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Abstract

The paper proposes to combine a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality
experimental design for efficient and robust sparse kernel data modelling. The LROLS algorithm alone is capable of producing a
very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model
efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality costin the
combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting
does not influence the model selection procedure criticallyand it can be chosen with ease from a wide range of values.
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I. I NTRODUCTION

A basic principle in practical data modelling is the parsimonious principle. The orthogonal least
squares (OLS) algorithm [1],[2] is an efficient learning procedure for constructing sparse regression
models. If data are highly noisy, the parsimonious principle alone may not be entirely immune to overfit-
ting, and small models constructed may still fit into noise. Auseful technique for overcoming overfitting
is regularization [3]–[5]. From the Bayesian viewpoint, a regularization parameter is equivalent to the
ratio of the related hyperparameter to the noise parameter and an effective Bayesian learning method is
the evidence procedure which iteratively optimizes model parameters and associated hyperparameters
[6]. Adopting this Bayesian learning method to regression models, the LROLS algorithm [7]-[9] has
recently been proposed, which introduces individual regularizer for each weight. This LROLS algorithm
provides an efficient procedure for constructing sparse models that generalize well.

Optimal experimental designs [10] have been used to construct smooth model response surfaces based
on the setting of the experimental variables under well controlled experimental conditions. In optimal
design, model adequacy is evaluated by design criteria thatare statistical measures of goodness of ex-
perimental designs by virtue of design efficiency and experimental effort. For kernel regression models,
quantitatively, model adequacy is measured as function of the eigenvalues of the design matrix. There
are a variety of optimal design criteria based on different aspects of experimental design [10]. The D-
optimality criterion is most effective in optimizing the parameter efficiency and model robustness via the
maximization of the determinant of the design matrix. In a recent work [11],[12], an effective model
construction algorithm has been proposed based on the OLS algorithm coupled with the D-optimality
design. This paper shows that further advantages can be gained by combining the LROLS algorithm
with the D-optimality design

II. T HE KERNEL REGRESSION MODEL

Consider the general kernel regression model of the form:y(k) = ŷ(k) + e(k) = nMXi=1 �i�i(k) + e(k); 1 � k � N; (1)

wherey(k) is the target,e(k) is the error betweeny(k) and the model output̂y(k), �i are the model
weights,�i(k) are the regressors,nM is the total number of candidate regressors, andN the number of
training samples. By letting�i = [�i(1) � � ��i(N)℄T , for 1 � i � nM , and definingy = 264 y(1)

...y(N) 375 ; � = [�1 � � ��nM ℄; � = 264 �1
...�nM 375 ; e = 264 e(1)

...e(N) 375 ; (2)



the regression model (1) can be written in the matrix formy = �� + e: (3)

Let an orthogonal decomposition of the matrix� be� =WA (4)

where A = 266664 1 a1;2 � � � a1;nM0 1 . . .
...

...
. . .

. . . anM�1;nM0 � � � 0 1 377775 (5)

and W = [w1 � � �wnM ℄ (6)

with columns satisfyingwTi wj = 0, if i 6= j. The model (3) can alternatively be expressed asy =Wg+ e (7)

where the orthogonal weight vectorg = [g1 � � � gnM ℄T satisfy the triangular systemA� = g.

III. T HE LOCALLY REGULARIZED OLS ALGORITHM WITH D-OPTIMALITY DESIGN

The LROLS algorithm adopts the following error criterion:JR(g;�) = eT e+ nMXi=1 �ig2i = eTe+ gT�g (8)

where� = [�1 � � ��nM ℄T is the regularization parameter vector, and� = diagf�1; � � � ; �nM g. It can
readily be shown that the criterion (8) can be expressed aseTe+ gT�g = yTy � nMXi=1 �wTi wi + �i� g2i : (9)

Normalizing (9) byyTy yields�eTe+ gT�g� =yTy = 1� nMXi=1 �wTi wi + �i� g2i =yTy: (10)

As in the case of the OLS algorithm [1], the regularized errorreduction ratio due towi is defined by[rerr℄i = �wTi wi + �i� g2i =yTy: (11)

At each stage, a term is selected based on the selection criterion l� = argmaxf[rerr℄i; l � i � nMg, and
the selection process is terminated at thens-th stage when1� nsXl=1 [rerr℄l < � (12)

is satisfied, where0 < � < 1 is a chosen tolerance. This produces a sparse model containing ns(� nM ) significant regressors. The Bayesian evidence procedure [6] can readily be used to optimize the
regularization parameters. Applying this evidence procedure leads to the updating formulas:�newi = 
oldiN � 
old eTeg2i ; 1 � i � nM ; (13)
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Fig. 1. Simple scalar function modelling problem. (a): Noisy training datay (dots) and underlying functionf(x) (curve); and (b):
model mapping (curve) produced by the LROLS + D-optimality algorithm with� = 10�5, circles indicate the RBF centers.

where 
i = wTi wi�i +wTi wi (14)

and 
 = nMXi=1 
i: (15)

Usually a few iterations are sufficient to find an optimal�. The details of the algorithm is given in [9].

