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Abstract— The paper considers the mixedH2 /11 optimization @ mixed performance control problem can be changed into

problem, which minimizes the Hz-norm of the closed loop map g special optimization problem with two kinds of norms.
while maintaining the I1-norm of the other closed loop map at a

prescribed level. Using the duality theory of Lagrange mulipliers The topic of this paper is mixeH- /I, control. A scalar
and an approximation analysis, an optimization problem in tie dual discrete time mixedls /1, control problem was addressed
space is constructed which has the same optimal value as thémal . 2/°1 . _p .
mixed H> /11 optimization problem. by Voulgaris [8],[9] through minimizing théZ>-norm of
the closed loop map while maintaining itsnorm at a
prescribed level. Based on the duality theory, a finite step
method was presented to solve exactly the mikkg
optimization problem. A more general class of discrete
|. INTRODUCTION time mixedH,/l; control problems, in which Voulgaris’
problem is a special case, was addressed in [10],[11].
Most controller synthesis problems can be formulatedthis class of problems is to minimize thé,-norm of
as follows: Given a planP, design a controlle€' such the closed loop map while maintaining thenorm of the
that the closed loop system is stable and satisfies sorother closed loop map at a prescribed level. An approx-
given (optimal) performance criteria. When the optimalmation analysis on its solution in primal space was pre-
performance criterion is thél-norm (H»-norm orl;-  sented in [11],[12]. This paper is devoted to construct the
norm respectively) of the closed loop transfer functiorjual problem of this general mixeds, /I; problem.
based on the Youla parameterization [1] — a parameteriza-
tion of the class of controllers which stabilize the plahg t
controller synthesis problem can be changed intaHhe
norm (H»-norm orl;-norm r ively) model matchin ,
orm (H-norm orl,-norm respectively) model matching Let R denote the field of real numberB denote the
problem — the problem of finding the optimal stable free ;
; L m-dimensional real vectors, arifl. denote the nonnega-
parameter which minimizes thH,,-norm (Hx-norm or

: tive integers. A causal SISO LTI transfer functiGhcan
l;-norm respectively) of a map of the free parameter. Corb- .
) ; e described as
sequentlyH ., H> andl; control designs have been intro-

duced respectively in [2]-[4]. O G(0) + G(A + G@)N? + -

Keywords— I1 control, H2 control, approximate analysis, La-
grange multiplier theory.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

Mixed performance controls, such as mix&d/H.,
control [5], mixed!, /H,, control [6], mixedl,/H> con- \yhere G(k) € R, Yk € Z,. As G can be

trol [7] and mixedH, /I, control [8], have been the pole represented uniquely by its impulse response sequence
of attraction for many researchers lately. Mixed perfor G(0) G1) G(2) ___]T ¢ and its impulse response

mance control can directly accommodate realistic situasgq,ence are not differentiated in notation throughost thi

tions where a system must satisfy several different perfo{)‘aper. Define

mance constraints. Based on the Youla parameterization,
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For anyG’ € lo, thels-norm of G is given by
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For anyG € I», thel,-norm of G is

oo

> (G(R))*.

k=0

I1Gll2 =

|G|l is also theH,-norm ofG. For anyG € Iy, thel;-
norm ofG is

Gl =D 1G]
k=0

It isAeasin seenthdf C I, C I, and thatv(?l, ég € lq,
G1Gs € 14.

Let X be a normed linear space. The space of V2

all bounded linear functionals oX is denoted as\*,
equipped with the naturally induced norm. For ang X
andz* € X*, < z,2* > denotes the value of the
bounded linear functionaf* at the point:. From standard
functional analysis results [13], we hay&™)" = R™,
(I)" = Iy and(ls)" = Il,. Foranyz € RN+ and
¥ € RN+1,

N
<z, Tt >= Z (z(k)z*(k)) .
k=0

For anyx € [; andz* € [l (or for anyx € [, and
r* € 12),

<z at>=Y (x(k)a*(k)).
k=0

Given a convex coné in X, it is possible to define
an ordering relation orX as follows: z; > =z if and
only if xy — z2 € P. The coneP defining this rela-
tion on X is called positive. Then it is natural to de-
fine a positive coné”® inside X* in the following way:
P® ={z* € X*|<z,2* >>0,Vz € P}, This in turn
defines an ordering relation o¥i*. For any vector space

in this paper, the positive cone which defines an ordering

Lemma 1[13]: Let f be a real valued convex functional
defined on a convex subsgt of a vector spaceX, G
be a convex mapping oX into a normed spac#, and
H(z) = Az — bis a map ofX into the finite dimensional
normed spac&”. Suppose thatl is linear, that) € YV

is an interior pointofy € Y |H (z) = y for somez € 1}
and that there exists an € Q such thaiG(x;) < 0 and
H(z;) = 0. Define the minimization problem:
inf f(x).

