
Comparative Study on Pole Sensitivity and Stability RadiusMeasures for Finite-Preision Digital Controller RealizationsSheng Chen 1 and Jun Wu 21 Department of Eletronis and Computer SieneUniversity of Southampton, Southampton SO17 1BJ, U.K.Tel/Fax: +44 (0)23 8059 6660/4508; Email: sq�es.soton.a.uk2 National Laboratory of Industrial Control TehnologyZhejiang University, Hangzhou, 310027, P. R. ChinaTel/Fax: +86 571 795 2369/1206; Email: jwu�iip.zju.edu.nAbstratThis paper ompares the two approahes based onpole sensitivity and the omplex stability radius mea-sures for optimizing the losed-loop stability robust-ness of digital ontrollers implemented with �niteword length (FWL). Design details and related opti-mization proedures are derived for the two methods.An example is used to verify the theoretial analy-sis and to illustrate the two designs for determiningoptimal FWL ontroller realizations.Keywords|�nite word length, losed-loop stability,omplex stability radius, pole sensitivity.1 IntrodutionThe urrent ontroller design methodology often as-sumes that the ontroller is implemented exatly,even though in reality a ontrol law an only be re-alized in �nite preision. It is now well-known that adesigned stable ontrol system may ahieve a lowerthan predited performane or even beome unstablewhen the ontrol law is implemented with a �nite-preision devie. The FWL e�et on the losed-loopstability depends on the ontroller realization stru-ture, and this property an be utilized to selet on-troller realization in order to improve the FWL sta-bility robustness. Currently, two approahes exist fordetermining the optimal ontroller realizations underthe riteria of the pole-sensitivity measure [1℄-[6℄ andthe omplex stability radius measure [7℄,[8℄.In the �rst approah, a suitable pole sensitivity mea-sure is used to quantify the FWL e�et, leading toa nonlinear optimization problem to �nd an opti-mal FWL ontroller realization. EÆient global op-timization tehniques to solve for this optimizationproblem are readily available [3℄,[4℄,[9℄. Fialho andGeorgiou [8℄ used the omplex stability radius mea-sure to formulate an optimal FWL ontroller realiza-tion problem that an be represented as a speialH1norm minimization problem and solved for with themethod of linear matrix inequality (LMI) [10℄,[11℄.
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ĈFigure 1: Disrete-time losed-loop ontrol system.This paper provides a omparative study on thesetwo approahes for determining optimal FWL on-troller realizations1.2 Problem formulationConsider the disrete-time losed-loop ontrol sys-tem shown in Fig. 1, where the linear time-invariantplant P̂ is desribed by�x(k + 1) = Ax(k) +Be(k)y(k) = Cx(k) (1)whih is ompletely state ontrollable and observablewith A 2 Rn�n, B 2 Rn�p and C 2 Rq�n; and thedigital output-feedbak ontroller Ĉ is desribed by�v(k + 1) = Fv(k) +Gy(k)u(k) = Jv(k) +My(k) (2)with F 2 Rm�m, G 2 Rm�q, J 2 Rp�m and M 2Rp�q . Assume that a realization (F0;G0;J0;M0)of Ĉ has been designed. It is well-known that therealizations of Ĉ are not unique. All the realizationsof Ĉ form the realization set:S = f(F;G;J;M) : F = T�1F0T;G = T�1G0;J = J0T;M =M0g (3)1Fialho and Georgiou's ACC99 paper [8℄ only ontainedthe two-page summary. The material for the omplex stabilityradius approah presented at this paper are our interpretation.



