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Abstract

The paper proposes to combine a locally regularized orthalgeast squares (LROLS) model selection with a D-optitpali
experimental design for efficient and robust sparse kerael thodelling. The LROLS algorithm alone is capable of poiuly a
very parsimonious model with excellent generalizatiorfgrenance. The D-optimality design criterion further entesithe model
efficiency and robustness. An added advantage is that tle@nkeneeds to specify a weighting for the D-optimality csthe
combined model selecting criterion and the entire modestantion procedure becomes automatic. The value of thighting
does not influence the model selection procedure criticily it can be chosen with ease from a wide range of values.
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|. INTRODUCTION

A basic principle in practical data modelling is the parsimoas principle. The orthogonal least
squares (OLS) algorithm [1],[2] is an efficient learning gedure for constructing sparse regression
models. If data are highly noisy, the parsimonious prireegdbne may not be entirely immune to overfit-
ting, and small models constructed may still fit into noiseus&ful technique for overcoming overfitting
is regularization [3]-[5]. From the Bayesian viewpoint,egularization parameter is equivalent to the
ratio of the related hyperparameter to the noise parametkan effective Bayesian learning method is
the evidence procedure which iteratively optimizes modebmeters and associated hyperparameters
[6]. Adopting this Bayesian learning method to regressiadats, the LROLS algorithm [7]-[9] has
recently been proposed, which introduces individual ragegr for each weight. This LROLS algorithm
provides an efficient procedure for constructing sparseatsatiat generalize well.

Optimal experimental designs [10] have been used to cartsnuooth model response surfaces based
on the setting of the experimental variables under well ratled experimental conditions. In optimal
design, model adequacy is evaluated by design criteriaatfgastatistical measures of goodness of ex-
perimental designs by virtue of design efficiency and expenital effort. For kernel regression models,
guantitatively, model adequacy is measured as functiohegtgenvalues of the design matrix. There
are a variety of optimal design criteria based on differespegts of experimental design [10]. The D-
optimality criterion is most effective in optimizing the i@aneter efficiency and model robustness via the
maximization of the determinant of the design matrix. In eerg work [11],[12], an effective model
construction algorithm has been proposed based on the @dgitaim coupled with the D-optimality
design. This paper shows that further advantages can bedyhincombining the LROLS algorithm
with the D-optimality design

Il. THE KERNEL REGRESSION MODEL

Consider the general kernel regression model of the form:
y(k) = (k) +e(k) = > 0is (k) + e(k), 1<k <N, (1)
i=1

wherey(k) is the targete(k) is the error betweep(k) and the model outpuj(k), 6; are the model
weights,; (k) are the regressora,, is the total number of candidate regressors, Andhe number of
training samples. By lettingy; = [¢;(1) -+ - ¢;(N)]7, for 1 < i < nas, and defining
y(1) o1 e(1)
y = 3 §:[¢1"'¢nM], 0= , €= y (2)
y(N) O e(N)



the regression model (1) can be written in the matrix form
y=®0+e. 3)

Let an orthogonal decomposition of the matixbe

& = WA (4)
where

1 a1 - Q1,mn

. ", " . a/nM—17nM

0 0 1
and

W = [wy - - wyy,] (6)

with columns satisfyingv! w; = 0, if i # j. The model (3) can alternatively be expressed as
y=Wg+e @)

where the orthogonal weight vectgr= [g; - - - gn,,]” satisfy the triangular systeh = g.

Ill. THE LOCALLY REGULARIZED OLS ALGORITHM WITH D-OPTIMALITY DESIGN

The LROLS algorithm adopts the following error criterion:

nyr
Tr(g,A) =eTe+ > Aigi =ee+g"Ag (8)

i=1
whereX = [\ ---\,,,]7 is the regularization parameter vector, ahd= diag{\, - -, \,,, }. It can

readily be shown that the criterion (8) can be expressed as

efe+g"Ag=y"y - > (w]wi+X)g. 9)
i=1
Normalizing (9) byy 'y yields
(e"e+g™Ag) /yTy =12 (w/wi+X)gi/y"y. (10)
i=1

As in the case of the OLS algorithm [1], the regularized erealuction ratio due tev; is defined by
[rerd; = (wiwi+Xi) g /5"y (11)

At each stage, a term is selected based on the selectionarite = arg max{[rerf;,! < i < nu}, and
the selection process is terminated atitheh stage when

Ns

1= [rer, < ¢ (12)

=1

is satisfied, wherd < & < 1 is a chosen tolerance. This produces a sparse model comgjaipi
(<« nar) significant regressors. The Bayesian evidence procedlcafGeadily be used to optimize the
regularization parameters. Applying this evidence procedkads to the updating formulas:

old T

new i e e .
Aie :m?, ]_SZSTLM, (13)
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Fig. 1. Simple scalar function modelling problem. (a): Ndisining datay (dots) and underlying functiofi(z) (curve); and (b):
model mapping (curve) produced by the LROLS + D-optimaligoathm with 3 = 10—, circles indicate the RBF centers.

where .
W, W;
= —t 14
Vi N+ WZTWZ (14)
and
nm
Y=Y (15)
i=1

Usually a few iterations are sufficient to find an optimalThe details of the algorithm is given in [9].

