, and hence should achieve
sparser results than two-norm based method
Harder to minimise and higher complexity implementation

Zero-norm of weight vector
Ultimate model sparsity and generalisation performance
Intractable in implementation, and even with approximation,
very difficult to minimise and impose very high complexity

Two-norm and one-norm based regularisations have been combined with OLS

algorithm, with the former approach providing highly efficient sparse kernel modelling
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Our Contributions

We incorporate an effective approximate zero-norm
regularisation into sparse kernel density estimation

Approximate zero-norm naturally merges into underlying
constrained nonnegative quadratic programming

Various SVM algorithms can readily be applied to obtain
SKD estimate efficiently

Proposed sparse kernel density estimator:

use D-optimality OLS subset selection to select a small
number of significant kernels, in terms of kernel eigenvalues

then solve final SKD estimate from associate subset
constrained nonnegative quadratic programming
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Kernel Density Estimation

Give finite data set DN = {xk}N
k=1, drawn from unknown density

p(x), where xk ∈ Rm

Infer p(x) based on DN using kernel density estimate

p̂(x;βN , ρ) =
N∑

k=1

βk Kρ(x,xk )

s.t. βk ≥ 0, 1 ≤ k ≤ N, βT
N1N = 1

Here βN = [β1 β2 · · ·βN ]T : kernel weight vector, 1N : the vector of
ones with dimension N, and Kρ(•, •): chosen kernel function
with kernel width ρ

Unsupervised density estimation⇒ “supervised” regression

using Parzen window estimate as “desired response”
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Regression Formulation

For xk ∈ DN , denote ŷk = p̂(xk ;βN , ρ), yk as Parzen window
estimate at xk , and εk = yk − ŷk ⇒ regression formulation

yk = ŷk + εk = φT
N(k)βN + εk

or over DN
y = ΦNβN + ε

Associated constrained nonnegative quadratic programming

min
βN

{
1
2β

T
NBNβN − vT

NβN

}
s.t. βT

N1N = 1 and βi ≥ 0,1 ≤ i ≤ N

where BN = ΦT
NΦN is the design matrix and vN = ΦT

Ny

This is not using kernel density estimate to fit Parzen window
estimate !
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Zero-Norm Constraint

Given α > 0, an approximation to zero norm ‖βN‖0 is

‖βN‖0 ≈
N∑

i=1

(
1− e−α|βi |

)
Combining this zero-norm constraint with constrained NNQP

min
βN

{
1
2β

T
NBNβN − vT

NβN + λ
N∑

i=1

(
1− e−α|βi |

)}
s.t. βT

N1N = 1 and βi ≥ 0,1 ≤ i ≤ N

with λ > 0 a small “regularisation” parameter

With 2nd order Taylor series expansion for e−α|βi |

e−α|βi | ≈ 1− α|βi |+
α2β2

i
2

⇒

N∑
i=1

(
1− e−α|βi |

)
≈ α

N∑
i=1

|βi | −
α2

2

N∑
i=1

β2
i
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Constrained NNQP

Hence, “new” constrained NNQP

min
βN

{
1
2β

T
NANβN − vT

NβN

}
s.t. βT

N1N = 1 and βi ≥ 0,1 ≤ i ≤ N

AN = BN − δIN and δ = λα2 predetermined small parameter

Remark: Under convexity constraint on βN , minimisation of
approximate zero norm⇔ maximisation of two norm βT

N INβN

Design matrix BN should positive definite, and δ bounded by
smallest eigenvalue of BN so that AN also positive definite

Common for BN of large data set to be ill-conditioned
Approach most effective when it is applied following some
model subset selection preprocessing
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D-Optimality Design

Least squares estimate β̂N = B−1
N ΦT

Ny is unbiased and
covariance matrix of estimate Cov

[
β̂N
]
∝ B−1

N

Estimation accurate depends on condition number

C =
max{σi ,1 ≤ i ≤ N}
min{σi ,1 ≤ i ≤ N}

where σi , 1 ≤ i ≤ N, are eigenvalues of BN

D-optimality design maximises determinant of design matrix
Selected subset model ΦNs maximises

det
(
ΦT

Ns
ΦNs

)
= det

(
BNs

)
Prevent oversized ill-posed model and high estimate
variances

“Unsupervised” D-optimality design particularly suitable for
determining structure of kernel density estimate



Motivations Proposed Sparse Kernel Density Estimator Numerical Examples Conclusions

OFR Aided Algorithm

Orthogonal forward regression selects ΦNs of Ns significant
kernels based on D-optimality criterion

Complexity of this preprocessing no more than O(N2)

This preprocessing results in subset constrained NNQP

min
βNs

{
1
2β

T
Ns

ANsβNs
− vT

Ns
βNs

}
s.t. βT

Ns
1Ns = 1 and βi ≥ 0,1 ≤ i ≤ Ns

with vNs = ΦT
Ns

y, ANs = BNs − δINs , BNs = ΦT
Ns

ΦNs , δ < wT
Ns

wNs

Various SVM algorithms can be used to solve this problem

As Ns is very small and ANs is well-conditioned, we use simple
multiplicative nonnegative quadratic programming algorithm

