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Abstract— The paper considers the mixedH2=l1 optimization
problem, which minimizes the H2-norm of the closed loop map
while maintaining the l1-norm of the other closed loop map at a
prescribed level. Using the duality theory of Lagrange multipliers
and an approximation analysis, an optimization problem in the dual
space is constructed which has the same optimal value as the primal
mixedH2=l1 optimization problem.
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I. I NTRODUCTION

Most controller synthesis problems can be formulated
as follows: Given a plant̂P , design a controller̂C such
that the closed loop system is stable and satisfies some
given (optimal) performance criteria. When the optimal
performance criterion is theH1-norm (H2-norm or l1-
norm respectively) of the closed loop transfer function
based on the Youla parameterization [1] — a parameteriza-
tion of the class of controllers which stabilize the plant, the
controller synthesis problem can be changed into theH1-
norm (H2-norm orl1-norm respectively) model matching
problem — the problem of finding the optimal stable free
parameter which minimizes theH1-norm (H2-norm orl1-norm respectively) of a map of the free parameter. Con-
sequently,H1,H2 andl1 control designs have been intro-
duced respectively in [2]–[4].

Mixed performance controls, such as mixedH2=H1
control [5], mixedl1=H1 control [6], mixedl1=H2 con-
trol [7] and mixedH2=l1 control [8], have been the pole
of attraction for many researchers lately. Mixed perfor-
mance control can directly accommodate realistic situa-
tions where a system must satisfy several different perfor-
mance constraints. Based on the Youla parameterization,
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a mixed performance control problem can be changed into
a special optimization problem with two kinds of norms.

The topic of this paper is mixedH2=l1 control. A scalar
discrete time mixedH2=l1 control problem was addressed
by Voulgaris [8],[9] through minimizing theH2-norm of
the closed loop map while maintaining itsl1-norm at a
prescribed level. Based on the duality theory, a finite step
method was presented to solve exactly the mixedH2=l1
optimization problem. A more general class of discrete
time mixedH2=l1 control problems, in which Voulgaris’
problem is a special case, was addressed in [10],[11].
This class of problems is to minimize theH2-norm of
the closed loop map while maintaining thel1-norm of the
other closed loop map at a prescribed level. An approx-
imation analysis on its solution in primal space was pre-
sented in [11],[12]. This paper is devoted to construct the
dual problem of this general mixedH2=l1 problem.

II. N OTATION AND MATHEMATICAL PRELIMINARIES

Let R denote the field of real numbers,Rm denote them-dimensional real vectors, andZ+ denote the nonnega-
tive integers. A causal SISO LTI transfer function̂G can
be described asĜ = G(0) +G(1)�+G(2)�2 + � � � ;
where G(k) 2 R, 8k 2 Z+. As Ĝ can be
represented uniquely by its impulse response sequence[G(0) G(1) G(2) � � � ℄T , Ĝ and its impulse response
sequence are not differentiated in notation throughout this
paper. Definele = �Ĝ ���� Ĝ = G(0) +G(1)� +G(2)�2 + � � �G(k) 2 R;8k 2 Z+ � ;l1 = �Ĝ 2 le ����supk jG(k)j <1� ;



l2 = (Ĝ 2 le ����� 1Xk=0 (G(k))2 <1) ;l1 = (Ĝ 2 le ����� 1Xk=0 jG(k)j <1) :
For anyĜ 2 l1, thel1-norm ofĜ is given bykĜk1 = supk jG(k)j :
For anyĜ 2 l2, thel2-norm ofĜ iskĜk2 =vuut 1Xk=0 (G(k))2:kĜk2 is also theH2-norm of Ĝ. For anyĜ 2 l1, the l1-
norm ofĜ is kĜk1 = 1Xk=0 jG(k)j :
It is easily seen thatl1 � l2 � l1, and that8Ĝ1; Ĝ2 2 l1,Ĝ1Ĝ2 2 l1.