In experimental design, the data covariance matrix�T� is called the design matrix. The D-optimality
design criterion maximizes the determinant of the design matrix for the constructed model. It is straight-
forward to verify that maximizingdet(�T�) is identical to maximizingdet(WTW) or, equivalently,
minimizing� log det(WTW) [11],[12]. Thus the combined LROLS and D-optimality algorithm can
be viewed as based on the combined criterionJC(g;�; �) = JR(g;�) + � nMXi=1 � log(wTi wi) (16)

where� is a fixed small positive weighting for the D-optimality cost. In this combined algorithm, the
updating of the model weights and regularization parameters is exactly as in the LROLS algorithm, but
the selection is according to the combined error reduction ratio defined as[cerr℄i = �(wTi wi + �i)g2i + � log(wTi wi)� =yTy (17)

and the selection is terminated with anns-term model when[cerr℄i � 0 for ns + 1 � i � nM : (18)

The introduction of the D-optimality cost into the algorithm further enhances the efficiency and robust-
ness of the selected subset model and, as a consequence, the combined algorithm can often produce
sparser models with equally good generalization properties, compared with the LROLS algorithm. An
additional advantage is that it simplifies the selection procedure. Notice that it is no longer needed to
specify the tolerance� and the algorithm will terminate automatically when the condition (18) is reached.
Unlike the combined OLS and D-optimality algorithm [11],[12], the value of weighting� does not criti-
cally influence the performance of this combined LROLS and D-optimality algorithm. The weighting�
can (almost) be chosen arbitrarily from a large range of values.

IV. M ODELLING EXAMPLES

Example 1. This example used a radial basis function (RBF) network to model the scalar functionf(x) = sin(2�x); 0 � x � 1: (19)

The RBF model employed Gaussian kernel function with a variance of 0.04. One hundred training data
were generated fromy = f(x)+ �, where the inputx was uniformly distributed in(0; 1) and the noise�



TABLE I

COMPARISON OF MODELLING ACCURACY FOR SIMPLE SCALAR FUNCTIONMODELLING .

D-optimality variance over noise training data variance over noise-free testing data number of terms
weighting� LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt

1e-8 0.15766 0.14743 0.00168 0.02138 6 15
1e-7 0.15766 0.14743 0.00168 0.02138 6 15
1e-6 0.15823 0.14743 0.00202 0.02138 6 15
1e-5 0.15705 0.14743 0.00194 0.02138 5 15
1e-4 0.15826 0.14761 0.00246 0.02068 5 15
1e-3 0.15705 0.14933 0.00194 0.01585 5 12
1e-2 0.15705 0.15560 0.00194 0.00423 5 6
1e-1 0.15911 0.15544 0.00223 0.00427 5 6

was Gaussian with zero mean and variance 0.16. The noisy training pointsy and the underlying functionf(x) are plotted in Fig. 1 (a). As each training datax was considered as a candidate RBF center, there
werenM = 100 regressors in the model (1). The training data were very noisy. One hundred noise-free
dataf(x) with equally spacedx were also generated as the testing data set for model validation.

Table I compares the mean square error values over the training and testing sets for the models con-
structed by the combined LROLS and D-optimality algorithm with those of the combined OLS and
D-optimality algorithm, given a wide range of� values. It can be seen that using the D-optimality alone
without regularization the constructed models can still fitinto the noise unless the weighting� is set
to some appropriate value. Combining regularization with D-optimality design, the results obtained are
consistent over a wide range of� values. In the previous works [7]-[9], the LROLS algorithm alone
produced a 6-term model with similar generalization performance as those produced by the combined
LROLS and D-optimality algorithm. It is seen that the latteris capable of producing even sparser models.
The model map of the 5-term model produced by the combined LROLS and D-optimality algorithm with� = 10�5 is shown in Fig. 1 (b).

Example 2. This was a two-dimensional simulated nonlinear time series given byy(k) = �0:8� 0:5 exp(�y2(k � 1))� y(k � 1)� �0:3 + 0:9 exp(�y2(k � 1))� y(k � 2)+ 0:1 sin(�y(k � 1)) + �(k) (20)

where the noise�(k) was Gaussian with zero mean and variance 0.09. One thousand noisy samples were
generated giveny(0) = y(�1) = 0:0. The first 500 data points were used for training, and the other 500
samples were used for model validation. The underlying noise-free systemyd(k) = �0:8� 0:5 exp(�y2d(k � 1))� yd(k � 1)� �0:3 + 0:9 exp(�y2d(k � 1))� yd(k � 2)+ 0:1 sin(�yd(k � 1)) (21)

was specified by a limit circle, as shown in Fig. 2 (a). A Gaussian RBF model of the formŷ(k) = fRBF (y(k � 1); y(k � 2)) (22)

was constructed using the noisy training data. The Gaussiankernel function had a variance of 0.81. As
each data point[y(k � 1) y(k � 2)℄T was considered as a candidate RBF center,nM = 500.

