Motivation

Modelling from data: generalization, interpretability, knowledge extraction \implies all depend on ability to construct **appropriate** sparse models

 \bigcirc Main engine or criterion in most of subset model selection algorithms:

minimizing training mean square error

 \bigcirc It is highly desired to be able to construct sparse models by:

directly maximizing model generalization capability

 \bigcirc Cross validation via delete-one approach:

leave-one-out (LOO) test score, a measure of generalization

Electronics and Computer Science

2 S Chen

Regression Model

$$y(t) = \sum_{i=1}^{n_M} \theta_i \phi_i(t) + e(t) = \boldsymbol{\phi}^T(t)\boldsymbol{\theta} + e(t), \ 1 \le t \le N$$

y(t): target or desired output, e(t): model error, θ_i : model weights and $\boldsymbol{\theta} = [\theta_1 \cdots \theta_{n_M}]^T$, $\phi_i(t)$: regressors and $\phi(t) = [\phi_1(t) \cdots \phi_{n_M}(t)]^T$, n_M : number of candidate regressors, and N: number of training samples.

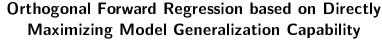
Defining

$$\mathbf{y} = [y(1) \cdots y(N)]^T, \quad \mathbf{e} = [e(1) \cdots e(N)]^T, \quad \mathbf{\Phi} = [\boldsymbol{\phi}_1 \cdots \boldsymbol{\phi}_{n_M}]$$

with $\phi_i = [\phi_i(1) \cdots \phi_i(N)]^T$, leads to matrix form

 $\mathbf{v} = \mathbf{\Phi}\mathbf{\theta} + \mathbf{e}$

Note that $\phi(t)$ is t-th row of Φ and ϕ_i is i-th column of Φ



S. Chen^{\dagger} and X. Hong^{\ddagger}

[†] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ E-mail: sqc@ecs.soton.ac.uk

> [‡] Department of Cybernetics University of Reading, Reading RG6 6AY E-mail: x.hong@reading.ac.uk

Presented at CACSCUK'2003, Luton, U.K., 20 September, 2002

Electronics and Computer Science	University of Southampton	1
Communication Group		S Chen

Delete-1 Approach with Leave-One-Out Score

○ Concept of delete-1 with associated leave-one-out test score

○ For linear-in-the-parameter models, no need to sequentially splitting training data set and repeatedly estimating associated models

Even so and even with only incrementally minimizing LOO test score, complexity becomes prohibitive for a modest model set

○ Adopting orthogonal forward regression, model construction using LOO test score becomes computationally affordable

○ Proposed OLS: incrementally minimizing LOO test score (generalization error) using just one training data set

Original OLS: incrementally minimizing training error

4

3

Communication Group

Leave-One-Out Generalization Error

Denoting k-term model error as $e_k(t)$, then LOO error for k-term model is

$$e_k^{(-t)}(t) = \frac{e_k(t)}{\beta_k(t)}$$

where super-index (-t) indicates that the model is obtained with *t*-th training sample removed, and LOO error weighting $\beta_k(t)$ is computed recursively

$$\beta_k(t) = \beta_{k-1}(t) - \frac{w_k^2(t)}{\mathbf{w}_k^T \mathbf{w}_k + \lambda}$$

where λ is a regularization parameter.

The LOO mean square error or test score is given by:

$$J_{k} = E\left[\left(e_{k}^{(-t)}(t)\right)^{2}\right] = \frac{1}{N}\sum_{t=1}^{N}\frac{e_{k}^{2}(t)}{\beta_{k}^{2}(t)}$$

Electronics and Computer Science

Communication Group

6

A Simple Scalar Function Modelling

$$f(x) = \frac{\sin(x)}{x}, -10 \le x \le 10$$

Give $y = f(x) + \epsilon$ and x. 400 x uniform distribution in [-10, 10] and ϵ zero mean Gaussian with variance 0.04. First 200 samples as training set, the other 200 as testing set. Additional test set with 200 noise-free f(x).

The RBF Gaussian kernel function with variance of 10.0. Each training data was considered as a candidate RBF center and $n_M = 200$. Regularization parameter fixed to $\lambda = 0.001$.