G(2)<0
H(z)=0

p= (2)

Assume thay is finite. Then the dual problem is

p= max inf [f()+ < G(@)," > + < H(z),y" >].
ey e
y*EY*

I1l. MIXED Hz/ly OPTIMIZATION PROBLEM

The mixedH,/l; optimization problem [11],[12] can
be stated as: Giveh, € [1, T, € I,

A

g Vitm—1) 1]" € R™,

Va(n—1) 1]" € R,

[V1(0)
[V2(0)

and a constant, find Q € I; such that|T, — QVs|, is
minimized and|7; — QVi||1 < 7.
For the above mixed?,/l; optimization problem, in

order to make its feasible region nonempty, it is assumed
thaty > inf |77 — @V4]]:. In addition, we also assume
QEel

that all the poles of/; are inside the open unit disk in
complex plane, i.e., for

m

[T =2) = A"+ Vilm = DA™ -+ 1 (0),

i=1
[Ail < 1,Vi € {1,---,m}. Under these assumptions, we
have the following lemma.
Lemma 2[12]: Suppose thaiT, — QVi|l; < ~. Then
|Q|l: < L, whereL = M

[Ta=1xD
i=1
Defines = {Q € 1t [ITy = QVill < lIQl <L }.
From lemma 2, it is easy to see another description of the
mixed H /1, optimization problem:

= inf ||To — QVal3 )
QEE

relation is the set consisting of elements with nonnega-

tive pointwise components. Leéf be vector spaces with
positive cone. A mappings : X — Z is convex if
G(try + (1 — t)zs) < tG(x1) + (1 — t)G(x2) for all
z1, 2 in X andt € Rwith0 <t < 1.

To obtain the dual problem of (2), we first rewrite (2) in
the form of (1). Let
X 12X11Xl1><l1><11,
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IV. TWO APPROXIMATION PROBLEMS AND THEIR

vy (| 0< \1@ el DUALS
QO = Sa=|¥_[|l0<T_ €l ¢,
Q+[|05Qr €l VN € Z,, define
QRQ-110<Q-€h . N
Y = LixbZ=FR, ey ={Qe " |Qec}.
(I) 8 8 8 8 The variableV-truncation problem of (2) is constructed as
f@ = 2"10 00 0 0}z, pen = inf [Ty~ QVal3. 3)
000 0O Qeéin
0 00 0O . .
o The mixedH- /I, problem (2) can be approximated from
G(z) {0 E' E OT OT] x {7} , upper side by the variabl& -truncation problem (3), as
o 0 0 E E L stated in the following lemma.
H(z) = {0 I -1V, _Vl] - {1:1] Lemma 3 [12]: pio > pg1 > pyo > - and
I 0 0 Vy -V, T im gy = .
= Ax b, N—o0
where VN € Z,, define thelV-th truncation operator
& =T, - Qh, Ty :l, — RVH!
b=0, -0 =T, -QV;, ¥, >0, ¥ >0, as
Q=Q+-0Q-,Q+>0,Q->0,Q++Q- <L, TnG = G0) + G(DA + - - + G(N)AN.
[1 0 Let
I = 1
) X — R5N+2m+n+5
0 . . .
_ i @ & ¢ RN+t
Vl(o) 0 \?+ 0< \?+ € RN+m+1
V1(0) Q = ¢z=|¥_||0<T_eRNImHL 5,
Vi(m—1 : Q+ || 0<QyeRMH
vV, = 1(m—1) , Q 1l 0<Q eRN#!
1 ‘/'1(m — ]_) Y = RN+m+1 % RN+n+1,Z — R2,
1 I 0 0 0 07
0 00 O0O
L0 . f@) = 27|00 0 0 0|z+aN),
- V2(0) 07 00000
. VQ(O) 0 0 0 0 0l
Va(n —1) : G(z) = . )
V, = , 0 Ex.,, Exim O 0 . v — B(N)
1 Va(n —1) 0 0 0 ET ET L |
1 H(ZL') = .
0 {0 I I Uinim ~Uivim], [rmm@]
L . - I 0 0 Usntn —Uznin IninTo
E = [1 1 ---]". =Azx—b