Let X be a normed linear space. The space of
all bounded linear functionals onX is denoted asX�,
equipped with the naturally induced norm. For anyx 2 X
and x� 2 X�, < x; x� > denotes the value of the
bounded linear functionalx� at the pointx. From standard
functional analysis results [13], we have(Rm)� = Rm,(l1)� = l1 and (l2)� = l2. For anyx 2 RN+1 andx� 2 RN+1, < x; x� >= NXk=0 (x(k)x�(k)) :
For anyx 2 l1 andx� 2 l1 (or for anyx 2 l2 andx� 2 l2), < x; x� >= 1Xk=0 (x(k)x�(k)) :

Given a convex coneP in X , it is possible to define
an ordering relation onX as follows: x1 � x2 if and
only if x1 � x2 2 P . The coneP defining this rela-
tion on X is called positive. Then it is natural to de-
fine a positive coneP� insideX� in the following way:P� = fx� 2 X� j< x; x� >� 0;8x 2 P g, This in turn
defines an ordering relation onX�. For any vector space
in this paper, the positive cone which defines an ordering
relation is the set consisting of elements with nonnega-
tive pointwise components. LetZ be vector spaces with
positive cone. A mappingG : X ! Z is convex ifG(tx1 + (1 � t)x2) � tG(x1) + (1 � t)G(x2) for allx1, x2 in X andt 2 R with 0 � t � 1.

Lemma 1 [13]: Let f be a real valued convex functional
defined on a convex subset
 of a vector spaceX , G
be a convex mapping ofX into a normed spaceZ, andH(x) = Ax� b is a map ofX into the finite dimensional
normed spaceY . Suppose thatA is linear, that0 2 Y
is an interior point offy 2 Y jH(x) = y for somex 2 
g
and that there exists anx1 2 
 such thatG(x1) < 0 andH(x1) = 0. Define the minimization problem:� = infx2
G(x)�0H(x)=0 f(x): (1)

Assume that� is finite. Then the dual problem is� = maxz�2Z�z��0y�2Y � infx2
 [f(x)+ < G(x); z� > + < H(x); y� >℄ :
III. M IXED H2=l1 OPTIMIZATION PROBLEM

The mixedH2=l1 optimization problem [11],[12] can
be stated as: Given̂T1 2 l1, T̂2 2 l2,V̂1 = [V1(0) � � � V1(m� 1) 1 ℄T 2 Rm+1;V̂2 = [V2(0) � � � V2(n� 1) 1 ℄T 2 Rn+1;
and a constant, find Q̂ 2 l1 such thatkT̂2 � Q̂V̂2k2 is
minimized andkT̂1 � Q̂V̂1k1 � .

For the above mixedH2=l1 optimization problem, in
order to make its feasible region nonempty, it is assumed
that > infQ̂2l1 kT̂1 � Q̂V̂1k1. In addition, we also assume

that all the poles of̂V1 are inside the open unit disk in
complex plane, i.e., formYi=1(� � �i) = �m + V1(m� 1)�m�1 + � � �+ V1(0);j�ij < 1, 8i 2 f1; � � � ;mg. Under these assumptions, we
have the following lemma.

Lemma 2 [12]: Suppose thatkT̂1 � Q̂V̂1k1 � . ThenkQ̂k1 � L, whereL = kT̂1k1+mQi=1(1�j�ij) .
Define� = nQ̂ 2 l1 ���kT̂1 � Q̂V̂1k1 � ; kQ̂k1 � Lo.

From lemma 2, it is easy to see another description of the
mixedH2=l1 optimization problem:� = infQ̂2� kT̂2 � Q̂V̂2k22 (2)

To obtain the dual problem of (2), we first rewrite (2) in
the form of (1). LetX = l2 � l1 � l1 � l1 � l1;




 = 8>>><>>>:x = 26664 �̂̂	+	̂�Q̂+Q̂� 37775��������� �̂ 2 l20 � 	̂+ 2 l10 � 	̂� 2 l10 � Q̂+ 2 l10 � Q̂� 2 l19>>>=>>>; ;Y = l1 � l2; Z = R2;f(x) = xT 26664 I 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 037775 x;G(x) = � 0 ET ET 0 00 0 0 ET ET �x� � L� ;H(x) = � 0 I �I V1 �V1I 0 0 V2 �V2 �x� � T̂1̂T2 �= Ax� b;
where �̂ = T̂2 � Q̂V̂2;	̂ = 	̂+ � 	̂� = T̂1 � Q̂V̂1; 	̂+ � 0; 	̂� � 0;Q̂ = Q̂+ � Q̂�; Q̂+ � 0; Q̂� � 0; Q̂+ + Q̂� � L;I = 24 1 010 . . .

