Sparse Regression Modelling Using an Incremental Weighted Optimization Method Based on Boosting with Correlation Criterion

S. Chen[†], X.X. Wang[‡] and D.J. Brown[‡]

[†] School of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K. E-mail: sqc@ecs.soton.ac.uk

[‡] Department of Creative Technologies University of Portsmouth, Portsmouth PO1 3HE, U.K. E-mails: xunxian.wang@port.ac.uk, david.j.brown@port.ac.uk

Presented at 10th Annual Conference of Chinese Automation and Computing Society in UK, Liverpool, UK, September 18, 2004

Modelling from data: generalization, interpretability, knowledge extraction \Rightarrow All depend on ability to construct appropriate sparse models

○ Existing state-of-art sparse kernel regression modelling:

• Kernels position at training input data points with a common kernel variance

 \bigcirc This contribution considers generalized kernel model with tunable kernel centers and covariance matrices

- ↑ Enhancing modelling capability with much sparser representation
- ↓ Much more difficult nonlinear learning problem
- To manage learning complexity, incremental modelling is adopted to append kernel regressors one by one.

Generalized Kernel Modelling

 \bigcirc Modelling training data set $\{\mathbf{x}_l, y_l\}_{l=1}^N$ with regression model

$$\hat{y}(\mathbf{x}) = \sum_{i=1}^{M} w_i g_i(\mathbf{x})$$

 \bigcirc Generalized kernel

$$g_i(\mathbf{x}) = G\left(\sqrt{(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}\right)$$

where μ_i is kernel center and Σ_i diagonal kernel covariance matrix

 \bigcirc Define k-term model residuals over training set

$$y_i^{(k)} = y_i^{(k-1)} - w_k g_k(\mathbf{x}_i), \ 1 \le i \le N$$

Obviously $y_i^{(0)} = y_i$, the desired output

Electronics and Computer Science

Incremental Modelling

 \bigcirc Mean square error of k-term regression model

$$MSE_k = \frac{1}{N} \sum_{i=1}^{N} \left(y_i^{(k-1)} - w_k g_k(\mathbf{x}_i) \right)^2$$

 \bigcirc k-th regression stage constructs the k-th regressor by determining:

kernel center $oldsymbol{\mu}_k$ and covariance $oldsymbol{\Sigma}_k$, as well as the usual LS weight solution

$$w_k = rac{\sum_{i=1}^{N} y_i^{(k-1)} g_k(\mathbf{x}_i)}{\sum_{i=1}^{N} g_k^2(\mathbf{x}_i)}$$

 \bigcirc Model construction is terminated at M stage if

$$MSE_M < \xi$$

where ξ is a prescribed modelling accuracy, yielding an M-term generalized kernel model

Correlation Criterion

 \bigcirc Correlation between regressor $g_k(\mathbf{x})$ and training set $\{y_i^{(k-1)}, \mathbf{x}_i\}_{i=1}^N$

$$C_k(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = rac{\sum_{i=1}^N g_k(\mathbf{x}_i) y_i^{(k-1)}}{\sqrt{\sum_{i=1}^N g_k^2(\mathbf{x}_i)}} \sqrt{\sum_{i=1}^N \left(y_i^{(k-1)}
ight)^2}$$

defines similarity between regressor and training set

○ Regressor positioning and shaping

$$\max_{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k} \left| C_k \left(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k
ight)
ight|$$

 \bigcirc It can be shown

$$\max_{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}} \frac{|C_{k}\left(\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)| \Leftrightarrow \min_{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}} MSE_{k}}$$

Guided Random Search

Consider task of minimizing $f(\mathbf{u})$

Outer Loop: N_G number of generations

Initialization: keep best solution found in previous generation as \mathbf{u}_1 and randomly choose rest

of population $\mathbf{u}_2, \cdots, \mathbf{u}_{P_S}$

Inner Loop: N_I iterations

• Perform a convex combination

$$\mathbf{u}_{P_S+1} = \sum_{i=1}^{P_S} \,\delta_i \mathbf{u}_i$$

• Weightings

$$\delta_i \geq 0$$
 and $\sum_{i=1}^{P_S} \delta_i = 1$

are adopted (boosting) to reflect goodness of \mathbf{u}_i

• \mathbf{u}_{P_S+1} replaces worst member in population \mathbf{u}_i , $1 \le i \le P_S$ End of $Inner\ Loop$

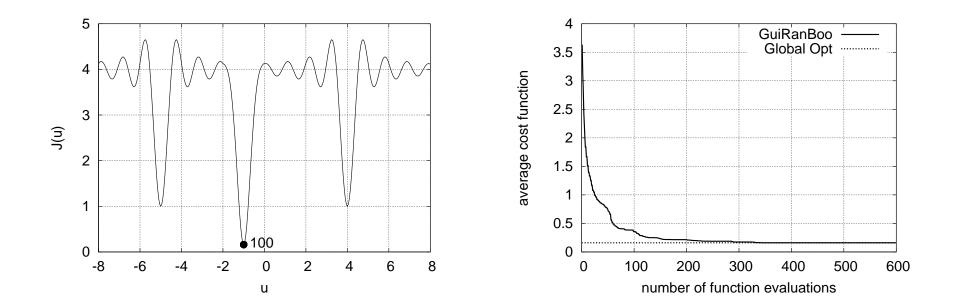
End of *Outer Loop*

Electronics and Computer Science

Optimization Example

 \bigcirc Population size $P_S=6,$ number of Inner iterations $N_I=20$ and number of generations $N_G=12$