With these definitions, (2) becomes

p=inf f(z)

wherel denotes the identity matrix with a proper dimen-
sion,

H(o)Z0 [ V1(0) 0 ]
which has the same form as (1). However, lemma 1 cannot '
be applied to (2). This is becau¥e= /; x I5 is infinite di- Vi(m —1) V1(0)
mensional which does not satisfy the conditions of lemma Ui Ngm = }
1. In this paper, this difficulty in setting up the dual prob- 1 :
lem of (2) is overcome by considering an approximation Vi(m —1)
of (2). L 0 1 _




which is a matrix inR(N+m+1)x(N+1)

[ V2(0) 0
Va(n — 1 Vs (0
U27N+n = Z(n ) 2.( )
1
Vg(n—l)
L 0 1

which is a matrix inR(N+n+1)x(N+1)

11
EN+m = GRN+m+1a
L1]
11
Exv = |:|eRrV,
L1]
a(N) = <T2—FN+nT2,T2—FN+nT2>
B(N) = Tl_FN—i-mTl‘l

J

)

fact thatu x> 0. Similarly, it can be obtained that

* T * T *
Enzs + Ul yym¥i + U nvin¥s

*
EN22 —

EN-N-mZI - y;

)

)

0,

(AVAR VARV

T * T *
Ui nvim¥i — Uz nyn¥s

and the above infimization is achieved Whm

U_=0,Q; =

zeQ

—<v-BNN

0 andQ, = 0. Moreover

inf [< B,% >+ < &,y5 > +a(N)

),2f > — < L,z >

- < FN+mT17yI > =< FN-HLTvaS >

= inf
zeQ
+a(N)—

[<b+%,6+%>- <% ¥>
<y-BWN

)27 > —< L,z5 >

= < TnimTh,y7 > — < TnynTo,y5 >

= inf
zEQ

<7y-B(N

(-1 <ws,y5 > +a(N)
), 2 >—< L,z5 >

— < TnamTi,yt > — < DninTo, v >] .

With these definitions, (3) can be expressed in the form gfgnsequently, the dual of the varia¥etruncation prob-
(1). Itis easy to see thaft(x) so constructed is a convex |gm is

functional,Q} is a convex subsef{(z) is a convex mapy’
is finite dimensionalA is linear, u n is finite,0 € Y is
an interior point of{y € Y |H(z) = y for somez € Q},
there existsz; € Q with G(z1) < 0 andH(z1) = 0.

paN =

Hence, lemma 1 can be applied to derive the dual of the

problem (3)

max
yreRNFmA1 2€Q

v3eRN+n+1
0<z¥€R
0<z}€R

[N =

< ‘~I»’+ — \I’_ — FN+mT1 + Uy N+m(Q+ - Q )ayi( >

+ <@ —TnypnTo+ Unnyn(Qr — Q). 5 >
+ <ER, (T +0) - 7+B( ), 21 >

+<ER(Q4++Q ) -1L,z
= max 1nf[<(I><I>>+<<I>y2

yy eRN+m+1 z€EQ

yieRrN+n+1
ogzi‘en
0<:z}€R

+ < \I’+,EN+m21 +y1 >+ < \I’ EN+mzl
+< Q+7EN22 +U{ Ntm¥l T+ u?l Nin¥s >

+ < Q yEnzs — U1 N+my1 - U§N+ny2
+a(N)— <y —B(N),zf > — < L,z >

— < DniymTi,yt > — < TninTo, ys >

As uin € ]0,00), itis evident that

Enimz] +y7 > 0.

This is because Exmzf +y; < 0, ¥, can be chosen Lemma 4 [12]: po < p1 <
as such a large value that y < 0, which contradicts the 1\}%

inf |< &,& > +a(N) +

-y >

s.t.

1 .
max | —- < 2,92 > — < Tngm T, 7 >

<y=BW\N),2{ >—<L,25 >

a(N)= < TninT, 5 >] . 4)
~Enim2zt <yt <Enimzl,

_ENZ; S U?lsz—i-myf + U§N+ny;7

T * T * *
Ui nim¥1 + Us nvin¥s < Enzs,

yf c RN+m+1’y; c RN+n+1’

0<z2f€R,0<2z €R.

VN € Z,, define

fN—{Q

Obviously,

e |ITn (71 = Q) < % IIQ <L}

§~0D8-1D& 2D D&

The constrainfV-truncation problem of (2) is constructed

as

jr.

v= il [ov@-on) o)

Qee_n

The mixedH- /I, problem (2) can be approximated from

lower side

by this constrainV-truncation problem, as

summarized in the following lemma.

po < --- and

im p_y = p.



Using the same method for the dual of the variabl&he following proposition is a direct consequence of
N-truncation problem, the dual of the constraift Wiy D W.

truncation problem can be obtained as: Proposition 1: For the problems (7) and (8, x > v.