where T 2 Rm�m is any real-valued non-singularmatrix. Let wF = Ve(F), where Ve(�) denotes theolumn staking operator. Denotew = 24 w1...wN 35 4= 264 wFwGwJwM 375 ; w0 4= 264 wF0wG0wJ0wM0 375 (4)where N = (m + p)(m + q). We also refer to w asa realization of Ĉ. The stability of the losed-loopsystem in Fig. 1 depends on the poles of the matrix�A(w) = �A+BMC BJGC F �= � I 00 T�1 � �A(w0) � I 00 T � (5)All the di�erent realizations w ahieve exatly thesame set of losed-loop poles if they are implementedwith in�nite preision. Sine the losed-loop systemis designed to be stable, the eigenvaluesj�i( �A(w))j = j�i( �A(w0))j < 1; 8i 2 f1; : : : ;m+ng(6)When a w is implemented with a �xed-point proes-sor, it is perturbed into w + �w due to the FWLe�et. Eah element of �w is bounded by ��=2,k�wk1 4= maxi2f1;���;Ng j�wij � �=2 (7)For a �xed point proessor of Bs bits, let Bs = Bi +Bf , where 2Bi is a \normalization" fator to makethe absolute value of eah element of 2�Biw no largerthan 1. Thus, Bi are bits required for the integer partof a number and Bf are bits used to implement thefrational part of a number. It an be seen that� = 2�Bf ; (8)With the perturbation �w, �i( �A(w)) is moved to�i( �A(w+�w)). It is ritial to know when the FWLerror will ause losed-loop instability. That is, wewould like to know the largest open \sphere" in �wspae, within whih losed-loop remains stable. Thesize or radius of this sphere is de�ned by:�0(w) 4= inffk�wk1 : �A(w +�w) is unstableg (9)The larger �0(w) is, the larger FWL error the losed-loop stability an tolerate. Let Bmins be the smallestword length, when used to implement w, an guar-antee the losed-loop stability. Bmins is generally un-known. An estimate of Bmins an be obtained byB̂mins0 = Bi + Int[� log2(�0(w))℄� 1 (10)where the integer Int[x℄ � x. It an easily be seenthat the losed-loop system remains stable if w is

implemented with a �xed-point proessor of at leastB̂mins0 . Moreover, �0(w) is a funtion of the ontrollerrealizationw, we ould searh for an optimal realiza-tion that maximizes �0(w).However, it is not known how to ompute �0(w). Asolution is to derive a lower bound of the stabilitymeasure �0(w), whih is omputationally tratable.This in e�et de�nes a smaller but known stable\sphere" in the ontroller perturbation spae. Theloser a lower bound is to �0(w), the better. Thepole sensitivity and the omplex stability radius mea-sures an both be regarded as suh lower bounds.3 Pole sensitivity approahRoughly speaking, how easily the FWL error �wan ause a stable ontrol system to beome unsta-ble is determined by how lose ���i( �A(w))�� are to 1and how sensitive they are to the ontroller parame-ter perturbations. This leads to the following FWLstability measure [6℄�p(w) 4= mini2f1;���;m+ng 1� ���i( �A(w))���i(w) (11)with�i(w) 4= XX=F;G;J;M� ���i( �A(w))���wX 1 (12)For a vetor x 2 Cs, the 1-norm kxk1 is de�ned askxk1 4= sXi=1 jxij (13)It an be proved that under ertain onditions �p(w)is a lower bound of �0(w), that is, �p(w) � �0(w).The stability measure �p(w) is omputationallytratable, as it an be shown that:� ���i( �A(w))���F = [0 I ℄Li(w) �0I � (14)� ���i( �A(w))���G = [0 I ℄Li(w) �CT0 � (15)� ���i( �A(w))���J = [BT 0T ℄Li(w) �0I � (16)� ���i( �A(w))���M = [BT 0T ℄Li(w) �CT0 � (17)withLi(w) = Re ���i ( �A(w))y�i ( �A(w))xTi ( �A(w))����i( �A(w))�� (18)



where xi( �A(w)) and yi( �A(w)) are the right and re-iproal left eigenvetors related to the �i( �A(w)), �denotes the onjugate operation, T the transpose op-erator, and Re[�℄ the real part. Similar to (10), anestimate of Bmins an be provided with �p(w) byB̂minsp = Bi + Int[� log2(�p(w))℄� 1 (19)Given an initial design w0, the optimal FWL on-troller realization that maximizes the stability mea-sure (11) is de�ned aswopt;p = argmaxw2S �p(w) (20)and the optimization proedure to �nd a wopt;p anreadily be derived. 8i 2 f1; � � � ;m+ ng, partitionxi( �A(w0)) = �xi;1( �A(w0))xi;2( �A(w0)) � (21)yi( �A(w0)) = �yi;1( �A(w0))yi;2( �A(w0)) � (22)where xi;1( �A(w0));yi;1( �A(w0)) 2 Cn, xi;2( �A(w0)),yi;2( �A(w0)) 2 Cm. It is easily seen from (5) thatxi( �A(w)) = � xi;1( �A(w0))T�1xi;2( �A(w0)) � (23)yi( �A(w)) = � yi;1( �A(w0))TTyi;2( �A(w0)) � (24)From (14){(17), we have� ���i( �A(w))���F = TTLi;2;2(w0)T�T (25)� ���i( �A(w))���G = TTLi;2;1(w0)CT (26)� ���i( �A(w))���J = BTLi;1;2(w0)TT (27)� ���i( �A(w))���M = BTLi;1;1(w0)CT (28)whereLi;j;l(w0) = Re h��i ( �A(w0))y�i;j( �A(w0))xTi;l( �A(w0))i���i( �A(w0))�� ;j; l = 1; 2 (29)De�ne the following ost funtion:f(T) 4= mini2f1;���;m+ng 1� j�i( �A(w0))j�i(w) = �p(w) (30)The optimal realization problem (20) an then beposed as the following optimisation problem:Topt;p = arg maxT2Rm�mdet(T)6=0 f(T) (31)Although f(T) is non-smooth and non-onvex, eÆ-ient global optimisation methods exist for solvingfor this kind of optimisation problem. With Topt;p,we an obtain the optimal realization wopt;p.