In experimental design, the data covariance mab® is called the design matrix. The D-optimality
design criterion maximizes the determinant of the desigtnirifmr the constructed model. It is straight-
forward to verify that maximizinglet(®” ®) is identical to maximizinglet(W7 W) or, equivalently,
minimizing — log det(W7 W) [11],[12]. Thus the combined LROLS and D-optimality alghm can
be viewed as based on the combined criterion

Jo(g: A B) = Jr(g,A) + B ) —log(w/ w;) (16)
i=1
whereg is a fixed small positive weighting for the D-optimality co$h this combined algorithm, the
updating of the model weights and regularization pararsesegexactly as in the LROLS algorithm, but
the selection is according to the combined error reducttin defined as

[cerf; = (W] Wi+ \i)g; + Blog(w] wi)) [y"y (7)
and the selection is terminated with ap-term model when
[cer]; <0 for ns +1<i<mnpn. (18)

The introduction of the D-optimality cost into the algoritHurther enhances the efficiency and robust-
ness of the selected subset model and, as a consequencenthimed algorithm can often produce
sparser models with equally good generalization propertiempared with the LROLS algorithm. An
additional advantage is that it simplifies the selectiorcpdure. Notice that it is no longer needed to
specify the tolerancgand the algorithm will terminate automatically when thedition (18) is reached.
Unlike the combined OLS and D-optimality algorithm [11R]1the value of weighting does not criti-
cally influence the performance of this combined LROLS andd@imality algorithm. The weighting
can (almost) be chosen arbitrarily from a large range ofealu

IV. M ODELLING EXAMPLES
Example 1. This example used a radial basis function (RBF) networkedehthe scalar function
f(z) =sin(2rz), 0 <z <1. (19)

The RBF model employed Gaussian kernel function with a wageof 0.04. One hundred training data
were generated from = f(x) + ¢, where the input was uniformly distributed irf0, 1) and the noise



TABLE |
COMPARISON OF MODELLING ACCURACY FOR SIMPLE SCALAR FUNCTIOWIODELLING.

D-optimality | variance over noise training data variance over noise-free testing data number of terms
weighting3 | LROLS + D-opt OLS + D-opt| LROLS + D-opt OLS + D-opt | LROLS + D-opt OLS + D-opt

le-8 0.15766 0.14743 0.00168 0.02138 6 15

le-7 0.15766 0.14743 0.00168 0.02138 6 15

le-6 0.15823 0.14743 0.00202 0.02138 6 15

le-5 0.15705 0.14743 0.00194 0.02138 5 15

le-4 0.15826 0.14761 0.00246 0.02068 5 15

le-3 0.15705 0.14933 0.00194 0.01585 5 12

le-2 0.15705 0.15560 0.00194 0.00423 5 6

le-1 0.15911 0.15544 0.00223 0.00427 5 6

was Gaussian with zero mean and variance 0.16. The noisynggiointsy and the underlying function
f(z) are plotted in Fig. 1 (a). As each training datavas considered as a candidate RBF center, there
weren; = 100 regressors in the model (1). The training data were veryn@se hundred noise-free
dataf (z) with equally spaced were also generated as the testing data set for model vahidat

Table | compares the mean square error values over thertgeamid testing sets for the models con-
structed by the combined LROLS and D-optimality algorithrithwthose of the combined OLS and
D-optimality algorithm, given a wide range gfvalues. It can be seen that using the D-optimality alone
without regularization the constructed models can stilinfib the noise unless the weightirtgis set
to some appropriate value. Combining regularization witbgimality design, the results obtained are
consistent over a wide range gfvalues. In the previous works [7]-[9], the LROLS algorithhorse
produced a 6-term model with similar generalization periance as those produced by the combined
LROLS and D-optimality algorithm. It is seen that the laitecapable of producing even sparser models.
The model map of the 5-term model produced by the combinedS&hd D-optimality algorithm with
B =10 is shown in Fig. 1 (b).

Example 2. This was a two-dimensional simulated nonlinear time segieen by

y(k) = (0.8=0.5exp(—y*(k—1)))y(k—1)— (0.3+ 0.9exp(—y*(k — 1)) y(k — 2)
+ 0.1sin(my(k —1)) + (k) (20)
where the noise(k) was Gaussian with zero mean and variance 0.09. One thous&ydsamples were

generated givep(0) = y(—1) = 0.0. The first 500 data points were used for training, and thercz0é
samples were used for model validation. The underlyingaifrise system

vak) = (08— 05exp(—y3lk — 1)) yalk — 1) — (0.3 + 0.9 exp(~y3(k — 1)) yak — 2)
+ 0.1sin(myq(k — 1)) (21)

was specified by a limit circle, as shown in Fig. 2 (a). A Gaais®®BF model of the form

9(k) = frer(y(k —1),y(k —2)) (22)

was constructed using the noisy training data. The Gaug&siarel function had a variance of 0.81. As
each data poirfy(k — 1) y(k — 2)]T was considered as a candidate RBF centgr,= 500.

