Global Optimal Realizations of Finite Precision Digital Controllers

J. Wu † , S. Chen ‡ , G. Li $^{\$}$ and J. Chu †

- [†] National Key Laboratory of Industrial Control Technology Zhejiang University, Hangzhou, 310027, P. R. China
- [‡] Department of Electronics and Computer Science University of Southampton, Southampton SO17 1BJ, U.K.
- § School of Electrical and Electronic Engineering Nanyang Technological University, Singapore

Presented at 41st IEEE CDC, December 10-13, 2002 Las Vegas, Nevada, USA

Support of U.K. Royal Society is gratefully acknowledged

Electronics and Computer Science	University of Southampton	1
Communication Group		S Chen

Problem Definition

- Plant: $P(z) \sim (\mathbf{A}_P, \mathbf{B}_P, \mathbf{C}_P)$; $\mathbf{A}_P \in \mathcal{R}^{m \times m}$, $\mathbf{B}_P \in \mathcal{R}^{m \times l}$, $\mathbf{C}_P \in \mathcal{R}^{q \times m}$.
- Controller: $C(z) \sim (\mathbf{A}_C, \mathbf{B}_C, \mathbf{C}_C, \mathbf{D}_C)$; $\mathbf{A}_C \in \mathcal{R}^{n \times n}$, $\mathbf{B}_C \in \mathcal{R}^{n \times q}$, $\mathbf{C}_C \in \mathcal{R}^{l \times n}$, $\mathbf{D}_C \in \mathcal{R}^{l \times q}$.

Denote an initially designed controller realization as X_0 and a generic realization X. Let $\overline{A}(X)$ be the closed-loop transition matrix with X.

• Controller realization set

 $\mathcal{S}_C \stackrel{\triangle}{=} \left\{ \mathbf{X} : \mathbf{A}_C = \mathbf{T}^{-1} \mathbf{A}_C^0 \mathbf{T}, \mathbf{B}_C = \mathbf{T}^{-1} \mathbf{B}_C^0, \mathbf{C}_C = \mathbf{C}_C^0 \mathbf{T}, \mathbf{D}_C = \mathbf{D}_C^0 \right\}$

where $\mathbf{T} \in \mathcal{R}^{n imes n}$ is an arbitrary non-singular matrix

• All $\mathbf{X} \in \mathcal{S}_C$ are equivalent in infinite precision implementation: an identical set of closed-loop eigenvalues $\lambda_i(\overline{\mathbf{A}}(\mathbf{X}))$, $1 \leq i \leq m+n$, which are all within the unit disk.

Electronics and Computer Science

3

S Chen

Motivations and Background

Finite precision controller implementation can seriously influence closed-loop performance.

• Two types of finite word length errors: roundoff errors in arithmetic operations – controller signal errors, and controller coefficient representation errors – controller parameter errors.

This work is concerned with FWL controller parameter errors, which have critical influence on closed-loop stability.

• Two strategies: direct and indirect.

This work adopts an indirect approach.

• We present a novel search algorithm for global solutions to an existing optimal finite precision controller realization problem.

Electronics and Computer Science Vintersity of Southampton

Communication Group

Electronics and

Closed-Loop Stability Robustness Measure

- In FWL fixed-point implementation, $\mathbf{X} \to \mathbf{X} + \Delta \mathbf{X}$ and $\lambda_i(\overline{\mathbf{A}}(\mathbf{X})) \to \lambda_i(\overline{\mathbf{A}}(\mathbf{X} + \Delta \mathbf{X}))$.
- Closed-loop stability measure (Li 1998)

$$f(\mathbf{X}) \stackrel{\triangle}{=} \min_{i \in \{1, \cdots, m+n\}} \frac{1 - |\lambda_i(\overline{\mathbf{A}}(\mathbf{X}))|}{\sqrt{N} \left\| \frac{\partial \lambda_i(\overline{\mathbf{A}}(\mathbf{X}))}{\partial \mathbf{X}} \right\|_F}$$

where N = (l+n)(q+n) and $\|\cdot\|_F$ the Frobenius norm.

• $f(\mathbf{X})$ quantifies the "robustness" of closed-loop stability for the realization \mathbf{X} to FWL controller perturbations:

Under some mild conditions, the larger $f(\mathbf{X})$, the larger the FWL error $\Delta \mathbf{X}$ that controller \mathbf{X} can tolerate without causing closed-loop instability.

4

S Chen

Optimal Realization Problem

• The optimal FWL controller realization problem (Li 1998)

$$v \stackrel{\triangle}{=} \max_{\mathbf{X} \in \mathcal{S}_C} f(\mathbf{X})$$

- Closed-form solutions was attempted in (Li 1998), but ended with suboptimal solutions.
- Direct numerical optimization has to apply: computationally costly and no way to know if a solution obtained is a global optimal solution.
- Our two-stage approach:

 $1. \ \mbox{Construct}$ a closed-form realization set that contains global optimal solutions under a mild condition;

2. Search in this set for a global solution with a numerical algorithm that are much more efficient than usual numerical optimization.