1
pon = max =2 <ys,yp > However,
1 * *
su w) = su —=<T 5T 5 >
- <> —<Lz> wewliN ) weWIiN (=% <Tovents, Tivnts
. . 1
- <FNT17yI:>_<]-—‘NT27:U)2k >|. (6) _<z’zi>_1 <Fy;_;N;ny;,y§*_FN+ny§ >
— < L,z5 > — <I'nymT1, UnpmyT >
St —En2i <y <Enzj, —<T - FN+mT1aZ/f —INimyi >
—Enzs < VInyi + Voyys <Enzs, — < OninTe, Cnanyl >
* N+1 * N+1 N N
yr € 7Ty, € BT, = <Ty —TninTo,y5 — TNinys >]
0<% €R,0<L2; €ER. = sup [_i<pN+ny;,rN+ny5>
w€W+N
Here —<v,2{ >—<L,z5 >
Vi(0) -~ 0 = < (¥ = Tngny3)/2 4+ (T2 = DngnTh),
Viy = : - .| e RINFDX(N+1) W5 — Inny3) /2 + (> — D) >
1IN : . : ’ + <Ty —TUnynTo,To — TninTs >
Vi(N) -+ VAi(0) = < Inem T, Cngmyt >
V2(0) - 0 +21*||T1 - FN+mT1||1— < FN+nT2,FN+n?J§ >]
Von = : : € RINVFIX(NHD), = sup [—§ <Tnin¥s, Dnnys > +a(N)
Va(N) - Va(0) o

—<y—=B(N),zf >—< L,z} >

— < TnimTi,T *> — < TnynDs, T *>]
V. THE DUAL OF MIXED H,/l; PROBLEM Nm it N +m N4nl2, 2 N4ndf2

and the constrainé € W, y can be changed into

Define
yt Yt € lso, Yl €Ly —Enim2z] S nimyi < Engmzd,
_ _ y% 0< Zlf €R, OZS 23 €R —Enz5 < U{N+m(rN+myf) + U{N+n(rN+ny§)

W=quw=1% “Ezf <y! < Bz Ul N (ONmyi) + U3 oy (Dvanys) < Enzg

21| =Bz < VTyr + VIy; < Ez Cnamyi € RNTH Ty nys € RNFH

0<zf€R,0<2z €R.
and
Thus, it is verified that the problem (8) is exactly the prob-

p(w) = _i <YLY > — <yt >—< Lz > lem (4), which leads to the following proposition.

Proposition 2: For the problems (4) and (8).. n = vin.

VN € Z,, define
Construct an infinite dimensional optimization problem in

— < Tyl >—<Trys >.

the dual space as: yi € RNt y5 € RN 2f € R,
_ 23 €ER,z7 > 0,25 >0,
v = sup pw). 0 T Tl I e o
wew —Ez5 < V{yi +Viy; <Ez;
VN € Z,, defineW, y as The variable N-truncation problem of (7) can be con-

structed as

Y €loo,y3 €1 _ 9
0<zf€eR0<z;€ER V_N wesblvliNsO(w)- 9)

Win=(w —Ez; <y; <Ezf
—I'n (Ez3) <Tn (Viy; + Viy3)
Ty (Viyt +VIys) < Ty (Ez3)

The following proposition is the direct result &F_y C
w.

Proposition 3: For the problems (7) and (%), x < v.
The constraintV-truncation problem of (7) can be con-

structed as Inthe same manner, the optimization problem (9) can be

vin = sup p(w). 8) transfo_rr_ned into problem (6), and we have the following
WEW4N proposition.



Proposition 4: For the problems (6) and problem (9),
H—N = U_N.

With lemmas 3—4 and propositions 1-4, we now can
summarize the main result of this paper with the following
proposition.

Proposition 5: For the problems (2) and (7), = v.

VI. CONCLUSIONS

The optimization problem in the dual space sheds new
lights on the mixedd/l; optimization problem. It can be
seen that the well-known lemma 1 cannot be applied to the
primal problem (2) directly. The idea in verifying the rela-
tion between the primal problem (2) and its dual problem
(7) is to utilize their corresponding approximation prob-
lems (3) and (5) for which lemma 1 can be applied directly.
It is interesting to notice that the variable truncationtia t
primal space becomes the constraint truncation in the dual
space, and the constraint truncation in the primal space be-
comes the variable truncation in the dual space. The dual
space approach is useful in research on the miXedl
optimization problem, as it is often that the dual problem
can be solved more easily than the primal problem.
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