4 Stability radius approahLet �E denote the unit irle in the omplexplane, and ��(U) the maximal singular value ofthe omplex-valued matrix U. For a stable ma-trix ~A 2 C(n+m)�(n+m), i.e. j�i( ~A)j < 1 for i =1; � � � ; n+m, the omplex stability radius of a matrixtriple ( ~A; ~B; ~C) 2 C(n+m)�(n+m) � C(n+m)�(p+m) �C(q+m)�(n+m) is de�ned asrC( ~A; ~B; ~C) = inff��(�) :� 2 C(p+m)�(q+m) and~A+ ~B� ~C is unstableg (32)From [12℄,[13℄, we haverC( ~A; ~B; ~C) = 1supz2�E �� � ~C(zI� ~A)�1 ~B� (33)De�ne the transfer funtion matrix Ĝ = ~C(zI �~A)�1 ~B and the H1-norm of Ĝ [11℄:kĜk1 = supz2�E �� � ~C(zI� ~A)�1 ~B� (34)Then,rC( ~A; ~B; ~C) = 1kĜk1 (35)Let  > 0 be a given salar. Aording to [11℄ (page158), the linear time-invariant disrete-time losed-loop transfer funtion Ĝ satis�es kĜk1 <  if andonly if there exists a matrix X > 0 suh that�X 00 2I � > � ~A ~B~C 0 ��X 00 I �� ~A ~B~C 0 �T (36)Let �A0 be the losed-loop system matrix for aninitial ontroller realization (F0;G0;J0;M0). For(F = T�1F0T;G = T�1G0;J = J0T;M = M0),onsider the ontroller perturbation�M JG F �+� (37)where � is omplex-valued. With (37), the losed-loop system matrix (5) beomes�A = � In 00 T�1 � �A0 � In 00 T �+ �B 00 Im �� �C 00 Im � (38)where Is denotes the s� s identity matrix. Denote~A(T) = � In 00 T�1 � �A0 � In 00 T � 2 R(n+m)�(n+m)(39)~B = �B 00 Im � 2 R(n+m)�(p+m) (40)



~C = �C 00 Im � 2 R(q+m)�(n+m) (41)Ĝ(T) = ~C�zI� ~A(T)��1 ~B (42)Then an alternative optimal FWL realization prob-lem is de�ned asmaxT rC( ~A(T); ~B; ~C) = 1minT kĜ(T)k1 = 1� (43)Consider how to solve for the optimal realizationproblem (43). From (36), kĜ(T)k1 <  if andonly if there exists a positive de�nite matrix X 2R(n+m)�(n+m) suh that:24P1 Iq P2 35 >M 24P1 Ip P2 35MT (44)subjet toP1 = � In 00 T �X � In 00 TT � > 0 (45)andP2 = TTT > 0 (46)whereM = � �A0 ~B1 ~C 0 � (47)The inequality (44) with the onstraints P1 > 0 andP2 > 0 is an LMI problem [10℄,[11℄, and numerialalgorithms for solving for this kind of problems arereadily available. Therefore, the optimal value of� an be obtained together with the orrespondingP1 opt and P2 opt. This leads toTopt;r = P1=22 opt (48)andXopt = � In T�1opt;r �P1 opt � In T�Topt;r � (49)With Topt;r, the orresponding optimal ontroller re-alization wopt;r an be obtained.Unlike the pole-sensitivity measure (11), the om-plex stability radius measure does not have a diretrelationship with the word length, and a statistialword length was adopted to irumvent this diÆulty[7℄. Under ertain assumptions, it an be shown thatthe losed-loop system is stable with probability noless than 0:9777, provided that the elements of� arebounded absolutely by�r(w) = rCrN3 + 4qN45 (50)