Remarks

- The assumption that $Condition \mbox{\sc s}$ can be met is a reasonable one.
- It turns out that the set

$$\mathcal{X} \stackrel{ riangle}{=} \{ \mathbf{X} : g(\mathbf{X}, k_1) =
ho_{k_1}, \mathbf{X} \in \mathcal{S}_C \}$$

can be constructed in a closed-form. Since ${\bf X}={\bf X}({\bf T}),\, {\cal X}$ is defined on the transformation set

$$\mathcal{T} \stackrel{\triangle}{=} \{ \mathbf{T} : g(\mathbf{X}(\mathbf{T}), k_1) = \rho_{k_1}, \mathbf{T} \in \mathcal{R}^{n \times n}, \det \mathbf{T} \neq 0 \}$$

• ${\cal T}$ can be searched for an ${\bf T}_{\rm opt}$ meeting

$$g(\mathbf{X}(\mathbf{T}_{\mathrm{opt}}), k) \ge \rho_{k_1}, \ \forall k \in \{1, \cdots, m+n\} \setminus \{k_1\}$$

• This is much more efficient than minimizing $f(\mathbf{X})$ over \mathcal{S}_C . Moreover, if a solution can be found in this way it is a global optimum for sure.

Single-Pole Stability Functions and Their Peaks

• $orall k \in \{1, \cdots, m+n\}$, define the single-pole FWL stability function of ${f X}$

$$g(\mathbf{X},k) \stackrel{\triangle}{=} \frac{1 - |\lambda_k(\overline{\mathbf{A}}(\mathbf{X}))|}{\sqrt{N} \left\| \frac{\partial \lambda_k(\overline{\mathbf{A}}(\mathbf{X}))}{\partial \mathbf{X}} \right\|_F}$$

and further define the single-pole peak of FWL stability as

$$ho_k \stackrel{ riangle}{=} \max_{\mathbf{X} \in \mathcal{S}_C} g(\mathbf{X},k)$$

• Theorem 1 $v = \rho_{k_1} \stackrel{\triangle}{=} \min_{k \in \{1, \cdots, m+n\}} \rho_k$ if and only if there exists $\mathbf{X}_{opt} \in \mathcal{S}_C$ and $k_1 \in \{1, \cdots, m+n\}$ such that $g(\mathbf{X}_{opt}, k_1) = \rho_{k_1}$ and

Condition
$$\sharp$$
: $g(\mathbf{X}_{opt}, k) \ge \rho_{k_1}, \ \forall k \in \{1, \cdots, m+n\} \setminus \{k_1\}$

Obviously, such an $\mathbf{X}_{\mathrm{opt}}$ is a global optimal solution.

Computer Science

Communication Group

Closed-Form Transformation Set

- Let \mathbf{p}_k and \mathbf{y}_k be the right and reciprocal left eigenvectors related to the closed-loop eigenvalue λ_k , respectively.
- Theorem 2 The value of ρ_k is easily determined, and $g({\bf X}({\bf T}),k)$ achieves the maximum ρ_k if and only if

$$\mathbf{T} = \mathbf{Q} \left[\begin{array}{cc} \mathbf{H}^{1/2} & \mathbf{0} \\ \mathbf{F}(\mathbf{H}^{1/2})^{-T} & \mathbf{\Omega} \end{array} \right] \mathbf{V}$$

where $\mathbf{V}\in\mathcal{R}^{n\times n}$ is an arbitrary orthogonal matrix, the orthogonal matrix \mathbf{Q} is know, and

- 1. complex \mathbf{p}_k and \mathbf{y}_k : $\mathbf{\Omega} \in \mathcal{R}^{(n-2) \times (n-2)}$ is an arbitrary nonsingular matrix, the 2×2 matrix \mathbf{H} and the $(n-2) \times 2$ matrix \mathbf{F} are known;
- 2. real \mathbf{p}_k and \mathbf{y}_k : $\mathbf{\Omega} \in \mathcal{R}^{(n-1) \times (n-1)}$ is an arbitrary nonsingular matrix, the scalar $\mathbf{H}^{1/2} = \sqrt{h}$ and the $(n-1) \times 1$ vector \mathbf{F} are known.

