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Outline

o Existing linear beamforming techniques, and motiva-

tions for nonlinear beamforming or detection

o Signal model and optimal Bayesian detection with an

inherent symmetry property for QPSK beamforming

o Symmetric radial basis function network for nonlinear

beamforming and adaptive clustering algorithm

o Simulation investigation, and performance comparison

http://www-mobile.ecs.soton.ac.uk
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Motivations
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o Classical beamforming is linear with a
beampattern interpretation of beam-
former’s weight vector:

m maximise response at desired user di-
rection and place nulls at interferers’
directions, must L ≥ M

m similar to zero-forcing equalisation,
and suffers from noise enhancement

o Standard linear beamforming is minimum
mean square error (L-MMSE):

m better balances nullifying interferers and
enhancing noise

http://www-mobile.ecs.soton.ac.uk
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Motivations (continue)

o State-of-the-art for linear beamforming is minimum bit error rate
(L-MBER) technique, and in comparsion with L-MMSE it offers

m Better system BER performance, and larger user capacity

o Beamforming can be viewed as classification, which classifies received
channel-impaired signal into most-likely transmitted symbol point

o In comparison with linear beamforming, nonlinear detection offers

m significantly better BER performance and much larger user capacity,
at cost of higher complexity

o With posterior or conditional probabilities as generalised beam-
pattern interpretation

m This nonlinear detection can be viewed as nonlinear beamforming

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/
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Signal Model

o M single-transmit-antenna users transmit on same carrier, receiver is
equipped with L-element antenna array, channels are non-dispersive

o Received signal vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is

x(k) = Pb(k) + n(k) = x̄(k) + n(k)

o n(k) = [n1(k) n2(k) · · ·nL(k)]T is noise vector, and system matrix

P = [A1s1 A2s2 · · ·AMsM ]

o si is steering vector of source i, Ai is i-th non-dispersive channel tap

o User i is desired user, and transmitted symbol vector b(k) =
[b1(k) b2(k) · · · bM (k)]T with QPSK symbol set

bm(k) ∈ {b[1] = +1+j, b[2] = −1+j, b[3] = −1−j, b[4] = +1−j}, 1 ≤ m ≤ M

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/
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Signal Space

o Denote Nb = 4M legitimate sequences of b(k) as bq, 1 ≤ q ≤ Nb

o Noiseless channel state x̄(k) takes values from set

x̄(k) ∈ X = {x̄q = Pbq, 1 ≤ q ≤ Nb}

which can be divided into four subsets conditioned on bi(k) = b[m]

X [m] 4= {x̄[m]
q ∈ X , 1 ≤ q ≤ Nsb : bi(k) = b[m]}, 1 ≤ m ≤ 4

o Conditional probabilities of receiving x(k) given bi(k) = b[m] are

p[m](x(k)) =
Nsb∑
q=1

βqe
−
‖x(k)−x̄

[m]
q ‖2

2σ2
n , 1 ≤ m ≤ 4

Nsb = Nb/4 = 4M−1, noise power is 2σ2
n and all priors βq are equal

o p[m](x(k)) can be interpreted as generalised beampatterns

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/
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Optimal Bayesian Detector

o Optimal detection strategy is

b̂i(k) = b[m∗] with m∗ = arg max
1≤m≤4

p[m](x(k))

o Define complex-valued Bayesian decision variable

yBay(k)
4
= b[1] ·p[1](x(k))+b[2] ·p[2](x(k))+b[3] ·p[3](x(k))+b[4] ·p[4](x(k))

o Optimal Bayesian detection is: b̂i(k) = sgn(yBay(k)), where

sgn(y) =


b[1] = +1 + j, yR ≥ 0 and yI ≥ 0,

b[2] = −1 + j, yR < 0 and yI ≥ 0,

b[3] = −1− j, yR < 0 and yI < 0,

b[4] = +1− j, yR ≥ 0 and yI < 0,

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/
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Symmetry of Bayesian Solution