where N is the nonzero elements in �. The measure(50) an be regarded as a lower bound of �0(w), andthe statistial word length formula using the stabil-ity measure (50) leads to the following minimum bitlength estimateB̂minsr = Bi + Int[� log2(�r(w))℄ � 1 (51)5 A numerial exampleBoth the pole sensitivity and omplex stability ra-dius approahes involve some approximations in esti-mating the true stability measure �0(w). Therefore,they are onservative measures. As onditions aredi�erent for them to be lower bounds of �0(w), itis diÆult to say whih measure is less onservativein estimating the true minimum bit length. It willbe ase dependent. In partiular, the orrespondingoptimal ontroller realizations wopt;p and wopt;r willbe di�erent. An advantage of the omplex stabilityradius measure is that the orresponding optimiza-tion problem an be posed as the LMI problem (44),and this LMI problem is easier to solve for than thenonlinear optimization problem (31).A numerial example was used to ompare thetwo approahes. The example was a torsional vi-bration ontrol system given in [14℄. Disretizingthe ontinuous-time plant with the sampling period0:001 yielded the disrete-time plant model:A = 24 0:0 0:0 1:01:0 0:0 �2:976860:0 1:0 2:97686 35 ; B = 24 1:00:00:0 35 ;C = � 0:24863 0:24621 0:24143 �and the initially designed ontroller:F0 = � 0:0 �0:333331:0 1:33333 � ; G0 = � 1:00:0 � ;J0 = � �1:20982 �0:41278 � ; M0 = [1:35120℄With this initial ontroller realization w0, the twooptimal ontroller realizations wopt;p and wopt;r ob-tained by solving for the two optimizations problem(31) and(44), respetively, are:Fopt;p = � 0:71295 �0:88451�0:12320 0:62038 � ;Gopt;p = � 0:629340:33823 � ;Jopt;p = � �0:62540 �2:41321 � ; Mopt;p = [1:35120℄andFopt;r = � 1:07316 0:16668�0:32475 0:26017 � ;
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Figure 2: Comparison of unit impulse response for the in�nite-preision ontroller implementation wideal withthose for the two 6-bit implemented ontroller realizations wopt;p and wopt;r.Gopt;r = � 0:01716�0:48973 � ;Jopt;r = � 1:24139 2:51388 � ; Mopt;r = [1:35120℄For the initial and two optimal ontroller realiza-tions, the true minimal bit lengths Bmins that anguarantee the losed-loop stability were also deter-mined using a omputer simulation method. Table 1ompares the values of the two stability measures�p and �r, orresponding estimated minimum bitlengths and true minimum bit lengths for the initialand two optimal ontroller realizations.We also omputed the unit impulse response of thelosed-loop ontrol system when the ontrollers werethe in�nite-preision implemented w0 and variousFWL implemented realizations. Notie that any re-alization w 2 S, implemented in in�nite preision,will ahieve the exat performane of the in�nite-preision implemented w0, whih is the designed on-troller performane. For this reason, the in�nite-preision implemented w0 is referred to as the idealontroller realizationwideal. Fig. 2 ompares the unitimpulse response of the plant output for the idealontrollerwideal with those of two 6-bit implementedwopt;p and wopt;r. For this example, although wopt;prealization �p B̂minsp rC �r B̂minsr Bminsw0 9.8513e-4 10 5.3470e-3 2.4434e-3 9 7wopt;p 8.9321e-3 8 2.0181e-2 9.2219e-3 8 6wopt;r 5.02743e-3 9 2.63050e-2 1.20205e-2 8 6Table 1: Comparison of the two stability measures, orresponding estimated minimum bit lengths and trueminimum bit lengths for the initial and two optimal ontroller realizations.

and wopt;r are di�erent, they both have similar goodFWL harateristis in �xed-point implementation.6 ConlusionsIn this paper, we have ompared the two approahesfor obtaining optimal FWL ontroller realizationsbased on the pole sensitivity and omplex stabil-ity radius measures, respetively. Design proeduresfor the both methods are provided. Although themotivations for these two approahes are di�erent,they an be regarded as two methods of approxi-mating a true but omputationally intratable FWLlosed-loop stability measure. An example is used toompare the two design proedures, and the resultsshow that for the example tested the two approahesprodue two di�erent optimal ontroller realizationswhih have similar good FWL harateristis.AknowledgementsS. Chen wishes to thank the support of the UK EP-SRC under grant (GR/M16894). J. Wu is supportedby Zhejiang Provinial Natural Siene Foundationof China under Grant 699085.
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