 Modelling accuracy 	model terms	7.8 ± 0.6
$({\sf mean}\pm{\sf std})$ ${\sf averaged}$	MSE (noisy training set)	0.037703 ± 0.003708
over ten different sets	LOO test score	0.040725 ± 0.003893
of data realizations	MSE (noisy test set)	0.041692 ± 0.002458
	MSE (noise-free test set)	0.001749 ± 0.000630

ſ

 $\begin{bmatrix} 1 & a_{1,2} & \cdots & a_{1,n_M} \\ 0 & 1 & \cdots & \end{bmatrix}$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & \cdots & \vdots \\ \vdots & \cdots & a_{n_M - 1, n_M} \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

Orthogonalization

and $\mathbf{W} = [\mathbf{w}_1 \cdots \mathbf{w}_{n_M}]$ with orthogonal columns: $\mathbf{w}_i^T \mathbf{w}_j = 0$, if $i \neq j$. Let $\mathbf{g} = [g_1 \cdots g_{n_M}]^T$, satisfying $\mathbf{A}\boldsymbol{\theta} = \mathbf{g}$. Regression model becomes

$$\mathbf{y} = \mathbf{W}\mathbf{g} + \mathbf{e}$$

or

$$y(t) = \mathbf{w}^T(t)\mathbf{g} + e(t), \quad 1 \le t \le N$$

Note that $\mathbf{w}(t)$ is *t*-th row of \mathbf{W} and \mathbf{w}_i is *i*-th column of \mathbf{W} .

Orthogonal decomposition: $\Phi = WA$, where

Model Construction Algorithm

 \bigcirc At selection step k, a model term is selected if it produces the smallest LOO test score J_k among the candidate model terms k to n_M .

In this algorithm,

$$J_{k} = \frac{1}{N} \sum_{t=1}^{N} \frac{e_{k}^{2}(t)}{\beta_{k}^{2}(t)}$$

This should be compared with original OLS with

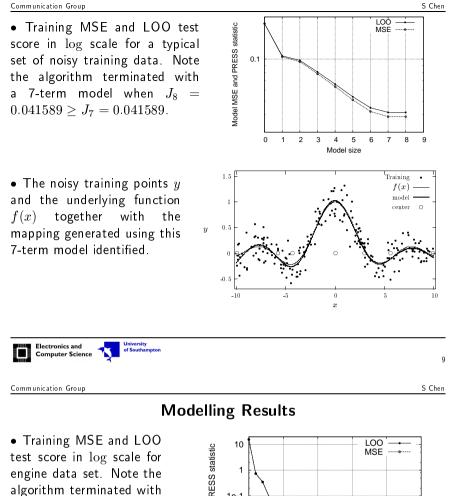
$$J_k = \frac{1}{N}\sum_{t=1}^N e_k^2(t)$$

 \bigcirc The model construction process is fully automatic, and ends with a $n_{\theta}\text{-term}$ model when

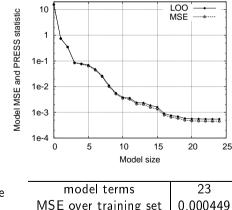
$$\Delta J = J_{n_{\theta}+1} - J_{n_{\theta}} \ge 0$$

User does not need to specify any separate termination criterion.

Electronics and Computer Science



a 23-term model when $J_{24} = 0.000548 \ge J_{23} =$ 0.000548.

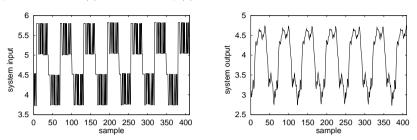


• Modelling accuracy for engine data set.

model terms	23
MSE over training set	0.000449
MSE over training set LOO test score MSE over test set	0.000548
MSE over test set	0.000487

Engine Data Modelling

System input u(t) and output y(t)



First 210 data points for modelling, last 200 points for testing

RBF model:

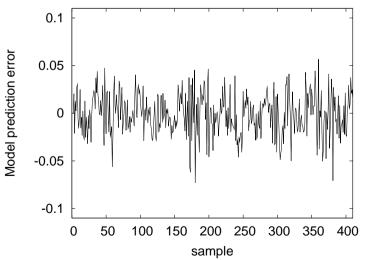
$$\hat{y}(t) = \hat{f}_{RBF}(y(t-1), u(t-1), u(t-2))$$

Gaussian kernel function variance 1.69. Regularization parameter fixed to 10^{-7}

Electronics and Computer Science

Communication Group

• Modelling error $y(t) - \hat{y}(t)$ by the constructed 23-term model:



Ö

10

S Chen

S Chen

Conclusions

- A fully automatic model construction algorithm for linear-in-theparameters nonlinear models has been developed based directly on maximizing model generalization capability
- The leave-one-out test score in the framework of regularized orthogonal least squares has been derived and, in particular, an efficient recursive computation formula for LOO errors has been presented
- The proposed algorithm is based on orthogonal forward regression with LOO test score to optimize model structure without resorting to another validation data set for model assessment

13