 \bigcirc 100 random experiments, populations of all 100 runs converge to global minimum



Simple Modelling Example

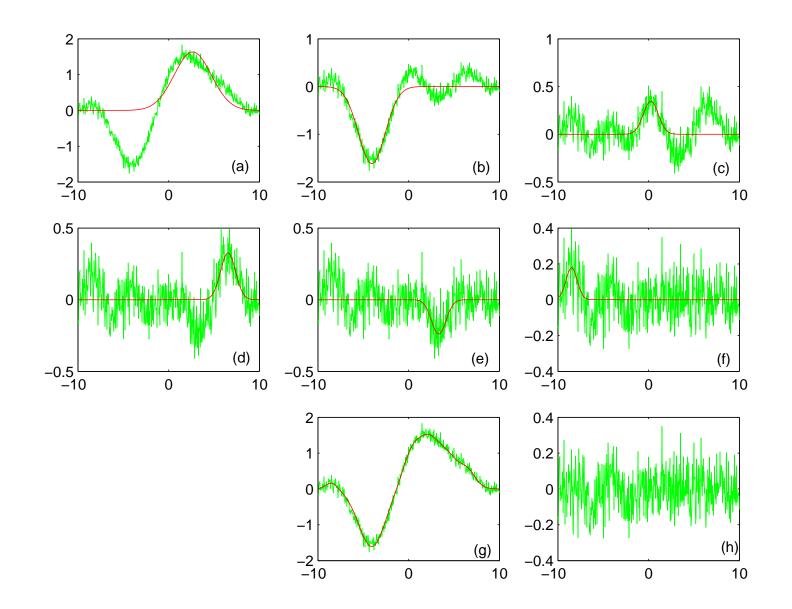
 \bigcirc 500 points of training data generated from

$$y(x) = 0.1x + \frac{\sin x}{x} + \sin 0.5x + \epsilon$$

where $x \in [-10, 10]$ and ϵ Gaussian white noise of variance 0.01

 \bigcirc Generalized Gaussian kernel used, modelling accuracy set to $\xi = 0.012$:

regression step k	mean μ_k	variance σ_k^2	weight w_k	$MSE\;MSE_k$
0	—	—	—	0.8431
1	2.6905	4.2488	1.6088	0.3703
2	-4.0837	2.1853	-1.6019	0.0341
3	0.2982	0.6000	0.3781	0.0243
4	6.6062	0.6610	0.3116	0.0173
5	3.4162	0.6091	-0.2242	0.0138
6	-8.4780	0.4295	0.1787	0.0119



Gas Furnace Data Modelling

 \bigcirc Modelling relationship between coded input gas feed rate (input u(t)) and CO₂ concentration from gas furnace (output y(t)):

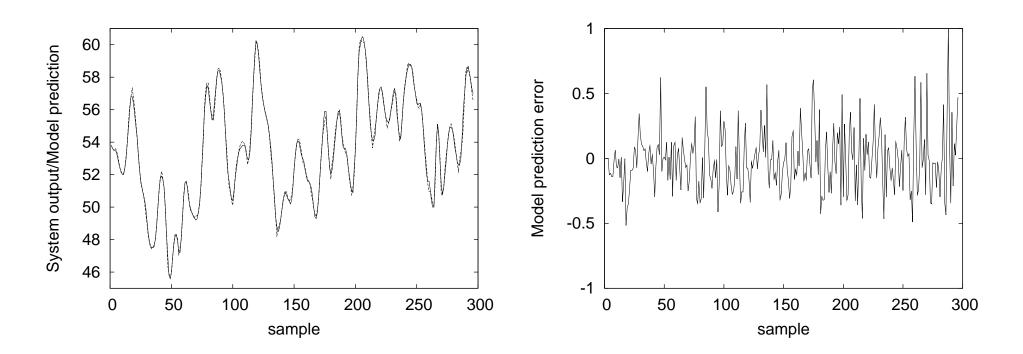
Series J in: G.E.P. Box and G.M. Jenkins, *Time Series Analysis, Forecasting* and *Control.* Holden Day Inc., 1976.

 \bigcirc Data set contains 296 pairs of input-output samples (u_i, y_i) , modelled as $y_i = f_s(\mathbf{x}_i) + \epsilon_i$ with

$$\mathbf{x}_{i} = [y_{i-1} \ y_{i-2} \ y_{i-3} \ u_{i-1} \ u_{i-2} \ u_{i-3}]^{T}$$

 \bigcirc Generalized Gaussian kernel used, modelling accuracy set to $\xi = 0.054$: proposed incremental modelling method yields a 18-term generalized kernel model

 \bigcirc To achieve same modelling accuracy for this data set, best of existing state-of-art kernel regression techniques required at least 28 regressors



Noisy training output data y_i , model output \hat{y}_i and modelling error $\epsilon_i = y_i - \hat{y}_i$

Conclusions

- A novel construction algorithm has been proposed for parsimonious regression modelling based on generalized kernel model
- Proposed algorithm has ability to tune center and diagonal covariance matrix of individual regressor to incrementally maximize correlation criterion (minimize training mean square error)
- A guided random search method has been developed to append regressors one by one in an incremental modelling procedure
- Our method offers enhanced modelling capability with very sparse representation

