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Communiation Group S ChenMotivation

Modelling from data: generalization, interpretability, knowledge extration=) all depend on ability to onstrut appropriate sparse models Main engine or riterion in most of subset model seletion algorithms:minimizing training mean square error It is highly desired to be able to onstrut sparse models by:diretly maximizing model generalization apability Cross validation via delete-one approah:leave-one-out (LOO) test sore, a measure of generalization
2Communiation Group S ChenDelete-1 Approah with Leave-One-Out Sore

 Conept of delete-1 with assoiated leave-one-out test sore For linear-in-the-parameter models, no need to sequentially splittingtraining data set and repeatedly estimating assoiated modelsEven so and even with only inrementally minimizing LOO test sore,omplexity beomes prohibitive for a modest model set Adopting orthogonal forward regression, model onstrution using LOOtest sore beomes omputationally a�ordable Proposed OLS: inrementally minimizing LOO test sore (generalizationerror) using just one training data setOriginal OLS: inrementally minimizing training error
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Communiation Group S ChenRegression Model

y(t) = nMXi=1 �i�i(t) + e(t) = �T (t)� + e(t); 1 � t � Ny(t): target or desired output, e(t): model error, �i: model weights and� = [�1 � � � �nM ℄T , �i(t): regressors and �(t) = [�1(t) � � ��nM(t)℄T , nM :number of andidate regressors, and N : number of training samples.De�ningy = [y(1) � � � y(N)℄T ; e = [e(1) � � � e(N)℄T ; � = [�1 � � ��nM ℄with �i = [�i(1) � � ��i(N)℄T , leads to matrix formy = �� + e

Note that �(t) is t-th row of � and �i is i-th olumn of �.
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Communiation Group S ChenOrthogonalizationOrthogonal deomposition: � =WA, where

A = 2664 1 a1;2 � � � a1;nM0 1 . . . ...... . . . . . . anM�1;nM0 � � � 0 1
3775

and W = [w1 � � �wnM ℄ with orthogonal olumns: wTi wj = 0, if i 6= j.Let g = [g1 � � � gnM ℄T , satisfying A� = g. Regression model beomesy =Wg + eor y(t) = wT (t)g + e(t); 1 � t � NNote that w(t) is t-th row ofW and wi is i-th olumn ofW.
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Communiation Group S ChenLeave-One-Out Generalization ErrorDenoting k-term model error as ek(t), then LOO error for k-term model ise(�t)k (t) = ek(t)�k(t)where super-index (�t) indiates that the model is obtained with t-th trainingsample removed, and LOO error weighting �k(t) is omputed reursively�k(t) = �k�1(t)� w2k(t)wTkwk + �where � is a regularization parameter.The LOO mean square error or test sore is given by:

Jk = E ��e(�t)k (t)�2� = 1N NXt=1 e2k(t)�2k(t) 6Communiation Group S ChenModel Constrution Algorithm At seletion step k, a model term is seleted if it produes the smallestLOO test sore Jk among the andidate model terms k to nM .In this algorithm, Jk = 1N NXt=1 e2k(t)�2k(t)This should be ompared with original OLS with

Jk = 1N NXt=1 e2k(t) The model onstrution proess is fully automati, and ends with an�-term model when �J = Jn�+1 � Jn� � 0User does not need to speify any separate termination riterion.
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Communiation Group S ChenA Simple Salar Funtion Modelling

f(x) = sin(x)x ; � 10 � x � 10Give y = f(x) + � and x. 400 x uniform distribution in [�10; 10℄ and� zero mean Gaussian with variane 0.04. First 200 samples as trainingset, the other 200 as testing set. Additional test set with 200 noise-free f(x).The RBF Gaussian kernel funtion with variane of 10.0. Eah training datawas onsidered as a andidate RBF enter and nM = 200. Regularizationparameter �xed to � = 0:001.� Modelling auray(mean�std) averagedover ten di�erent setsof data realizations
model terms 7:8� 0:6MSE (noisy training set) 0:037703� 0:003708LOO test sore 0:040725� 0:003893MSE (noisy test set) 0:041692� 0:002458MSE (noise-free test set) 0:001749� 0:000630
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Communiation Group S Chen� Training MSE and LOO testsore in log sale for a typialset of noisy training data. Notethe algorithm terminated witha 7-term model when J8 =0:041589 � J7 = 0:041589.
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Communiation Group S ChenEngine Data ModellingSystem input u(t) and output y(t)
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sampleFirst 210 data points for modelling, last 200 points for testingRBF model: ^y(t) = ^fRBF (y(t� 1); u(t� 1); u(t� 2))Gaussian kernel funtion variane 1.69. Regularization parameter �xed to10�7 10Communiation Group S ChenModelling Results� Training MSE and LOOtest sore in log sale forengine data set. Note thealgorithm terminated witha 23-term model whenJ24 = 0:000548 � J23 =0:000548.
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� Modelling auray for enginedata set. model terms 23MSE over training set 0.000449LOO test sore 0.000548MSE over test set 0.000487
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Communiation Group S Chen� Modelling error y(t)� ^y(t) by the onstruted 23-term model:
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Communiation Group S ChenConlusions

� A fully automati model onstrution algorithm for linear-in-the-parameters nonlinear models has been developed based diretly onmaximizing model generalization apability� The leave-one-out test sore in the framework of regularized orthogonalleast squares has been derived and, in partiular, an eÆient reursiveomputation formula for LOO errors has been presented� The proposed algorithm is based on orthogonal forward regression withLOO test sore to optimize model struture without resorting to anothervalidation data set for model assessment
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