The modelling accuracies over both the training and testétg are compared in Table Il for the two
algorithms with a range of values. For this example, a 18-term model was produced tisshgROLS
algorithm alone in [9], and the resulting mean square egeesthe training and testing set weér@9264
and0.09678, respectively. Again it is seen that the combined with thefbimality design, the LROLS is
able to produce sparser models with equally good genetialivperformance and the model construction

TABLE Il
COMPARISON OF MODELLING ACCURACY FOR2-DIMENSIONAL SIMULATED TIME SERIES MODELLING.

D-optimality variance over training data variance over testing data number of terms
weighting3 | LROLS + D-opt OLS + D-opt| LROLS + D-opt OLS + D-opt| LROLS + D-opt OLS + D-opt
le-6 0.09275 0.07764 0.09635 2.53132 19 94
le-4 0.09311 0.07762 0.09607 0.41540 13 93
le-2 0.09338 0.08966 0.09750 0.09379 13 25
le+0 0.09395 0.09360 0.09667 0.09627 13 14
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Fig. 2. Two-dimensional time series modelling problem: @hase plot of the noise-free time serigg(0) = yq(—1) = 0.1);

(b): Phase plot of the iterative RBF model outpgf(0) = §4(—1) = 0.1), the model was constructed by the LROLS +
D-optimality algorithm with = 10~%.

process is insensitive to the value/fThe model produced by the combined LROLS and D-optimality
algorithm with3 = 10~* was used to iteratively generate the time series according t

Ya(k) = frer(Ya(k — 1), 9a(k — 2)) (23)

givengq(0) = g4(—1) = 0.1. The resulting phase plot is shown in Fig. 2 (b).

Example 3. This example constructed a model representing the rakttip between the fuel rack posi-

tion (input) and the engine speed (output) for a Leyland TiLthocharged, direct injection diesel engine
operated at low engine speed. It is known that at low engieedypthe relationship between the input
and output is nonlinear [13]. Detailed system descriptiot experimental setup can be found in [13].
The data set contained 410 samples. The first 210 data poémeswsed in modelling and the last 200
points in model validation. A RBF model of the form:

g(k) = frer(y(k = 1), u(k = 1), u(k - 2)) (24)

was used to model the data. As each data vegidr— 1) u(k — 1) u(k — 2)]7 was considered as a
candidate RBF center, there wergr = 210 regressors in the regression model (1). The variance of the
RBF kernel function was chosen to be 1.69.

The mean square errors of the models produced by the LROL$ptiDrality algorithm and the OLS

+ D-optimality one are compared in Table lll, given a rangeofalues. For this real data set, a 34-
term model was produced using the LROLS algorithm alone a [9], and the resulting mean square
errors over the training and testing set wer@0435 and0.000487, respectively. The constructed RBF
model by the combined LROLS and D-optimality algorithm with= 10~ was used to generate the
one-step predictiof(k) of the system output according to (24). The iterative modepot g, (k) was
also produced using

Ja(k) = frpr@atk — 1), ulk — 1), u(k - 2)). (25)

The one-step model prediction and iterative model outputfis 22-term model selected by the LROLS
+ D-optimality algorithm are shown in Fig. 3, in comparisoithwthe system output.

TABLE Il
COMPARISON OF MODELLING ACCURACY FOR ENGINE DATA SET

D-optimality variance over training data variance over testing data number of terms
weighting3 | LROLS + D-opt OLS + D-opt| LROLS + D-opt OLS + D-opt| LROLS + D-opt OLS + D-opt

le-8 0.000459 0.000336 0.000488 0.000872 22 60

le-7 0.000442 0.000345 0.000484 0.000831 27 58

le-6 0.000441 0.000345 0.000479 0.000838 25 57

le-5 0.000452 0.000429 0.000499 0.000517 22 24

le-4 0.000586 0.000445 0.000606 0.000497 20 22

le-3 0.000478 0.000503 0.000501 0.000536 20 19

le-2 0.000884 0.000883 0.000982 0.000987 16 16

le-1 0.004951 0.004951 0.005050 0.005052 12 12




V. CONCLUSIONS

A locally regularized OLS algorithm with the D-optimalityedign has been proposed for data mod-
elling. It has been demonstrated that combining regulozavith D-optimality experimental design
provides a state-of-art procedure for constructing vearsp models with excellent generalization per-
formance. It has been shown that the performance of theitligois insensitive to the D-optimality cost
weighting, and the model construction process is fully mated. The computational requirements of
this iterative model selection procedure are very simptignmplementation straightforward.
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Fig. 3 System outpug(k) (solid) superimposed on (a) model one-step predicfigh) (dashed) and (b) model iterative output
9a(k) (dashed). The model was selected by the LROLS + D-optimalggrithm with3 = 103