The modelling accuracies over both the training and testingsets are compared in Table II for the two
algorithms with a range of� values. For this example, a 18-term model was produced usingthe LROLS
algorithm alone in [9], and the resulting mean square errorsover the training and testing set were0:09264
and0:09678, respectively. Again it is seen that the combined with the D-optimality design, the LROLS is
able to produce sparser models with equally good generalization performance and the model construction

TABLE II

COMPARISON OF MODELLING ACCURACY FOR2-DIMENSIONAL SIMULATED TIME SERIES MODELLING.

D-optimality variance over training data variance over testing data number of terms
weighting� LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt

1e-6 0.09275 0.07764 0.09635 2.53132 19 94
1e-4 0.09311 0.07762 0.09607 0.41540 13 93
1e-2 0.09338 0.08966 0.09750 0.09379 13 25
1e+0 0.09395 0.09360 0.09667 0.09627 13 14
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Fig. 2. Two-dimensional time series modelling problem. (a): Phase plot of the noise-free time series (yd(0) = yd(�1) = 0:1);
(b): Phase plot of the iterative RBF model output (ŷd(0) = ŷd(�1) = 0:1), the model was constructed by the LROLS +
D-optimality algorithm with� = 10�4.

process is insensitive to the value of�. The model produced by the combined LROLS and D-optimality
algorithm with� = 10�4 was used to iteratively generate the time series according toŷd(k) = fRBF (ŷd(k � 1); ŷd(k � 2)) (23)

givenŷd(0) = ŷd(�1) = 0:1. The resulting phase plot is shown in Fig. 2 (b).

Example 3. This example constructed a model representing the relationship between the fuel rack posi-
tion (input) and the engine speed (output) for a Leyland TL11turbocharged, direct injection diesel engine
operated at low engine speed. It is known that at low engine speed, the relationship between the input
and output is nonlinear [13]. Detailed system description and experimental setup can be found in [13].
The data set contained 410 samples. The first 210 data points were used in modelling and the last 200
points in model validation. A RBF model of the form:ŷ(k) = fRBF (y(k � 1); u(k � 1); u(k � 2)) (24)

was used to model the data. As each data vector[y(k � 1) u(k � 1) u(k � 2)℄T was considered as a
candidate RBF center, there werenM = 210 regressors in the regression model (1). The variance of the
RBF kernel function was chosen to be 1.69.

The mean square errors of the models produced by the LROLS + D-optimality algorithm and the OLS
+ D-optimality one are compared in Table III, given a range of� values. For this real data set, a 34-
term model was produced using the LROLS algorithm alone in [7]– [9], and the resulting mean square
errors over the training and testing set were0:000435 and0:000487, respectively. The constructed RBF
model by the combined LROLS and D-optimality algorithm with� = 10�5 was used to generate the
one-step prediction̂y(k) of the system output according to (24). The iterative model output ŷd(k) was
also produced using ŷd(k) = fRBF (ŷd(k � 1); u(k � 1); u(k � 2)): (25)

The one-step model prediction and iterative model output for this 22-term model selected by the LROLS
+ D-optimality algorithm are shown in Fig. 3, in comparison with the system output.

TABLE III

COMPARISON OF MODELLING ACCURACY FOR ENGINE DATA SET.

D-optimality variance over training data variance over testing data number of terms
weighting� LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt LROLS + D-opt OLS + D-opt

1e-8 0.000459 0.000336 0.000488 0.000872 22 60
1e-7 0.000442 0.000345 0.000484 0.000831 27 58
1e-6 0.000441 0.000345 0.000479 0.000838 25 57
1e-5 0.000452 0.000429 0.000499 0.000517 22 24
1e-4 0.000586 0.000445 0.000606 0.000497 20 22
1e-3 0.000478 0.000503 0.000501 0.000536 20 19
1e-2 0.000884 0.000883 0.000982 0.000987 16 16
1e-1 0.004951 0.004951 0.005050 0.005052 12 12



V. CONCLUSIONS

A locally regularized OLS algorithm with the D-optimality design has been proposed for data mod-
elling. It has been demonstrated that combining regularization with D-optimality experimental design
provides a state-of-art procedure for constructing very sparse models with excellent generalization per-
formance. It has been shown that the performance of the algorithm is insensitive to the D-optimality cost
weighting, and the model construction process is fully automated. The computational requirements of
this iterative model selection procedure are very simple and its implementation straightforward.
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Fig. 3. System outputy(k) (solid) superimposed on (a) model one-step predictionŷ(k) (dashed) and (b) model iterative outputŷd(k) (dashed). The model was selected by the LROLS + D-optimalityalgorithm with� = 10�5.