35 ;
V1 = 266666666664

V1(0) 0
... V1(0)V1(m� 1) ...

. . .1 V1(m� 1) . . .
. . .1 . . .
. . .0 . . .
. . .

377777777775 ;
V2 = 266666666664

V2(0) 0
... V2(0)V2(n� 1) ...

. . .1 V2(n� 1) . . .
. . .1 . . .
. . .0 . . .
. . .

377777777775 ;E = [ 1 1 � � � ℄T :
With these definitions, (2) becomes� = infx2
G(x)�0H(x)=0 f(x)
which has the same form as (1). However, lemma 1 cannot
be applied to (2). This is becauseY = l1� l2 is infinite di-
mensional which does not satisfy the conditions of lemma
1. In this paper, this difficulty in setting up the dual prob-
lem of (2) is overcome by considering an approximation
of (2).

IV. T WO APPROXIMATION PROBLEMS AND THEIR

DUALS8N 2 Z+, define�+N = nQ̂ 2 RN+1 ���Q̂ 2 �o :
The variableN -truncation problem of (2) is constructed as�+N = infQ̂2�+N kT̂2 � Q̂V̂2k22: (3)

The mixedH2=l1 problem (2) can be approximated from
upper side by the variableN -truncation problem (3), as
stated in the following lemma.

Lemma 3 [12]: �+0 � �+1 � �+2 � � � � andlimN!1�+N = �.8N 2 Z+, define theN -th truncation operator�N : le ! RN+1
as �N Ĝ = G(0) +G(1)� + � � �+G(N)�N :
Let X = R5N+2m+n+5;
 = 8>>><>>>:x = 26664 �̂̂	+	̂�Q̂+Q̂� 37775��������� �̂ 2 RN+n+10 � 	̂+ 2 RN+m+10 � 	̂� 2 RN+m+10 � Q̂+ 2 RN+10 � Q̂� 2 RN+1 9>>>=>>>; ;Y = RN+m+1 �RN+n+1; Z = R2;f(x) = xT 26664 I 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 037775x+ �(N);G(x) =� 0 ETN+m ETN+m 0 00 0 0 ETN ETN �x� �  � �(N)L � ;H(x) =� 0 I �I U1;N+m �U1;N+mI 0 0 U2;N+n �U2;N+n �x� ��N+mT̂1�N+nT̂2 �= Ax� b
whereI denotes the identity matrix with a proper dimen-
sion,U1;N+m = 26666666664

V1(0) 0
...

. . .V1(m� 1) . . . V1(0)1 . . .
...

. . . V1(m� 1)0 1
37777777775



which is a matrix inR(N+m+1)�(N+1),U2;N+n = 26666666664
V2(0) 0

...
. . .V2(n� 1) . . . V2(0)1 . . .

...
. . . V2(n� 1)0 1

37777777775
which is a matrix inR(N+n+1)�(N+1),EN+m = 24 1

...135 2 RN+m+1;EN = 24 1

...135 2 RN+1;�(N) = < T̂2 � �N+nT̂2; T̂2 � �N+nT̂2 >;�(N) = T̂1 � �N+mT̂11 :
With these definitions, (3) can be expressed in the form of
(1). It is easy to see thatf(x) so constructed is a convex
functional,
 is a convex subset,G(x) is a convex map,Y
is finite dimensional,A is linear,�+N is finite, 0 2 Y is
an interior point offy 2 Y jH(x) = y for somex 2 
g,
there existsx1 2 
 with G(x1) < 0 andH(x1) = 0.
Hence, lemma 1 can be applied to derive the dual of the
problem (3)�+N = maxy�12RN+m+1y�22RN+n+10�z�12R0�z�22R infx2
 h< �̂; �̂ > +�(N) +< 	̂+ � 	̂� � �N+mT̂1 +U1;N+m(Q̂+ � Q̂�); y�1 >+ < �̂� �N+nT̂2 +U2;N+n(Q̂+ � Q̂�); y�2 >+ < ETN+m(	̂+ + 	̂�)�  + �(N); z�1 >+ < ETN (Q̂+ + Q̂�)� L; z�2 >i= maxy�12RN+m+1y�22RN+n+10�z�12R0�z�22R infx2
 h< �̂; �̂ > + < �̂; y�2 >+ < 	̂+;EN+mz�1 + y�1 > + < 	̂�;EN+mz�1 � y�1 >+ < Q̂+;ENz�2 +UT1;N+my�1 +UT2;N+ny�2 >+ < Q̂�;ENz�2 �UT1;N+my�1 �UT2;N+ny�2 >+�(N)� <  � �(N); z�1 > � < L; z�2 >� < �N+mT̂1; y�1 > � < �N+nT̂2; y�2 >i :
As �+N 2 [0;1), it is evident thatEN+mz�1 + y�1 � 0:
This is because ifEN+mz�1 + y�1 < 0, 	̂+ can be chosen
as such a large value that�+N < 0, which contradicts the

