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Outline

d Existing beamforming techniques, and motiva-

tions for nonlinear beamforming or detection

d Signal model and optimal Bayesian detection with an
inherent symmetry property for QPSK beamforming

d Symmetric radial basis function network for nonlinear

beamforming and adaptive algorithm

1 Simulation investigation, and performance comparison
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Motivations

Tx 2 d Classical beamforming is linear with a
beampattern interpretation of beam-

former’s weight vector:

O maximise response at desired user di-

rection and place nulls at interferers’
directions, must L > M

O similar to zero-forcing equalisation,
and suffers from noise enhancement
1 Standard linear beamforming is minimum

L—element

mean square error (L-MMSE):
array Rx

O better balances nullifying interferers and

enhancing noise
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Motivations (continue)

1 State-of-the-art for linear beamforming is minimum bit error rate
(L-MBER) technique, and in comparsion with L-MMSE it offers

O Better system BER performance, and larger user capacity

1 Beamforming can be viewed as classification, which classifies received

channel-impaired signal into most-likely transmitted symbol point
A In comparison with linear beamforming, nonlinear detection offers

O significantly better BER performance and much larger user capacity,

at cost of higher complexity

(1 With posterior or conditional probabilities as

interpretation

O This nonlinear detection can be viewed as nonlinear beamforming
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Signal Model

d M single-transmit-antenna users transmit on same carrier, receiver is

equipped with L-element antenna array, channels are non-dispersive

O Received signal vector x(k) = [z1(k) xo(k) -2 (k)]! is
x(k) = Pb(k) +n(k) = x(k) + n(k)
Q n(k) = [n1(k) na(k) - -np(k)]! is noise vector, and system matrix
P = [Ays1 Asso -+ Aprsyy]

d s; is of source 7, A; is +-th non-dispersive channel tap

1 User ¢ is desired user, and transmitted symbol vector b(k) =
(b1 (k) ba(k) -+ -bar (k)T with QPSK symbol set

b (k) € {0 = 4145, b2 = —145, 08 = —1—j, M = 41—}, 1 <m < M
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Signal Space

3 Denote N, = 4M legitimate sequences of b(k) as b,, 1 < q < N,

([ Noiseless channel state x(k) takes values from set
X(k)e X ={x,=Pb,,1<q< Ny}

which can be divided into conditioned on b;(k) = bl™

-~

X =zl e X1 <q< Ny bi(k) =0}, 1<m <4

1 Conditional probabilities of receiving x(k) given b;(k) = bl are

(k) -l 12

Nsb
plm™(x(k)) = Zﬁq@_ 203 . 1<m<4
qg=1

Ny, = Ny /4 = 4M~1 noise power is 202 and all priors 3, are equal

3 pl™(x(k)) can be interpreted as generalised beampatterns

ICC 2008 1; School of ECS, University of Southampton, UK


http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/

Optimal Bayesian Detector

1 Optimal detection strategy is

bi (k) = bl w; * [m]
bi(k) =10 with m arg max p (x(k))

(1 Define complex-valued Bayesian

YBay (k) -~ pll .p[l] (x(k))+ pl2] .p[Q] (x(k))+ pl3] .p[B] (x(k))+ pl4] .p[4] (x(k))

1 Optimal Bayesian detection is: b;(k) = sgn(ygay(k)), where

y

b[1]=+1+j, yr > 0 and y; > 0,

b2l = —1+4, yr<0andy; >0,
sen(y)=1{ |
b8l =—1—4, yr<0andy; <0,

b =4+1—4, yr>0andy; <O,
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Symmetry of Bayesian Solution

(1 Four state subsets satisty following symmetric properties
X =45 M xBl= 1. M pl = .yl

1 Thus Bayesian solution becomes, for igl] c Xl

St e —xg 2 k) ==l
YBay (k) = Z {bmﬁ e 207 4+ 5[2]5 e 202

g=1
(k) +=LH )2 (k) +5-=L )12
_i_b[g]/B . 6_ 20’% + b[4]/3 . 6_ 20.%
d If system P can be estimated, as in uplink, subset X’l!

can be calculated and Bayesian solution is specified

1 In downlink, receiver only has access to desired user’s training data,
estimating P is difficult, and other adaptive means has to be adopted
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Symmetric RBF Network

(1 Consider generic radial basis function network

Nc
yreF (k) = Z {Oégl]@(x(k); Cqs 02) + @([JQ]SO(X(k);qua 02)
qg=1
+allip(x(); e, 02) + allp(x(k); —jeg, 02) }
d N, is number of RBF units, ¢(e) is usual RBF function, c, RBF :
and o RBF variances

(1 This RBF network has the same symmetric property as the Bayesian
detector ypay (k)

d N, = Ng, all ozgm] = Bbl™l, all 62 = 62: Ny is usually known, 3 is any

positive number, and 62 an estimate of noise variance

(1 One only needs to determine all Cq
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Clustering

d Given {x(k),b;(k)}, enhanced k-means clustering:

ci(k) = ci(k = 1) + pe Mu(x(F)) (x(k) — ci(k — 1))

3 . is step size, (11 -x(k), bi(k) = b,
) —j-x(k), bi(k) =0,
—1 X(k)v b@(k) — b[ ]7
. 4
\ Y, 'X(k)a b@(k) — b[ ]7

M| membership function
1, if 71]lx — ¢;]|* < v4]lx — ¢ Q,V(]#l,

0, otherwise,
[ cluster variation
Bu(k) = patu(k — 1) + (1 — o) My(R(k)) % () — e2(k — 1))

tty, slightly less than 1.0, all 7;(0) set to same small number
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Simulation Example

1 2-element array with half wavelength spacing, three equal-power QPSK
users with angles of arrival — user 1: 15°, user 2: —60°, user 3: 45°

1 Bit error rate comparison of theoretical MBER beamforming

and nonlinear Bayesian beamforming
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Clustering RBF Beamforming

(1 User-one, SNR= 20 dB, average over 10runs

1 (a) convergence of clustering, Euclidean distance between RBF centres

and true channel states, and (b) to RBF variance
(b)
10° - - - -
User 1: Bayesian —e—
clustering RBF ===
3 1
C ) 10-
@ e
o g
2 5
c o X R | R N N N
S o 1074
S = :
5 @ -
o _
i 107 | . py
0 500 1000 1500 2000 10% 102 10t 10° 10 10® 10°
sample est. sigma2n / sigman2

ICC 2008 1; School of ECS, University of Southampton, UK 12


http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/

RBF Beamforming Performance

10° |

1 Bit error rate of clustering E User 1: clustering RBF &
RBF beamforming for user S Baye5|an
one, in comparison with op- ot |

timal beamform-
ing based on perfect channel

knowledge

Bit Error Rate

10 12 14 16 18 20 22 24
Average SNR (dB)
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Conclusions

d Nonlinear beamforming achieves significantly smaller
system bit error rate and larger user capacity

1 Optimal Bayesian beamforming solution for QPSK has

an inherent symmetry structure

d A novel symmetric radial basis function network has
been proposed for QPSK nonlinear beamforming

1 An adaptive algorithm for downlink senario: cluster-
variation enhanced clustering
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THANK YOU.
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