6

S Chen

Electronics and Computer Science

Communication Group

stability functions

single-pole FWL

0.5

x 10⁻⁵

Search Algorithm

 $\mathcal{T} = \left\{ \mathbf{T}(\mathbf{\Omega}) : \mathbf{T}(\mathbf{\Omega}) = \mathbf{Q} \left[egin{array}{cc} \mathbf{H}^{1/2} & \mathbf{0} \ \mathbf{F}(\mathbf{H}^{1/2})^{-T} & \mathbf{\Omega} \end{array}
ight\}$

• The objective: search for a nonsingular $\mathbf{\Omega}_{\mathrm{opt}} \in \mathcal{R}^{(n-2) imes (n-2)}$ such that

• Notice that $q(\mathbf{X}(\mathbf{T}(\mathbf{\Omega})), k)$ is differentiable with respect to $\mathbf{\Omega}$.

 $\Rightarrow \mathbf{\Omega}$ is updated iteratively until all the $g(\mathbf{X}, k) \geq \rho_{k_1}$.

(If λ_{k_1} is real-valued, $\mathbf{\Omega} \in \mathcal{R}^{(n-1) \times (n-1)}$.)

 $q(\mathbf{X}(\mathbf{T}(\mathbf{\Omega}_{ont})), k) > \rho_{k_1}, \forall k \in \{1, \cdots, m+n\} \setminus \{k_1\}$

• With the derivative, we know how to change Ω so that $q(\mathbf{X}, k)$ increase for

Iterative Search

20

20

iteration

iteratior

25

25

30

30

35

35

40

15

15

those $g(\mathbf{X},k) < \rho_{k_1}$, and $g(\mathbf{X},k)$ do not decrease for those $g(\mathbf{X},k) \ge \rho_{k_1}$

• According to **Theorem 2** and setting $\mathbf{V} = \mathbf{I}$. \mathcal{T} is given in the form:

9

S Chen

Design Example

- Li (1998): m = 5, n = 6, l = q = 1; a closed-loop system of order 11.
- The controller transfer function C(z) has been given with the companion canonical form of C(z) as the initial realization.
- The closed-loop system: five pairs conjugate complex-valued eigenvalues $\lambda_{1,2}$, $\lambda_{3,4}$, $\lambda_{5,6}$, $\lambda_{7,8}$ and $\lambda_{9,10}$, and one real-valued eigenvalue λ_{11} .
- The single-pole peaks of FWL stability are

 $\begin{array}{ll} \rho_{1,2}=2.5072e-3, & \rho_{3,4}=2.1295e-3, & \rho_{5,6}=6.7344e-6, \\ \rho_{7,8}=2.8586e-3, & \rho_{9,10}=3.0832e-3, & \rho_{11}=4.3181e-3. \end{array}$

The minimum value of all the ρ_ks is ρ₅ (or ρ₆) ⇒ k₁ = 5 and the matrices
 Q, H and F are determined ⇒ T = {T(Ω)}.

Global Optimal Solution

- During each iteration, $\mathbf{X}(\mathbf{T}(\mathbf{\Omega}))$ meets: 1) $g(\mathbf{X},k)$ increase for those $g(\mathbf{X},k) < \rho_{k_1}$; 2) $g(\mathbf{X},k)$ do not decrease for those $g(\mathbf{X},k) \ge \rho_{k_1}$.
- At the 37th iteration, a global optimal realization $X(T(\Omega_{opt}))$ is found, since at this stage *Condition* \sharp is met:

 $g(\mathbf{X}(\mathbf{T}(\mathbf{\Omega}_{\mathrm{opt}})),k) \ge
ho_{k_1}, \ k \in \{1,2,\cdots,11\} \setminus \{5,6\}$

and the search algorithm terminated.

Electronics and Computer Science

• Values of the closed-loop stability measure for the initial and global optimal realizations ${\bf X}_0$ and ${\bf X}({\bf T}_{opt})$ are:

 $f(\mathbf{X}_0) = 3.1797 \times 10^{-11}$ $f(\mathbf{X}(\mathbf{T}_{opt})) = 6.7344 \times 10^{-6}$

a factor of 2×10^5 improvement in the closed-loop FWL stability measure.

11

40

10

10

5

g(**X**,5) g(**X**,7)

g(**X**,9) g(**X**,11

Conclusions and Future Works

- We have developed an efficient method to solve the optimal controller realization problem based on maximizing a closed-loop FWL stability measure.
- 1. This method does not suffer from the drawbacks associated with using direct numerical optimization methods to tackle the problem.
- 2. under a reasonable and mild condition, our method can find global optimal controller realizations for most practical systems.
- The arbitrary orthogonal matrix $\mathbf{V}\in \mathcal{R}^{n imes n}$ in the closed-form transformation set \mathcal{T} can be explored to design:
- 1. global optimal (in closed-loop stability sense) realizations of fixed-point controller with the smallest dynamic range.
- 2. sparse global optimal realizations of fixed-point controller.

13