fact that�+N � 0. Similarly, it can be obtained thatEN+mz�1 � y�1 � 0;ENz�2 +UT1;N+my�1 +UT2;N+ny�2 � 0;ENz�2 �UT1;N+my�1 �UT2;N+ny�2 � 0;
and the above infimization is achieved when	̂+ = 0,	̂� = 0, Q̂+ = 0 andQ̂� = 0. Moreoverinfx2
 h< �̂; �̂ > + < �̂; y�2 > +�(N)� <  � �(N); z�1 > � < L; z�2 >� < �N+mT̂1; y�1 > � < �N+nT̂2; y�2 >i= infx2
 h< �̂ + y�22 ; �̂ + y�22 > � < y�22 ; y�22 >+�(N)� <  � �(N); z�1 > � < L; z�2 >� < �N+mT̂1; y�1 > � < �N+nT̂2; y�2 >i= infx2
 �� 14 < y�2 ; y�2 > +�(N)� <  � �(N); z�1 > � < L; z�2 >� < �N+mT̂1; y�1 > � < �N+nT̂2; y�2 >i :
Consequently, the dual of the variableN -truncation prob-
lem is�+N = max��14 < y�2 ; y�2 > � < �N+mT̂1; y�1 >� <  � �(N); z�1 > � < L; z�2 >+ �(N)� < �N+nT̂2; y�2 >i : (4)

s.t. �EN+mz�1 � y�1 � EN+mz�1 ;�ENz�2 � UT1;N+my�1 +UT2;N+ny�2 ;UT1;N+my�1 +UT2;N+ny�2 � ENz�2 ;y�1 2 RN+m+1; y�2 2 RN+n+1;0 � z�1 2 R; 0 � z�2 2 R:8N 2 Z+, define��N = nQ̂ 2 l1 ���k�N(T̂1 � Q̂V̂1)k1 � ; kQ̂k1 � Lo :
Obviously, ��0 � ��1 � ��2 � � � � � �:
The constraintN -truncation problem of (2) is constructed
as ��N = infQ̂2��N �N (T̂2 � Q̂V̂2)22 : (5)

The mixedH2=l1 problem (2) can be approximated from
lower side by this constraintN -truncation problem, as
summarized in the following lemma.

Lemma 4 [12]: ��0 � ��1 � ��2 � � � � andlimN!1��N = �.



Using the same method for the dual of the variableN -truncation problem, the dual of the constraintN -
truncation problem can be obtained as:��N = max ��14 < y�2 ; y�2 >� < ; z�1 > � < L; z�2 >� < �N T̂1; y�1 > � < �N T̂2; y�2 >i : (6)

s.t. �ENz�1 � y�1 � ENz�1 ;�ENz�2 � VT1Ny�1 +VT2Ny�2 � ENz�2 ;y�1 2 RN+1; y�2 2 RN+1;0 � z�1 2 R; 0 � z�2 2 R:
HereV1N = 264 V1(0) � � � 0

...
.. .

...V1(N) � � � V1(0)375 2 R(N+1)�(N+1);V2N = 264 V2(0) � � � 0
...