o Four state subsets satisfy following symmetric properties

X [2] = +j · X [1], X [3] = −1 · X [1], X [4] = −j · X [1]

o Thus Bayesian solution becomes, for x̄[1]
q ∈ X [1],

yBay(k) =
Nsb∑
q=1

{
b[1]β · e

−
‖x(k)−x̄

[1]
q ‖2

2σ2
n + b[2]β · e

−
‖x(k)−j·x̄[1]

q ‖2

2σ2
n

+b[3]β · e
−
‖x(k)+x̄

[1]
q ‖2

2σ2
n + b[4]β · e

−
‖x(k)+j·x̄[1]

q ‖2

2σ2
n

}
o If system channel matrix P can be estimated, as in uplink, subset X [1]

can be calculated and Bayesian solution is specified

o In downlink, receiver only has access to desired user’s training data,
estimating P is difficult, and other adaptive means has to be adopted

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/


9School of ECS, University of Southampton, UKICC 2008

Symmetric RBF Network

o Consider generic radial basis function network

yRBF(k) =
Nc∑
q=1

{
α[1]

q ϕ(x(k); cq, σ
2
q ) + α[2]

q ϕ(x(k); jcq, σ
2
q )

+α[3]
q ϕ(x(k);−cq, σ

2
q ) + α[4]

q ϕ(x(k);−jcq, σ
2
q )

}
o Nc is number of RBF units, ϕ(•) is usual RBF function, cq RBF centres,

and σ2
q RBF variances

o This RBF network has the same symmetric property as the Bayesian
detector yBay(k)

o Nc = Nsb, all α
[m]
q = βb[m], all σ2

q = σ̂2
n: Nsb is usually known, β is any

positive number, and σ̂2
n an estimate of noise variance

o One only needs to determine all centres cq

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/
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Clustering

o Given training data {x(k), bi(k)}, enhanced κ-means clustering:

cl(k) = cl(k − 1) + µcMl(x̌(k))(x̌(k)− cl(k − 1))

o µc is step size,

x̌(k) =


+1 · x(k), bi(k) = b[1],

−j · x(k), bi(k) = b[2],

−1 · x(k), bi(k) = b[3],

+j · x(k), bi(k) = b[4],

o membership function

Ml(x) =

{
1, if v̄l‖x− cl‖2 ≤ v̄q‖x− cq‖2, ∀q 6= l,

0, otherwise,

o cluster variation

v̄l(k) = µv v̄l(k − 1) + (1− µv)Ml(x̌(k))‖x̌(k)− cl(k − 1)‖2

µv slightly less than 1.0, all v̄l(0) set to same small number

http://www-mobile.ecs.soton.ac.uk
http://www.ieee-icc.org/2008/
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Simulation Example

o 2-element array with half wavelength spacing, three equal-power QPSK
users with angles of arrival → user 1: 15◦, user 2: −60◦, user 3: 45◦

o Bit error rate comparison of theoretical linear MBER beamforming
and nonlinear Bayesian beamforming
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Clustering RBF Beamforming

o User-one, SNR= 20 dB, average over 10runs

o (a) convergence of clustering, Euclidean distance between RBF centres
and true channel states, and (b) insensitivity to RBF variance

(a) (b)
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RBF Beamforming Performance

o Bit error rate of clustering
RBF beamforming for user
one, in comparison with op-
timal Bayesian beamform-
ing based on perfect channel
knowledge
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Conclusions

o Nonlinear beamforming achieves significantly smaller

system bit error rate and larger user capacity

o Optimal Bayesian beamforming solution for QPSK has

an inherent symmetry structure

o A novel symmetric radial basis function network has

been proposed for QPSK nonlinear beamforming

o An adaptive algorithm for downlink senario: cluster-

variation enhanced clustering

http://www-mobile.ecs.soton.ac.uk
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THANK YOU.
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