Complexity of which is negligible, in comparison with O(N2)
of D-optimality based OFR preprocessing
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Experimental Setup

Training set had N randomly drawn samples, while test set of
Ntest = 10,000 samples for calculating L1 test error

L1 =
1

Ntest

Ntest∑
k=1

|p(xk )− p̂(xk ;βN , ρ)|

between true density p(x) and estimate p̂(xk ;βN , ρ)

Numerical approximation of Kullback-Leibler divergence (KLD)

DKL(p|p̂) =

∫
Rm

p(x) log
p(x)

p̂(x;βN , ρ)
dx

also used for testing in 2-D case

Proposed SKD estimator compared with PW estimator, our
previous SKD estimator and reduced set density estimator
(RSDE), as well as Gaussian mixture model (GMM) estimator
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First 2-D Example

True density: mixture of Gaussian and Laplacian distributions

p(x1, x2) =
1

4π
e−

(x1−2)2

2 e−
(x2−2)2

2 +
0.35

8
e−0.7|x1+2|e−0.5|x2+2|

N = 500, and experiment repeated Nrun = 100 times

Performance comparison, N = 500 and average over 100 runs

estimator PW previous SKD RSDE GMM proposed SKD
kernel ρPar = 0.42 ρ = 1.1 ρ = 1.2 tunable ρ = 1.1

L1 ×103 4.04± 0.69 3.84± 0.78 4.05± 0.45 3.47± 0.99 3.56± 0.69
KLC ×10 1.47± 0.23 1.40± 0.53 0.90± 0.41 0.61± 0.17 1.30± 0.31
kernel no. 500 15.3± 3.9 16.2± 3.4 11 11.0± 1.5
maximum 500 25 24 11 14
minimum 500 8 9 11 8

Similar test performance to existing kernel density estimators,
but sparser estimate
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Second 2-D Example

True density: mixture of five Gaussian distributions

p(x , y) =
5∑

i=1

1
10π

e−
(x−µi,1)2

2 e−
(y−µi,2)2

2

Five means of Gaussian distributions: [0.0 − 4.0], [0.0 − 2.0],
[0.0 0.0], [−2.0 0.0], and [−4.0 0.0]

Performance comparison, N = 500 and average over 100 runs

estimator PW previous SKD RSDE GMM proposed SKD
kernel ρPar = 0.5 ρ = 1.1 ρ = 1.2 tunable ρ = 1.0

L1 ×103 3.62± 0.44 3.61± 0.50 3.63± 0.36 3.68± 0.67 3.32± 0.63
KLC ×102 3.42± 0.55 3.67± 0.92 3.54± 0.49 3.39± 0.87 2.90± 1.09
kernel no. 500 13.2± 2.9 13.2± 3.0 8 7.8± 1.3
maximum 500 22 21 8 11
minimum 500 8 6 8 5

Similar test performance to existing kernel density estimators,
but sparser estimate
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6-D Example

True density: mixture of three Gaussian distributions

p(x) =
1
3

3∑
i=1

1

(2π)6/2

1

det1/2 |Γi |
e−

1
2 (x−µi )

TΓ−1
i (x−µi )

with
µ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T

Γ1 = diag{1.0,2.0,1.0,2.0,1.0,2.0}

µ2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T

Γ2 = diag{2.0,1.0,2.0,1.0,2.0,1.0}

µ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T

Γ3 = diag{2.0,1.0,2.0,1.0,2.0,1.0}

Estimation set had N = 600 samples, and experiment was
repeated Nrun = 100 times



Motivations Proposed Sparse Kernel Density Estimator Numerical Examples Conclusions

6-D Example Results

Performance comparison, N = 600 and average over 100 runs

estimator PW previous SKD RSDE GMM proposed SKD
kernel ρPar = 0.65 ρ = 1.2 ρ = 1.2 tunable ρ = 1.2

L1 ×105 3.52± 0.16 3.11± 0.53 2.74± 0.50 1.74± 0.29 2.77± 0.24
kernel no. 600 9.4± 1.9 14.2± 3.6 8 7.9± 1.3
maximum 600 16 25 8 12
minimum 600 7 8 8 5

Similar test performance to existing kernel density estimators,
but sparser estimate
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Conclusions

We have integrated zero-norm regularisation naturally into
construction of sparse kernel density estimator

Classical Parzen window estimate as “desired response”
Convexity constraint with zero-norm approximation turns
problem into tractable nonnegative quadratic programming
D-optimality preprocessing selects small significant kernel
subset to ensure well-conditioned solution
Complexity compares favourably with existing sparse kernel
density estimators

Zero-norm regularisation and D-optimality aided estimator
offers an efficient means

for selecting very sparse kernel density estimates with
excellent generalisation performance
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