. . .
...V2(N) � � � V2(0)375 2 R(N+1)�(N+1):

V. THE DUAL OF MIXED H2=l1 PROBLEM

DefineW = 8><>:! = 264 y�1y�2z�1z�2 375������� y�1 2 l1; y�2 2 l20 � z�1 2 R; 0 � z�2 2 R�Ez�1 � y�1 � Ez�1�Ez�2 � VT1 y�1 +VT2 y�2 � Ez�29>=>;
and'(!) = �14 < y�2 ; y�2 > � < ; z�1 > � < L; z�2 >� < T̂1; y�1 > � < T̂2; y�2 > :
Construct an infinite dimensional optimization problem in
the dual space as: � = sup!2W '(!): (7)8N 2 Z+, defineW+N asW+N = 8>>><>>>:! ��������� y�1 2 l1; y�2 2 l20 � z�1 2 R; 0 � z�2 2 R�Ez�1 � y�1 � Ez�1��N (Ez�2) � �N �VT1 y�1 +VT2 y�2��N �VT1 y�1 +VT2 y�2� � �N (Ez�2) 9>>>=>>>; :
The constraintN -truncation problem of (7) can be con-
structed as �+N = sup!2W+N '(!): (8)

The following proposition is a direct consequence ofW+N �W .

Proposition 1: For the problems (7) and (8),�+N � �.

However,sup!2W+N '(!) = sup!2W+N �� 14 < �N+ny�2 ;�N+ny�2 >� < ; z�1 > � 14 < y�2 � �N+ny�2 ; y�2 � �N+ny�2 >� < L; z�2 > � < �N+mT̂1;�N+my�1 >� < T̂1 � �N+mT̂1; y�1 � �N+my�1 >� < �N+nT̂2;�N+ny�2 >� < T̂2 � �N+nT̂2; y�2 � �N+ny�2 >i= sup!2W+N �� 14 < �N+ny�2 ;�N+ny�2 >� < ; z�1 > � < L; z�2 >� < (y�2 � �N+ny�2)=2 + (T̂2 � �N+nT̂2);(y�2 � �N+ny�2)=2 + (T̂2 � �N+nT̂2) >+ < T̂2 � �N+nT̂2; T̂2 � �N+nT̂2 >� < �N+mT̂1;�N+my�1 >+z�1kT̂1 � �N+mT̂1k1� < �N+nT̂2;�N+ny�2 >i= sup!2W+N �� 14 < �N+ny�2 ;�N+ny�2 > +�(N)� <  � �(N); z�1 > � < L; z�2 >� < �N+mT̂1;�N+my�1 > � < �N+nT̂2;�N+ny�2 >i
and the constraint! 2W+N can be changed into�EN+mz�1 � �N+my�1 � EN+mz�1 ;�ENz�2 � UT1;N+m(�N+my�1) +UT2;N+n(�N+ny�2)UT1;N+m(�N+my�1) +UT2;N+n(�N+ny�2) � ENz�2�N+my�1 2 RN+m+1;�N+ny�2 2 RN+n+10 � z�1 2 R; 0 � z�2 2 R:
Thus, it is verified that the problem (8) is exactly the prob-
lem (4), which leads to the following proposition.

Proposition 2: For the problems (4) and (8),�+N = �+N .8N 2 Z+, defineW�N = 8><>:! ������� y�1 2 RN+1; y�2 2 RN+1; z�1 2 R;z�2 2 R; z�1 � 0; z�2 � 0;�Ez�1 � y�1 � Ez�1 ;�Ez�2 � VT1 y�1 +VT2 y�2 � Ez�2 9>=>; :
The variableN -truncation problem of (7) can be con-
structed as ��N = sup!2W�N '(!): (9)

The following proposition is the direct result ofW�N �W .

Proposition 3: For the problems (7) and (9),��N � �.

In the same manner, the optimization problem (9) can be
transformed into problem (6), and we have the following
proposition.



Proposition 4: For the problems (6) and problem (9),��N = ��N .

With lemmas 3–4 and propositions 1–4, we now can
summarize the main result of this paper with the following
proposition.

Proposition 5: For the problems (2) and (7),� = �.

VI. CONCLUSIONS

The optimization problem in the dual space sheds new
lights on the mixedH2=l1 optimization problem. It can be
seen that the well-known lemma 1 cannot be applied to the
primal problem (2) directly. The idea in verifying the rela-
tion between the primal problem (2) and its dual problem
(7) is to utilize their corresponding approximation prob-
lems (3) and (5) for which lemma 1 can be applied directly.
It is interesting to notice that the variable truncation in the
primal space becomes the constraint truncation in the dual
space, and the constraint truncation in the primal space be-
comes the variable truncation in the dual space. The dual
space approach is useful in research on the mixedH2=l1
optimization problem, as it is often that the dual problem
can be solved more easily than the primal problem.
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